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1. Introduction. Let d = p1 . . . pk be a product of rational primes
congruent to 1 mod 8, let E = Q(

√
d), and let C(E) be the class group

of E. The following theorem from [6] gives an explicit set of conditions
under which the 2-primary part of K2OE is elementary abelian.

Theorem 1.1. The 2-primary part of K2OE is elementary abelian if
and only if

(i) the 2-primary part of the ideal class group C(E) is elementary
abelian and the norm of the fundamental unit of E is −1, and

(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z
by the quadratic form x2 + 32y2.

In this paper we will prove a similar theorem for the field F = Q(
√

2d):

Theorem 1.2. The 2-primary part of K2OF is elementary abelian if
and only if

(i) the 2-primary part of the ideal class group C(E) is elementary abelian
and the norm of the fundamental unit of E is −1, and

(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z
by the quadratic form x2 + 64y2.

Both of these theorems were conjectured by P. E. Conner and J. Hurrel-
brink in [4]. Despite the similarity of the statements, the proof of Theorem
1.2 is somewhat more involved. We will again make use of a graph associated
with the primes p1, . . . , pk, and we will study its relationship to a new graph
associated with the primes lying over p1, . . . , pk in Q(

√−2).
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2. Part 1 of the proof. The first part of the proof is similar to the first
part of the proof of Theorem 1.1. We will show that under the assumption
4-rkK2OF = 0, condition (i) of Theorem 1.2 holds. We first observe that
this condition can be stated in several ways.

Proposition 2.1. The following are equivalent :

(1) The 4-rank of C(E) is zero, and the norm of the fundamental unit
of E is −1.

(2) The 4-rank of the narrow class group of E is zero.
(3) If d′ is positive and divides d and is a norm from E/Q, then d′ = 1

or d.
(4) If d′ is positive and divides d and is a norm from F/Q, then d′ = 1

or d.

P r o o f. The first three conditions were shown to be equivalent in [6,
3.3–3.5]. We now check that (3) and (4) are equivalent. Since each pi is
congruent to 1 mod 8, (2, d′)2 = 1 and 2 is a square mod each pi. Thus
(2, d′)q = 1 for all rational primes q, and so

(2d, d′)q = (d, d′)q

for all rational primes q. By the Hasse norm theorem, d′ is a global norm if
and only if it is a local norm for all q. Thus, d′ is a norm from F/Q if and
only if it is a norm from E/Q.

Since (1) and (4) are equivalent, the next proposition completes the first
part of the proof.

Proposition 2.2. Suppose d′ divides d and is a norm from F/Q. If
4-rkK2OF = 0, then d′ = 1 or d.

P r o o f. Let S be the set of infinite and dyadic primes of F . We will
again make use of the maps χ = χ1χ2 : HF → CS(F )/CS(F )2 defined in [3,
2.5–3.2]. The relevant key fact about χ is that 4-rkK2OF = 0 if and only if
the kernel of χ has order 2 (see [3, 2.3]). As before, both 2 and d′ represent
classes in HF . Also as before, the class of 2 is in the kernel of χ (see [6, 3.1]).
If d′ is neither 1 nor d, it will represent a nontrivial class in HF different
from the class of 2. Since χ2(cl(pi)) = 1 for all i (see [6, 3.1]), the class of d′

is in the kernel of χ2.
We will show that the class of d′ is in the kernel of χ1, and hence in the

kernel of χ. Thus, we will arrive at a contradiction. Let σ be the generator
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of Gal(F/Q). We can write d′ = ασ(α) for some α in F ∗. Write out the
factorization of the fractional ideal

αOF =
∏

primesQ

QnQ

into prime ideals of OF . If σ(Q) 6= Q, then Q does not lie over one of
the pi. For such a Q, −nQ must be the exact power of Q appearing in
the factorization of σ(α)OF . Now nQ is the exact power of σ(Q) dividing
σ(α)OF , and so −nQ is the exact power of σ(Q) dividing αOF . Thus we
can write

αOF =
AB

σ(B)
where A and B are fractional ideals of F with σ(A) = A. The fractional
ideal Bσ(B) is principally generated by some β in Q∗, and so σ(B) = β/B.
Now we compute:

d′OF = ασ(α)OF = A2 = α2β2/B4.

By definition, χ1(cl(d′)) is the image of αβB−2 in CS(F )/CS(F )2. Hence
the class of d′ is in the kernel of χ1.

3. Graphs. Let Λ be a finite graph and let V be its set of vertices. For
our purposes, a graph will consist of a set of vertices V , and a subset EΛ of
V ×V of edges such that (v, v) is not in EΛ for any v of V . That is, each pair
of vertices has one or zero edges between them, and no vertex is adjacent to
itself.

