
FAREWELL, PAUL

I was 19 years old, a second year university student, when I received the
following letter: “Dear Mr. Sárközy, I have heard about your nice results”
so and so “from Paul Turán. Please, come and see me at the Mathematical
Institute” (of the Hungarian Academy of Sciences). The letter was signed by
Paul Erdős. Probably tens of mathematical careers started with such a letter
from him.

I visited him soon at the Mathematical Institute. I told him my results
(which were not that exciting but, perhaps, good enough for a beginner)
and I sketched the proofs. He made several deep and original comments
and at the end he asked a related question. As an answer to this question,
I soon published (in the Acta Arithmetica) my first paper based on an Erdős
problem.

This first meeting with him was the first “Uncle Paul session” (as his
friends and collaborators called them) that I attended, and it was followed
by many others. During these sessions, he was usually discussing simulta-
neously with 2–3 disciples (“epsilons” as he called them) and collaborators
working in different fields. Indeed, to match his speed, intensity, ingenu-
ity and knowledge, at least two or three other mathematicians were needed.
Even so, when you left after such a session you felt completely squeezed out,
unable to ever do mathematics anymore. However, when after a good sleep
you awoke next morning your head was full of his problems and ideas, and
you were just unable to think about anything else; and in at most two days
you were longing again badly for one of those, ever so exhausting, “Uncle
Paul sessions”.

Three years after our first meeting we wrote our first joint paper which
was a triple paper with Endre Szemerédi. This was followed by more than
60 joint papers (nearly half of them were triple or even quadruple papers
with E. Szemerédi, V. T. Sós, C. Pomerance, J.-L. Nicolas, C. L. Stewart,
C. Mauduit, H. Maier, I. Z. Ruzsa, P. Kiss, J.-M. Deshouillers, M. B. Na-
thanson and A. M. Odlyzko). During the decades of joint work, our under-
standing and communication was getting like in a long marriage: one word
was enough to tell a long story, exchanging ten sentences was enough to
write a joint paper.
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Mathematics was his life; he was doing mathematics for 17–18 hours
every day. Lately his friends were asking him to slow down a little, to live a
less self-consuming life style. His standard answer was: “We can rest enough
in the grave.” Now he is resting indeed. Farewell, Paul... It is still hard to
believe that life will go on, mathematics will survive without you, but it will:
mathematics is eternal... Just it will not be the same any more...

András Sárközy
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Paul Erdős (1913–1996)

by

András Sárközy (Budapest)

BIOGRAPHY OF PAUL ERDŐS

Paul (Pál in Hungarian) Erdős was born in Budapest, Hungary on March
26, 1913. Both his parents were high school mathematics teachers. From
1930 he studied mathematics at the Péter Pázmány (now Eötvös) Univer-
sity in Budapest. At the university his closest friends were Tibor Gallai,
Paul (Pál) Turán and George (György) Szekeres. He graduated from the
Pázmány University in 1934 (at the age of 21) with a PhD. After grad-
uation the steadily worsening political atmosphere (antisemitism, the ap-
proaching fascism) forced him to leave Hungary. Between 1934 and 1938 he
lived in Manchester, UK (and in the meantime he visited Hungary three
times each year). From 1938 to 1948 he stayed in the US (1938–40: Institute
of Advanced Study, 1940–43: University of Pennsylvania, 1943–45: Purdue
University, 1945–48: Syracuse University). In 1948 he left for Europe: first he
stayed in the Netherlands (for two months), then, after 10 years of absence,
he visited Budapest (for two months), finally, he travelled to the UK. After
one year (1949–50) in the US, he returned to the UK (1950–51: Aberdeen,
1951–52: London). In 1952–54 he was visiting the Notre Dame University
in the US. In 1954, during the McCarthyism, he was interviewed by the Im-
migration Service. Since he was insisting on his democratic principles and,
in particular, on having world wide personal connection with his colleagues,
including East European mathematicians, his US reentry permit was denied.
Thus after participating in a congress in Amsterdam, he was unable to re-
turn to the US, and he lost his “green card” and his Notre Dame job. In the
next 9 years he could visit the US just once, participating in a conference
with a special short term visa. From 1954 on, he keeps travelling around
the Globe, without ever accepting a permanent full time job. In these years
he visited Haifa, Israel every year for up to 3 months. Between 1948 and
1955, i.e., during the worst years of Stalinism and post-Stalinism he stayed
away from Hungary; in 1955, when a slow improvement started, he visited
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Budapest again. Then he made a deal, at that time quite amazing and ex-
ceptional, with the Hungarian authorities: from 1955, he was considered a
Hungarian citizen and an Israeli resident, and he received a special consular
passport which enabled him to cross the Hungarian border at any time in
either direction. During his Hungarian visits he stayed at the Mathematical
Institute of the Hungarian Academy of Sciences, and at the beginning a
special arrangement was made for each of his visits. In 1962, this connec-
tion was made more formal: he got a permanent job in the Institute (up
to his death). In 1963 the US Immigration reviewed his case and finally he
received the American visa (a J-1 visa which he had to renew from time to
time). From this point on up to his death, his schedule was nearly the same
every year: 4–5 months in Hungary, slightly less in the US, a short trip to
Israel, and the rest of the time travelling around the Globe, participating in
conferences and giving talks.