Definition 3.1. An Eulerian vertex decomposition (EVD) of Λ is an
unordered pair of subsets {V1, V2} of V such that

(1) V1 ∩ V2 = ∅ and V1 ∪ V2 = V , and
(2) every vertex in Vi is adjacent to an even number of vertices in Vj for

i 6= j, i, j = 1, 2.

Every graph has the trivial EVD, {∅, V }. EVD’s turned up in the proof
of Theorem 1.1 in another restatement of its condition (i). They will play
an even greater role in the proof of Theorem 1.2.

Let G be a group of order 2 with generator T acting on the set of vertices
of a graph Λ preserving the set of edges. That is, vertices v and v′ are
adjacent in Λ if and only if T (v) and T (v′) are adjacent in Λ.

Definition 3.2. If T (v) 6= v for every vertex v, then we can form the
quotient graph Γ = Λ/G as follows. The set of vertices W of Γ is the set of
orbits of T . Let φ : V →W be the map taking a vertex to its orbit. For any
v and v′ in V , φ(v) and φ(v′) will be adjacent in Γ if and only if v and v′

are adjacent in Λ or v and T (v′) are adjacent in Λ, but not both.
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We observe that the cardinality of V is twice the cardinality of W . Our
goal is to relate the existence of nontrivial EVD’s of Γ to the existence of
nontrivial EVD’s of Λ. We will show

Theorem 3.3. Λ has no nontrivial EVD’s if and only if

(1) Γ has no nontrivial EVD’s, and
(2) the number of edges of EΛ which are orbits of T is odd.

We will prove this through a sequence of lemmas.

Lemma 3.4. Suppose {V1, V2} is a nontrivial EVD of Λ. If T (V1) 6= V2,
then Γ has a nontrivial EVD.

P r o o f. We will first show that any EVD of Λ which is stable under T
projects to an EVD of Γ , and then we will see that any nontrivial EVD of
Λ such that T (V1) 6= V2 gives rise to a nontrivial EVD of Λ which is stable
under T . Suppose T (V1) = V1. Set W1 = φ(V1) and W2 = φ(V2). Then
W1 and W2 do not intersect, their union is all of W , and they are both
nonempty. Suppose w is in W1 and φ(v) = w for some v in V1. Let nv be
the number of vertices in V2 adjacent to v. Then

nv = card{v′ ∈ V2 : v and v′ are adjacent and v and T (v′) are adjacent}
+ card{v′ ∈ V2 : v and v′ are adjacent and

v and T (v′) are not adjacent}.
Vertices in the first set occur in pairs, and the order of the second set is
exactly the number nw of vertices in W2 adjacent to w. Thus nv is congruent
to nw mod 2. Since nv is even, nw must also be even. Similarly, if w is in W2,
then w is adjacent to an even number of vertices in W1. Thus, {W1,W2} is
a nontrivial EVD of Γ .

Now suppose T (V1) 6= V1. Set

V ′1 = (V1 ∩ T (V2)) ∪ (V2 ∩ T (V1)),

V ′2 = (V1 ∩ T (V1)) ∪ (V2 ∩ T (V2)).

We see that V ′1 is nonempty since T (V1) 6= V1, and V ′2 is also nonempty since
T (V1) 6= V2. We also observe that V ′1 and V ′2 do not intersect, their union is
all of V , and T (V ′1) = V ′1 . Thus if we show that {V ′1 , V ′2} is an EVD, we will
have reduced the problem to the first case, and we will be done.

First consider v in V ′1 . Without loss of generality, assume v is in V1. Let
nv be the number of vertices in V2 adjacent to v. We know T (v) is in V2, so
let nT (v) be the number of vertices in V1 adjacent to T (v). This number is
also the number of vertices in T (V1) adjacent to v. We have



2-primary parts of K2O and related graphs 257

nv = card{v2 ∈ V2 ∩ T (V1) : v and v2 are adjacent}
+ card{v2 ∈ V2 ∩ T (V2) : v and v2 are adjacent},

nT (v) = card{v1 ∈ T (V1) ∩ V1 : v and v1 are adjacent}
+ card{v1 ∈ T (V1) ∩ V2 : v and v1 are adjacent}.

Since nv + nT (v) is even, the number of vertices in V ′2 adjacent to v is even.
Now suppose v is in V ′2 . Without loss of generality, assume v is in V1.

Let nv be the number of elements in V2 adjacent to v. As T (v) is also in V1,
let nT (v) be the number of vertices in V2 adjacent to T (v). This is also the
number of vertices in T (V2) adjacent to v. So

nv = card{v2 ∈ V2 ∩ T (V2) : v and v2 are adjacent}
+ card{v2 ∈ V2 ∩ T (V1) : v and v2 are adjacent},

nT (v) = card{v2 ∈ T (V2) ∩ V1 : v and v2 are adjacent}
+ card{v2 ∈ T (V2) ∩ V2 : v and v2 are adjacent}.

Since nv + nT (v) is even, so is the number of vertices in V ′1 adjacent to v.
Thus {V ′1 , V ′2} is in fact an EVD.

Lemma 3.5. If Λ has an EVD of the form {V1, T (V1)}, then the number
of edges of EΛ which are orbits is even.

P r o o f. Let n be the number of edges running between the sets V1 and
T (V1). Since {V1, T (V1)} is an EVD, n is certainly even. Now

n = card{(v, T (v)) ∈ V1 × T (V1) : v and T (v) are adjacent}
+ card{(v1, v2) ∈ V1 × T (V1) : T (v1) 6= v2 and

v1 and v2 are adjacent}.
Since v1 and v2 are adjacent if and only if T (v1) and T (v2) are adjacent,
elements in the second set above occur in pairs. Thus, the cardinality of the
first set is even.

Putting Lemmas 3.4 and 3.5 together, we have shown that if Γ has no
nontrivial EVD’s and the number of edges of EΛ which are also orbits of
T is odd, then Λ has no nontrivial EVD’s. Next we prove half of the other
direction.

Lemma 3.6. If Γ has a nontrivial EVD , then so does Λ.

P r o o f. Suppose {W1,W2} is a nontrivial EVD of Γ . Let V1 = φ−1(W1)
and V2 = φ−1(W2). For v in V1, let nv be the number of vertices in V2

adjacent to v. Also let nφ(v) be the number of vertices of W2 adjacent to
φ(v). Then, as in the proof of Lemma 3.4, nv is congruent to nφ(v) mod 2,
and so nv is even.
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Definition 3.7. For a finite graph Λ, order the vertices v1, . . . , vr of V .
Define the modified adjacency matrix MΛ to be the r × r matrix over F2

such that for i 6= j, MΛ
ij = 1 if and only if vi and vj are adjacent. Each

diagonal entry is the sum of the other r − 1 entries in its row.

We observe that MΛ is symmetric and the entries of each row (and hence
column) sum to zero. This implies that MΛ has rank at most r − 1.

Proposition 3.8. MΛ has rank r−1 if and only if Λ has no nontrivial
EVD’s.

P r o o f. If MΛ has rank less than r− 1, then the first r− 1 rows are not
linearly independent. Thus some subset of the first r−1 rows sum to the zero
vector. Let V1 be the set of vertices corresponding to this set of rows. Let
V2 = V − V1. Notice that since the sum of all of the rows is the zero vector,
the set of rows corresponding to vertices in V2 also sum to the zero vector.
Pick vi from V1. The sum of the ith coordinates of rows corresponding to
vertices in V2 is zero. Hence vi is adjacent to an even number of vertices in
V2. Similarly, every vertex in V2 is adjacent to an even number of vertices
in V1, and we have shown {V1, V2} is an EVD.

On the other hand, suppose {V1, V2} is a nontrivial EVD. We will show
that the rows corresponding to vertices in V1 sum to the zero vector. First, if
vi is in V2, then we know that the sum of the ith entries of rows corresponding
to vertices in V1 is zero. If vi is in V1, then the sum of the ith entries of rows
corresponding to vertices in V2 is zero. Since the sum of the ith entry of all
rows is zero, the sum of the ith entries of rows corresponding to vertices in
V1 must also be zero. Therefore, these rows sum to the zero vector.

R e m a r k 3.9. We can actually show more. Vectors in Fr2 killed by MΛ

are in two-to-one correspondence with EVD’s of Γ . Thus, if t is the rank of
MΛ, then the total number of EVD’s is 2r−t−1.

Now we consider the modified adjacency matrix of a graph Λ with T
acting on it as above. Choose and order a set of representatives v1, . . . , vk
of the orbits of T . For 1 ≤ i ≤ k, let vk+i = T (vi). We claim that MΛ can
be written as

MΛ =
(
A B
B A

)

where A and B are symmetric k× k matrices. Let 1 ≤ i, j ≤ k. Then vi and
vj are adjacent if and only if vk+i and vk+j are adjacent. Thus the upper
left block is the same as the lower right block. Similarly, vi and vk+j are
adjacent if and only if vk+i and vj are adjacent, and so the upper right block
and lower left block are the same. Since MΛ is symmetric, A and B must
also be symmetric. We are now ready to finish the proof of Theorem 3.3.
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Lemma 3.10. If Λ has no nontrivial EVD’s, then the number of edges
of EΛ which are orbits of T is odd.