He died in Warsaw on September 20, 1996. He died as he lived: travelling
and working. He was participating in a combinatorics conference in Poland
which ended on Friday, September 20, and he was to leave next day for a
number theory conference in Lithuania. However, in the early morning on
Friday he got a heart attack and he was taken to a hospital. In the early
afternoon he got a second heart attack and this killed him.

Erdős published about 1.500 research papers; it will take years to deter-
mine the exact number of his publications and to make a complete list of
them. (Euler has been the only more prolific mathematician in the history
of mathematics.) As Ernst Straus wrote: “In many ways, Paul Erdős is the
Euler of our times. Just as the ‘special’ problems Euler solved pointed the
way to analytic and algebraic number theory, topology, combinatorics, func-
tion spaces, etc.; so the methods and results of Erdős’s work already let us
see the outlines of great new disciplines, such as combinatorial and proba-
bilistic number theory, combinatorial geometry, probabilistic and transfinite
combinatorics and graph theory as well as many more yet to arise from his
ideas.”

He made a contribution of basic importance to modern mathematics
not only by proving theorems but also by posing problems, teaching and
helping talented young mathematicians and collaborating with hundreds of
mathematicians in many different countries and different fields. About 70%
of his papers were joint papers; he had nearly 500 coauthors. (No other
mathematician has ever had nearly that many coauthors.)

He was the member of 8 scientific academies and received honorary de-
grees from 15 universities. In 1984 he received the Wolf prize (Israel). Other
prizes and awards received by him: Cole Prize (A.M.S.), Kossuth Prize (Hun-
gary), State Prize (Hungary), Gold Medal of the Hungarian Academy of
Sciences and Tibor Szele Prize (of the Hungarian Mathematical Society).
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THE NUMBERTHEORETIC WORKS OF PAUL ERDŐS

Paul Erdős has published more than 600 papers on number theory. Due
to the large number of his results and to his wide interests, it would clearly
be a hopeless task to try to give a more or less complete survey of his
numbertheoretic works. Thus all one can do is to select and briefly discuss
a few of the most important results and problems of his. Even doing so, one
needs advice of experts of different fields; in particular, I would like to thank
Kálmán Győry, Jean-Louis Nicolas, Attila Pethő, Carl Pomerance, Andrzej
Schinzel, Cameron L. Stewart and Vera T. Sós for their valuable comments
and suggestions. If, however, any errors are made, important results are
overlooked, or certain fields are not represented with the right weight, it is
completely the author’s fault.

Shortly before his death Erdős wrote two papers [96.03, 97.01] on his
favourite problems and results. Since these two papers will often be quoted,
reference to them will be distinguished by introducing quotations from them
as [FT:] (for the paper [96.03], “On some of my favourite theorems”) and
[FP:] (for the paper [97.01], “Some of my favorite problems and results”),
respectively.

1. Diophantine equations, diophantine approximation. Erdős and
Selfridge proved [75.19]:

Theorem. The product of 2 or more consecutive integers is never a
power (i.e., never of the form kl where k, l are positive integers, l ≥ 2).

In 1951 Erdős proved [51.03]:

Theorem. If k, n are positive integers with 4 ≤ k, 2k ≤ n, then
(
n
k

)
is

not a power.

He conjectured that the same assertion holds for k = 2 and 3 as well. Very
recently, this conjecture has been proved for k = 2 and k = 3 by Darmon and
Merel, and Győry, respectively. The following related problem is still open:

[FT:] “Is it true that the product of four or more integers in an arithmetic
progression is never a power?

Here Ramachandra, Shorey and Tijdeman have important partial re-
sults.”

In an early paper Erdős and Turán proved [34.03]:

Theorem. There is a positive absolute constant c such that if A is a
finite set of positive integers then

(1) ω
( ∏

a,a′∈A
(a+ a′)

)
> c log |A|

(where ω(n) denotes the number of distinct prime factors of n).
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They conjectured that the result can be extended to sums a+ b: if A, B
are finite sets of positive integers with

(2) |A| = |B|
and |A| → ∞, then

ω
( ∏

a∈A

∏

b∈B
(a+ b)

)
→∞.

This conjecture was proved more than 50 years later by Győry, Stewart
and Tijdeman who showed that assuming only |A| ≥ |B| ≥ 2 in place of (2),
one has

(3) ω
( ∏

a∈A

∏

b∈B
(a+ b)

)
> c log |A|.

While the proof of the Erdős–Turán theorem is completely elementary,
the crucial tool in the proof of (3) is a deep result of Evertse on an upper
bound for the number of solutions of S-unit equations. In [88.09] Erdős,
Stewart and Tijdeman gave lower bounds for the number of solutions of
S-unit equations. These papers induced further work in this field by Győry,
Sárközy, Stewart and Tijdeman.

Erdős and Obláth [37.06] proved that

n! = xk + yk, (x, y) = 1, k > 2,

has no solutions in positive integers n, k, x, y if k 6= 4. (In 1973 Pollack and
Shapiro showed that it also has no solutions if k = 4.)