P r o o f. The matrix MΛ is row equivalent to(
A B

A+B A+B

)
,

which in turn is column equivalent to

C =
(
A+B B

0 A+B

)
.

Recall that if φ(v1) = w1 and φ(v2) = w2 with w1 6= w2, then w1 and w2

are adjacent in Γ if and only if either v1 and v2 are adjacent in Λ, or v1 and
T (v2) are adjacent in Λ, but not both. Thus MΓ = A+ B. As a result, we
know that the last k rows of C sum to the zero vector, and by Proposition
3.8, this is the only dependency of the rows. Let ~b = (b1, . . . , b2k) be the sum
of the first k rows of C. Then ~b is not in the span of the last k rows of C.
Now b1 = . . . = bk = 0, so ~b′ = (bk+1, . . . , b2k) is not in the span of the rows
of MΓ . As a result of Lemma 3.6 and Proposition 3.8, the rows of MΓ span
the (k − 1)-dimensional subspace of Fk2 consisting of vectors whose entries
sum to zero. Thus the sum of the entries of ~b′ is nonzero. This sum is the
sum of all entries of B. In view of the fact that B is symmetric, this sum is
just the trace of B. Since Bii = 1 if and only if vi and T (vi) are adjacent,
we have shown this occurs for an odd number of i.

4. Part 2 of the proof. We now define the graphs to which we will
apply the theory of Section 3. Let Γ be the graph whose vertices are the
primes p1, . . . , pk, and such that for i 6= j, pi and pj are adjacent if and
only if

(
pi
pj

)
= −1. Since the primes are congruent to 1 mod 4, quadratic

reciprocity implies that this is well defined. Let K = Q(
√−2), and let τ be

the generator of Gal(K/Q). For each i, choose a prime Pi of OK lying over
pi. Since pi splits in OK , we have piOK = Piτ(Pi). Because OK is a PID
whose units are {±1}, every ideal is principally generated with two possible
choices for the generator.

Proposition 4.1. For an appropriate choice πi of a generator of Pi,
K(
√
πi) and K(

√
τ(πi)) are dyadically unramified.

P r o o f. A generator of Pi has the form πi = a+b
√−2 where a and b are

rational integers. For such a and b, pi = a2 + 2b2. Since pi is congruent to
1 mod 8, a must be odd and b must be even. We will consider two cases, and
in each case we will show that the discriminant of K(

√
πi)/K is prime to

the dyadic prime D of K. For our first case we suppose that b is congruent
to 2 mod 4. By replacing πi with −πi if necessary, we may assume a is
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congruent to 3 mod 4. Let

f(x) =
(
x+

1 + (b/2)
√−2 +

√
πi

2

)(
x+

1 + (b/2)
√−2−√πi
2

)
.

The splitting field for f(x) is K(
√
πi). Multiplying out we get

f(x) = x2 +
(

1 +
b

2

√−2
)
x+

1− a− b2/2
4

.

We see that disc(f(x)) = πi, so to show D is unramified we just need to
check the coefficients of f(x) are algebraic integers. The coefficient of x is
certainly in Z(

√−2). Since a is congruent to −1 mod 4 and b is congruent
to 2 mod 4, the constant term is in fact an integer. Thus, we have shown
disc(OK(

√
πi)/OK) = πi, and so D does not ramify.

For the second case we suppose that b is congruent to 0 mod 4. By replac-
ing πi with −πi if necessary, we may this time suppose that a is congruent
to 1 mod 4. Using the same choice for f(x) we find that the constant term is
again an integer since 4 divides both 1− a and b2/2. As before, this implies
that D does not ramify in K(

√
πi).

The extensions K(
√
pi)/K and K(

√
πi) are dyadically unramified, and

so the composite K(
√
pi,
√
πi) is a dyadically unramified extension of K.

Since K(
√
τ(πi))/K is a subextension, it is also dyadically unramified.

For 1 ≤ i ≤ k, set Pi+k = τ(Pi) and πi+k = τ(πi). We define Λ to be
the graph whose vertices are π1, . . . , π2k, and such that for i 6= j, πi and πj
are adjacent if and only if (πi, πj)Pj = −1. We need to check that this is
well defined.

Proposition 4.2. For i 6= j, (πi, πj)Pj = (πi, πj)Pi .