[FT:] “Turán and I obtained the following result [48.01], important in
the theory of uniform distribution:

Theorem. Let zν , 1 ≤ ν <∞ be a sequence of numbers in (0, 1). Then
for every m and 0 ≤ α < β ≤ 1 we have

∣∣∣
∑

ν≤n
α<zν≤β

1− (β − α)n
∣∣∣ < c

n

m+ 1
+

m∑

j=1

1
j

∣∣∣
n∑

k=1

e2πijzk
∣∣∣.”

A survey of Erdős’s work on irrationality and transcendence is given in
the Erdős–Graham book [80.11, Chapter 7]. V. T. Sós is working on a survey
of Erdős’s work on diophantine approximation.

2. Sums. In this section only sums with two terms are considered.
[FT:] “Now I want to talk about applications of probability methods to

additive number theory. More than 60 years ago Sidon posed the following
problem:

Let a1 < a2 < . . . be an infinite sequence of integers. Denote by f(n)
the number of solutions of n = ai + aj . Does there exist a sequence A =
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{a1 < a2 < . . .} for which f(n) > 0 for all n > n0 but f(n)/nε → 0 for
every ε > 0?

At first I thought that this problem is easy but it took me 20 years to
prove by probabilistic methods that

Theorem. There is a sequence A for which

(4) c1 log n < f(n) < c2 logn.”

This is proved in [56.10]. Erdős and Rényi [60.01] gave further applica-
tions of this probabilistic method.

[FT:] “Nathanson, Tetali and I have several further related results all of
which will soon be published.

To illustrate some limitations of the probability method let me just state
two plausible conjectures which have resisted so far all attacks:

1. Turán and I conjectured that if f(n) > 0 for all n > n0, then
lim sup f(n) =∞. Perhaps even the following stronger result holds:

lim sup
f(n)
logn

> 0.

In other words, (4) is best possible in a very strong form. For the details
of the proof of (4) I refer to the excellent book of Halberstam and Roth:
Sequences.

2. Sárközy and I conjectured that there is no function f for which

(5)
f(n)
log n

→ c (0 < c <∞).

These conjectures indicate that (4) is best possible. (. . . ) We proved
[85.09] that

Theorem. There is no f for which

|f(n)− log n|√
logn

→ 0

which is of course much weaker than (5).”

Erdős and Sárközy also proved [86.05] that if the function F (n) is
“smooth” in a well-defined sense (the details are too complicated to present
them here), then there is a sequence A for which

f(n)− F (n) = O(
√
F (n) log n).

(This generalizes (4).)
Erdős continues: “Turán and I investigated the following problem: De-

note by f(n) = max
∑
ai<n

1, if ai + aj are all distinct.” (In this case
{a1, a2, . . .} is said to be a Sidon set.) Then
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Theorem.

f(n) = (1 + o(1))n1/2.

Here perhaps f(n) = n1/2 +O(1) is too optimistic, f(n) = n1/2 +O(nε)
should be true but will be difficult.

For many further results and problems on this topics see Halberstam–
Roth: Sequences, and many of my papers. See also our papers with Sárközy
and V. T. Sós [85.08, 86.06, 87.10, 94.01] and Nathanson and Tetali [95.02].”

Erdős and Freud [91.05], resp. Erdős, Sárközy and V. T. Sós [94.04, 95.05]
studied sum sets of Sidon sets (very recently some of the results in the last
two papers have been sharpened by Ruzsa, and Spencer and Tetali).

[FT:] “I should not forget our result with W. Fuchs [56.04] which cer-
tainly will survive the authors by centuries:

Theorem. Let a1 < a2 < . . . be an infinite sequence of integers. If F (x)
denotes the number of solutions of ai + aj < x, then

(6) F (x) = cx+ o

(
x1/4

(log x)1/2

)

is impossible.

Jurkat and later Montgomery and Vaughan proved that o(x1/4) is also
impossible in (6).”

[FT:] “I proved [36.06, 54.02] that

Theorem. Every basis is an essential component.

Linnik was the first to give an essential component which is not a basis.
Plünnecke and in particular Ruzsa have the best results in this subject at
the moment.”

Erdős had numerous other papers on (additive) bases, written partly
jointly with Deshouillers, Graham, Nathanson, Newman and Sárközy.

We mentioned the classical Erdős–Turán result (1) on prime factors of
sums. Erdős studied the distribution of prime factors and other arithmetic
properties of sums a+b jointly with Maier, Pomerance, Sárközy and Stewart
[77.07, 78.06, 87.04, 87.07, 93.03].

3. Partitions. If A = {a1 < a2 < . . .} is a finite or infinite sequence of
positive integers then let p(A,n) denote the number of solutions of

x1a1 + x2a2 + . . . = n

in non-negative integers xi, and write p(N, n) = p(n).
[FT:] “I would like to mention my result with Lehner. We prove [41.03]

that
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Theorem. If pk(n) denotes the number of partitions of n which have
fewer than k summands, then if

k =
1
C

√
n logn+ x

√
n,

then

lim
pk(n)
p(n)

= exp
(
− 2
C
e−

1
2Cx

)
.”

(So that almost all partitions have c
√
n logn summands.)

Erdős and Bateman [56.02] proved:

Theorem. p(A,n) is strictly increasing for all large n if and only if the
following condition is satisfied : |A| > 1 and if any element is removed from
A, then the remaining elements have greatest common divisor 1.

Consider a partition π of n into a’s:

ai1 + ai2 + . . .+ aik = n, i1 ≤ i2 ≤ . . . ≤ ik.
If the positive integer b can be written in the form

ε1ai1 + ε2ai2 + . . .+ εkaik = b with εj ∈ {0, 1} for j = 1, 2, . . . , k,

then we say that the partition π represents b.
In the case A = N Erdős and Szalay [83.06] proved:

Theorem. Almost all partitions of n represent all the integers 1, . . . , n.
Moreover , almost all the partitions π of n that fail to represent at least one
1 ≤ b ≤ n are the partitions without any 1 in π.

Erdős and Nicolas [95.04] extended this theorem to sets A 6= N.
For A = N let R(n, b) denote the number of partitions of n which do

not represent b. This function R(n, b) has been studied by Erdős, Dixmier,
Nicolas and Sárközy [89.10, 90.10, 91.09, 92.07].

Erdős, Nicolas and Szalay [89.11] studied partitions into parts which are
unequal and large.

Other partition problems were studied by Erdős and Richmond [76.03,
78.08, 78.15], Alladi, Erdős and Hoggatt [78.05], and Erdős and Loxton
[79.11]. Erdős and Graham [72.03] studied a problem of Frobenius.

4. Subset sums. If A = {a1, a2, . . .} is a finite or infinite set of integers
(or more generally, of elements of a semigroup) and B ⊂ A, then the sum

∑

b∈B
b =

∑

i

εiai (where εi = 0 for ai 6∈ B and εi = 1 for ai ∈ B)
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is called a subset sum of A. Denote the counting function of A by A(x):

A(x) =
∑

a≤x
a∈A

1.

Erdős [62.03] proved that

Theorem. If A is an infinite sequence of positive integers such that

A(x) > x(
√

5−1)/2 for x > x0,

then the set of the subset sums of A contains an infinite arithmetic progres-
sion.

(In other words, there is an infinite arithmetic progression all of whose
terms can be represented in the form

∑
a∈A εaa with εa = 0 or 1,

∑
a∈A εa <

∞.) Later this result was sharpened by Folkman and now Hegyvári has the
best estimate.

Erdős and coauthors proposed the study of representations of

(i) squares (Erdős),
(ii) integers taken from a certain interval (Erdős and Graham),

(iii) powers of 2 (Erdős and Freud),
(iv) squarefree integers (Erdős and Freud)

by subset sums of “dense” sets of integers. In particular, problems (iii)
and (iv) were studied first by Erdős and Freiman [90.12]. These questions
are closely connected with the study of long arithmetic progressions, resp.
long blocks of consecutive integers in subset sums of “dense” (finite) sets.
Partly the four problems above, partly arithmetic progressions in subset
sums have been studied by Erdős, Nathanson and Sárközy [88.10], Alon,
Freiman, Károlyi, Lev and Lipkin. Arithmetic progressions in subset sums
of “thin” (finite) sets have been studied by Erdős and Sárközy [92.01]. Alon
and Erdős [96.02] studied the Ramsey type version of problem (ii) above.
Erdős, Sárközy and Stewart [94.03] estimated large prime factors of subset
sums.

Erdős and Heilbronn [64.05] proved the following

Theorem. If p is a prime and a1, a2, . . . , ak are distinct residues modulo
p with k ≥ 3(6p)1/2, then every residue class can be represented in the form∑k
i=1 εiai, εi = 0 or 1.

This result has been sharpened and extended by Hamidoune, Olsen,
Ryavec, Sárközy and Szemerédi.

Erdős and Straus [70.03] and Erdős and Sárközy [90.03] studied non-
averaging sets, i.e., sets such that no element is the arithmetic mean of any
subset with more than one element.
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Erdős [62.07] and Straus called a set admissible if subset sums of sub-
sets of different cardinality are distinct, and they estimated the maximal
size of an admissible set selected from {1, 2, . . . , n}. Their estimates were
improved by Erdős, Nicolas and Sárközy [91.09], and recently Deshouillers
and Freiman have settled the problem nearly completely.

5. Products. A set A = {a1, a2, . . .} of positive integers is said to be a
multiplicative Sidon set if the products aiaj with i ≤ j are all distinct. Let
F (n) denote the maximal cardinality of a multiplicative Sidon set selected
from {1, 2, . . . , n}. Erdős proved [38.03, 69.08]

Theorem. There exist positive absolute constants c1, c2 such that for
n > n0 we have

c1n
3/4(log n)−3/2 < F (n)− π(n) < c2n

3/4(log n)−3/2.

This is a beautiful application of combinatorics: the upper estimate is
based on a lemma on cycles of length 4 in bipartite graphs.

Erdős, Sárközy and V. T. Sós [95.03] studied the solvability of the equa-
tion

a1a2 . . . ak = x2, a1, a2, . . . , ak ∈ A
in “dense” sets A (for k fixed); this problem is closely related to the theorem
above.

In 1960 Erdős [60.03] proved the following

Theorem. The number of distinct integers of the form a, b where a, b∈N,
a, b ≤ x is x2(log x)−α+o(1), where α = 1− log(e log 2)/ log 2 (= 0.0860 . . .).

He proved [65.06] the multiplicative analog of the Erdős–Turán conjec-
ture mentioned in Section 2: Let A{a1, a2, . . .} be an infinite set of positive
integers, and denote the number of solutions of aiaj = n by g(n).

Theorem. If g(n) > 0 for all n > n0 then

lim
n→∞

sup g(n) =∞.
Nešetřil and Rödl, and Nathanson, have extended this result in various

directions.
A result involving both sums and products: [FT:] “Szemerédi and I in-

vestigated the following surprising phenomenon [83.07]. Let a1, a2, . . . , an be
a sequence of integers. Consider the products and sums, i.e., all the integers
of the form

(7) ai + aj , or aiaj , 1 ≤ i ≤ j ≤ n.
Denote by f(n) the largest integer so that for every {a1, a2, . . . , an} there

are at least f(n) distinct integers of form (7). We have proved that
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Theorem.

n1+c1 < f(n) < n2e−c2 log n/ log log n.

We think that the upper bound is nearer to the truth.” Recently this
result has been sharpened and extended in various directions by Nathanson,
Nathanson and Tenenbaum, Erdős and Szemerédi, and Elekes.

Erdős, Sárközy and V. T. Sós [89.07], and Erdős and Sárközy [90.02]
studied the representations of integers by monochromatic sums and prod-
ucts, respectively.

6. Divisors, multiples, coprimality. [FT:] “On divisibility of se-
quences of integers one of my first result states:

Theorem. Let a1 < a2 < . . . be a primitive sequence (i.e., no ai divides
any other). Then

(8)
∑

k

1
ak log ak

< c

with an absolute constant c,

and I conjectured that the left hand side of (8) is the maximum if the a’s
are the primes. (Zhang and I have some partial results [93.09].) Sárközy,
Szemerédi and I [69.10, 70.04] proved that if a1 < a2 < . . . is such that
(ai, aj) 6= ak, then (8) also holds. Zhang and I conjectured that the maxi-
mum is assumed if the a’s are the primes and their powers [93.09, 93.10].”
Erdős, Sárközy and Szemerédi [67.04, 67.05] also sharpened Behrend’s the-
orem on the estimate of

∑
ai≤x 1/ai for primitive sequences a1 < a2 < . . .

[FT:] “H. Davenport and I proved in 1935 [36.04, 51.04] that

Theorem. For any sequence a1 < a2 < . . . the set of multiples always
has a logarithmic density which equals the lower density.

Sárközy, Szemerédi and I obtained 30 years later many stronger results
[70.04, 70.07].”

[FT:] “On divisibility I proved [36.01] that

Theorem. If εn → 0 arbitrarily slowly and n→∞, then the density of
integers which have a divisor in (n, n1+εn) tends to 0.

This is a best possible strengthening of a result of Besicovitch.” Tenen-
baum gave sharp bounds for the density in terms of εn.

[FT:] “I proved [48.04] that for the set of integers which have two divisors
d1 and d2 with d1 < d2 < 2d1 the density exists. I conjectured 60 years ago
that this density is 1. This and much more was proved about 10 years ago
by Maier and Tenenbaum. For more results in this subject see Halberstam–
Roth: Sequences and Hall–Tenenbaum: Divisors.”
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Erdős, partly jointly with Hall, Herzog, Nicolas, Schönheim and Tenen-
baum, studied the distribution of divisors in [65.04, 70.01, 70.08, 75.17,
76.25, 77.13, 78.10, 79.16, 81.15, 83.11, 89.18, 96.04].

He conjectured [62.08] that for n, k ∈ N, the largest subset of {1, 2, . . . , n}
not containing k + 1 pairwise coprime integers is the set consisting of the
multiples of the first k primes. Erdős, Sárközy and Szemerédi [69.02, 80.14,
93.05] and Szabó and Tóth proved partial results and other related theorems.
Recently Ahlswede and Khachatrian have settled the problem by disproving
the conjecture in its original form and showing that it is true in a slightly
weaker form.

Other coprimality related problems are studied in [62.02, 65.09, 70.08,
77.03, 78.04].

7. Primes. [FT:] “Selberg and I [49.01] gave an elementary proof of the
prime number theorem in 1948. (. . . ) The starting point of the whole work
was the fundamental inequality of Selberg

(9)
∑
p<x

(log p)2 +
∑
pq<x

log p log q = x log x+O(x)

for which Selberg found an ingenious elementary proof. Here I just want to
state my new type Tauberian theorem which is related to (9).

Theorem. Let ak > 0, sm =
∑m
k=1 ak. Assume

(10)
n∑

k=1

ak(sn−k + k) = n2 +O(n).

Then

(11) sn = n+O(1).

My proof of (11) was very complicated [49.02]. It was simplified by Siegel
and later generalized and simplified by H. Shapiro. I have many more papers
on Tauberian theorems, one with Karamata [56.08].

I gave a lecture on this topic in Urbana, Illinois and Hua (who had
attended my lecture) asked what happens if we assume

∑n
k=1 kak = 1

2n
2 +

O(n) instead of (10). I proved [49.10] that sn = n + O(log n). The other
question is when we replace (10) by

∑
ksn−k = 1

2n
2 + O(n). Then sn =

n+o(n). I also proved that sn = n+o(
√
n) is not true. Korevaar conjectured

that the right order of magnitude in this second case is sn = n+O(
√
n) and

he proved sn = n + O(n1/2+c) for any c > 0.” Hildebrand and Tenenbaum
have recently proved another related Tauberian theorem.

Let pn denote the nth prime. [FT:] “Put dn = pn+1 − pn. I proved in
1934 [35.07] that
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Theorem. For infinitely many n

(12) dn >
c logn log log n
(log log log n)2 ,

and in 1938 Rankin added a factor log log log log n to the numerator”:

(13) dn >
c logn log log n log log log log n

(log log log n)2 .

Later Maier and Pomerance, and recently Pintz improved on the value of
the constant c in this inequality.

[FT:] “Turán and I proved in 1948 [48.03] that

Theorem. The density of integers for which dn+1 > (1+ε)dn is positive.
The same holds if we assume dn > (1 + ε)dn+1.

Ricci and I proved that the set of limit points of dn/ log n has positive
measure. (I am convinced that it is everywhere dense in (0,∞).) I can also
prove that the set of limit points of dn/dn+1 has positive measure and I am
convinced that it is also everywhere dense in (0,∞). Maier has the sharpest
partial results.”

Erdős and Pomerance [86.04] studied problems of statistical nature re-
lated to primality testing.

Additive problems involving primes are studied in [35.08, 37.04, 37.05,
38.02, 39.08, 50.04].

[FT:] “. . . denote by P (n) the greatest prime factor of n. Is it true that the
density of the integers for which P (n+1) > P (n) is 1/2 ? This problem seems
unattackable. Pomerance and I have some much weaker results [78.12].”

[FT:] “Consider the greatest prime factor of
∏x
k=1 f(k). Chebyshev

proved that for the greatest prime factor p of
∏x
k=1(1+k2), p/x→∞. Nag-

ell proved that for every irreducible polynomial f the largest prime factor of
f(1)f(2) . . . f(x) is greater than. . . ” x(log x)1−ε, and by using his method,
> cx log x can also be proved. “(. . . ) I improved this to x(log x)c log log log x

[52.03]. Schinzel and I [90.08] improved this result and Tenenbaum has the
currently sharpest estimate. Very likely the greatest prime factor is > x1+c.”
Recently, Schinzel has given a survey of Erdős’s work on arithmetical proper-
ties of polynomials (in the same volume where Erdős’s paper [FP] appeared);
this survey also covers Erdős’s work on cyclotomic polynomials.

Erdős, partly jointly with Ecklund, Eggleton, R. Graham, H. Gupta,
Khare, Lacampagne, Pomerance, Ruzsa, Sárközy, Selfridge, Straus and Turk
[34.01, 55.02, 67.10, 71.02, 73.07, 74.01, 75.10, 76.18, 76.19, 76.23, 76.24,
78.13, 79.09, 80.04, 82.06, 83.01, 84.06, 85.10, 93.01], studied the prime factor
structure of consecutive integers and binomial coefficients.

Prime factors of Mersenne numbers and the numbers n! + 1 were esti-
mated by Erdős and Shorey [76.17], Erdős, Kiss and Pomerance [91.03], and
Erdős and Stewart [76.16].
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He studied sieve methods, partly jointly with Jabotinsky, Rényi and
Ruzsa, in [49.03, 58.05, 58.06, 68.06, 80.18]. It should be noted here that
one of his favourite tools was Brun’s sieve; he used it with great ingenuity
and effectiveness.

Finally, Canfield, Erdős and Pomerance [83.04] studied the distribution
of “smooth” numbers (numbers all of whose prime factors are small). Their
results have been superseded by Maier, Hildebrand and Tenenbaum; how-
ever, the method worked out by them still has many applications due to its
flexibility.

8. Arithmetic functions. Let ω(n), Ω(n), σ(n), ϕ(n) and d(n) denote
the number of distinct prime factors of n, the number of prime factors of
n counted with multiplicity, the sum of divisors of n, Euler’s function, and
the divisor function, respectively. If σ(n) = 2n, then n is said to be perfect,
n is abundant if σ(n) > 2n and is deficient otherwise.

[FT:] “Behrend, Chowla and Davenport—using Fourier analysis—proved
that the density of abundant numbers exists. I independently gave a different
proof, using elementary methods [34.04]. A number n is called primitive
abundant if n is abundant but no divisor of n is abundant. Denote by A(x)
the number of primitive abundant numbers not exceeding x. I proved that

x

exp(c1(log x log log x)1/2)
< A(x) <

x

exp(c2(log x log log x)1/2)
.

Ivić simplified the proof and obtained better constants. Very recently Avidon
improved this (. . . ) The problem if there is an asymptotic formula

A(x) =
x

exp((1 + o(1))c(log x log log x)1/2)

is still open. Perhaps one could prove that A(2x)/A(x) tends to 2. The sum
of the reciprocals of primitive abundant numbers is thus convergent and
therefore the density exists. Later I proved that the distribution function of
σ(n) and ν(n) are purely singular.”

[FT:] “(. . . ) in 1935 I proved that the density of integers n for which
ω(n) > log log n is 1/2 [37.02]. Also I proved that

Theorem. The density of integers for which ϕ(n) > ϕ(n + 1), σ(n) >
σ(n+ 1) or d(n) > d(n+ 1) is 1/2.

I used Brun’s method and the central limit theorem (which I did not
know at that time) for the binomial case. This was easy without using
probability theory. (. . . )

In March of 1939 Kac gave a talk at the Institute of Advanced Study.
He stated the following conjecture:
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Let f(n) be an additive function for which |f(p)| < 1, f(pα) = f(p) (this
is only assumed for the sake of simplicity),

∑
p<x

f(n)
p

= A(x),
∑
p<x

f2(p)
p

= B(x), B(x)→∞.

The density of integers n for which

f(n) < A(n) + c
√
B(n)

is
1√
2π

c\
−∞

e−x
2/2 dx.

He further stated that he can prove it if f(n) =
∑
p|n f(p) is replaced by

fk(n) =
∑
p|n, p<pk f(p).

I realized that if Kac can prove this, then I can prove his conjecture by
using Brun’s method. After the lecture we got together and saw that if we
combine our knowledge, i.e., the central limit theorem and Brun’s method
then we can prove the conjecture, and thus with a little impudence we would
say that probabilistic number theory was born [39.09, 40.06].

Using our theorem with Kac, Wintner and I proved [39.01] that

Theorem. The convergence of the three series
∑

|f(p)|≥1

1
p
,

∑

|f(p)|≤1

f(p)
p

,
∑

|f(p)|≤1

(f(p))2

p

is both necessary and sufficient for the existence of the distribution function.
(. . . )

I never succeeded to find a necessary and sufficient condition for the
absolute continuity of the distribution function and perhaps there is no
reasonable condition. I also never could decide if the (purely singular) dis-
tribution function of ϕ(n) can have anywhere a (finite) positive derivative
(or even a one sided derivative). Diamond and I have a long paper on these
questions [78.01].”

[FT:] “I proved in 1944 that if f(n) is additive and f(n + 1) ≥ f(n)
for all large n, then f(n) = c log n. Similarly, if f(n + 1) − f(n) → 0, then
f(n) = c log n.” This result was extended in various directions by Kátai, K.
Kovács, Wirsing and others.

Erdős and Nicolas [81.14], Erdős, Pomerance and Sárközy [85.04, 87.05,
87.06], Erdős and Sárközy [94.02] studied the local behaviour of the arith-
metic functions ω(n), Ω(n), d(n), ϕ(n), σ(n).

In [48.06] Erdős estimated the number of integers n with ω(n) = k,
n ≤ x, and Ω(n) = k, n ≤ x respectively. These results were sharpened
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and extended later by Sathe, Selberg, Erdős and Sárközy [80.17], Balazard,
Delange, Halász, Hildebrand, Nicolas, Pomerance and Tenenbaum.

He wrote nearly hundred further papers on arithmetic functions (partly
jointly with Alaoglu, Alladi, Babu, Diamond, Elliott, Galambos, Hall, In-
dlekofer, Ivić, Kátai, Mirsky, Nicolas, Pomerance, Rényi, Ruzsa, Ryavec,
Sárközy, Schinzel, Vaaler and others). Some of his work on this subject is
discussed in the books of Elliott, Probabilistic Number Theory and Tenen-
baum, Introduction to Analytic and Probabilistic Number Theory.

9. On Erdős’s problems. Erdős contributed to the advance of modern
number theory at least as much by posing good problems as by proving good
theorems. Numerous (probably several thousand) papers have been inspired
by his questions, and some of these questions opened up new directions
in number theory. A survey of his work would not be complete without
presenting at least a few selected Erdős problems.

Problem 1. (His very first problem.) [FP:] “My first serious problem
was formulated in 1931 and it is still wide open. Denote by f(n) the largest
number of integers 1 ≤ a1 < . . . < ak ≤ n all of whose subset sums

∑k
i=1 εiai

are distinct, where εi = 0 or 1. The powers of 2 have this property and I
conjectured that

f(n) <
log n
log 2

+ c

for some absolute constant c. I offer $500 for a proof or disproof. The in-
equality

f(n) <
log n
log 2

+
log log n

log 2
+ c1

is almost immediate, since there are 2k sums of the form
∑
i εiai and they

must be all distinct and all are less than kn. In 1954, Leo Moser and I [56.10]
proved by using the second moment method that

f(n) <
log n
log 2

+
log log n
2 log 2

+ c2

which is the current best upper bound.
Conway and Guy found 24 integers all ≤ 222 for which all subset sums

are distinct, which implies f(2n) ≥ n+ 2 for n ≥ 22. Perhaps

f(2n) ≤ n+ 2 for all n?”

Problem 2. (His most “valuable” problem.) Erdős often offered awards
for solutions of his problems; in number theory, these awards ranged between
10 and 10.000 dollars. There is just one numbertheoretic problem for whose
solution he offered $10.000, and this is related to the Erdős–Rankin result
(13). [FT:] “I offered 10.000 dollars for a proof that (13) holds for every c.
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(. . . ) I would like to reduce the offer of 10.000 dollars to 5.000 and offer
10.000 for the proof of dn > (logn)1+c.”

Problem 3. (His most “costly” problem.) In 1936, Erdős and Turán
conjectured that van der Waerden’s well-known theorem (on the existence
of long monochromatic arithmetic progressions in any k-colouring of the
integers) can be sharpened in the following way: if for k ∈ N, n ∈ N,
rk(n) denotes the maximal number of integers that can be selected from
{1, 2, . . . , n} so that they do not contain an arithmetic progression of length
k, then for every fixed k we have rk(n) = o(n). Erdős offered an award of
1.000 dollars for proving this conjecture. First Roth in 1953 and Szemerédi
in 1969 settled the k = 3 and k = 4 special cases, respectively, and finally,
in 1975 Szemerédi proved the conjecture in its most general form, earning
1.000 dollars in this way; this is the largest award ever paid by Erdős for the
solution of a numbertheoretic problem. In 1977, Fürstenberg gave another
proof for Szemerédi’s theorem.

This conjecture of Erdős and Turán inspired numerous papers, and still
there are several related unsolved problems. In particular, Erdős writes:
[FP:] “Many years ago I made the following conjecture which, if true, would
settle the problem: Let a1 < a2 < . . . be a sequence of integers satisfying

∞∑

k=1

1
ak

=∞.

Then the ak’s contain arbitrarily long arithmetic progressions. I offer $5.000
for a proof (or disproof) of this. Neither Szemerédi nor Fürstenberg’s meth-
ods are able to settle this but perhaps the next century will see its resolu-
tion.”

Problem 4. (His favourite problem.) [FP:] “Perhaps my favourite prob-
lem of all concerns covering congruences. It was really surprising that it had
not been asked before. A system of congruences

(14) ai (mod ni), n1 < n2 < . . . < nk

is called a covering system if every integer satisfies at least one of the con-
gruences in (14). The simplest covering system is 0 (mod 2), 0 (mod 3),
1 (mod 4), 5 (mod 6) and 7 (mod 12). The main problem is: Is it true that
for every c one can find a covering system all of whose moduli are larger
than c? I offer $1.000 for a proof or disproof.

Choi found a covering system with n1 = 20, and a Japanese mathemati-
cian” (R. Morikawa) “found such a system with n1 = 24.”

There are many further partial results and other related results proved
by Erdős, Fraenkel, Mirsky, Newman, Schinzel, Selfridge, Znam and others
(a survey of this field is given in Chapter 3 of [80.11]).
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Problem 5. (The author’s favourite Erdős problem.) [FP:] “Now the
following problem is annoying: Let 1 < α1 < α2 < . . . be a sequence of real
numbers and assume that for all i 6= j, k we have
(15) |kαi − αj | ≥ 1.
Note that if the αi’s are integers then (15) implies that no αi divides any
αj , i 6= j.” (See Section 6.) “Does (15) imply

(16)
∑

i

1
αi logαi

<∞ or
1

log x

∑
αi<x

1
αi
→ 0 as x→∞?”

(In [FP] the corresponding formulas appear with two misprints, the correct
form is (16) above.) Haight has a partial result. However, a construction of
Alexander warns that some caution is needed in extending a problem of this
type from integers to real numbers. (See [80.11, pp. 84 and 99].)

Problem 6. (A diophantine problem.) Erdős studied unit fractions in
numerous papers; a survey of this field is given in Chapter 4 of [80.11]. In
particular, Erdős and Straus conjectured that for all n > 1, the equation
1
x + 1

y + 1
z = 4

n has positive integer solutions. It is known that this equation
is solvable for n ≤ 108, and Vaughan and Webb have each given estimates
for the number of integers n for which n ≤ N and this equation is not
solvable. Schinzel and Sierpiński extended the problem by conjecturing that
the equation 1

x + 1
y + 1

z = a
n is always solvable for n > n0(a). Schinzel also

conjectured that for every a > 1 there is an n(a) such that all fractions a
n

with n > n(a) can be written in the form
1
x
± 1
y
± 1
z

=
a

n
with x, y and z positive integers; this is known to be true for all a < 40.
(See [80.11, p. 44].)

*

Erdős wrote more than 30 problem papers on number theory. The un-
solved problems presented in the Erdős–Graham book [80.11] played a role
of basic importance in the advance of combinatorial number theory. The
majority of the problems discussed in these papers and book are still open.
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