P r o o f. By reciprocity the statement is equivalent to (πi, πj)D = 1,
where D is the dyadic prime of K. By the previous proposition, the local
extension KD(

√
πi)/KD is unramified. Thus, every unit in KD is the norm

of a unit from KD(
√
πi). Since πj is a unit in KD, πj is a norm from

KD(
√
πi)/KD.

Now Gal(K/Q) is a group of order two acting on the set of vertices of Λ
without fixed points. Let us check that Γ is the quotient of Λ by Gal(K/Q).
For i 6= j,

(
pj
pi

)
= (pi, pj)Pi = (πi, pj)Pi = (πi, πj)Pi(πi, τ(πj))Pi .

Thus pi and pj are adjacent in Γ if and only if either πi and πj are adjacent
in Λ, or πi and τ(πj) are adjacent in Λ, but not both. As a result, Γ is in
fact the quotient of Λ by Gal(K/Q).
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Lemma 4.3. Λ has no nontrivial EVD’s if and only if

(i) the 2-primary part of C(E) is elementary abelian and the norm of
the fundamental unit of E is −1, and

(ii) an odd number of the pi fail to be represented over Z by the quadratic
form x2 + 64y2.

P r o o f. We saw in [6, 3.3–3.5] that Γ has no nontrivial EVD’s if and
only if condition (i) holds. In view of Theorem 3.3, we only need to check
that condition (ii) holds if and only if πi and τ(πi) are adjacent for an odd
number of i, 1 ≤ i ≤ k. By a theorem of Gauss, pi cannot be represented
over Z by the quadratic form x2+64y2 if and only if the fourth power symbol[

2
pi

]
is −1 (see e.g. [7, p. 84]). Thus we need to show

[
2
pi

]
= (πi, τ(πi))Pi .

Since pi is congruent to 1 mod 8, −1 is a fourth power mod pi, and so 2
is a fourth power mod pi if and only if −2 is a fourth power mod pi. Now
−2 is a square mod pi, and so

[
2
pi

]
4 = 1 when

√−2 is a square mod Pi and[
2
pi

]
4 = −1 otherwise. Hence we need to show

(τ(πi), πi)Pi
= (
√−2, πi)Pi .

If we write πi = a +
√−2b, then τ(πi) = a − √−2b. Since τ(πi) is

congruent to τ(πi)− πi mod Pi, we have

τ(πi) ≡ −2
√−2b mod Pi.

Since −2 is a square mod Pi, it remains to show that b is a square mod Pi.
We will show that

(
q
pi

)
= 1 for all rational primes q which divide b. First,

since pi is congruent to 1 mod 8,
(
q
pi

)
= 1 when q = 2. Now suppose q is an

odd prime dividing b. We have pi = a2 + 2b2, and so pi is congruent to a2

mod q. By quadratic reciprocity, this means that
(
q
pi

)
= 1.

We will now use a theorem of B. Brauckmann which will enable us to
connect the 4-rank of K2OF to Λ. Let L = Q(

√−2d) and CS(L) be the S
class group of L, where S consists of all infinite and dyadic primes of L.

Proposition 4.4. The 2-primary part of K2OF is elementary abelian
if and only if the 2-primary part of CS(L) is elementary abelian.

P r o o f. See [1, 2.1].

As a result of Proposition 2.2, it is now enough for us to show, under
the assumption that condition (i) of Theorem 1.2 holds, that condition (ii)
of that theorem is equivalent to the statement 4-rank CS(L) = 0.

Let M = Q(
√−2,

√
d). Then a theorem of Hasse [5, p. 74] gives us the

following formula relating the class numbers of M , K, L, and E:

(4.5) h(M) = 1
2Qh(K)h(L)h(E),
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where Q = [O∗M : εO∗E ] and ε is the fundamental unit of E. Now the dyadic
primes of E ramify in M . This means M/E is a type I C-M extension,
and in that case Q = 1 (see [2, 13.2, 13.4, 13.6]). Let D be the dyadic
prime of L, and let θ be the generator of Gal(L/Q). Then θ(D) = (D),
and D2 = Dθ(D) = 2OL. So D has order at most two in C(L). If D were
principal, then we would get a generator m + n

√−2d of D with m and n
rational integers. By taking norms we see

m2 + 2dn2 = ±2,

which cannot happen if d > 1. Thus we have shown that the kernel of the
map C(L) → CS(L) has order two, or hS(L) = 1

2h(L). Since h(K) = 1,
(4.5) becomes

(4.6) h(M) = hS(L)h(E).

One can compute the following 2-rank formulas using [3, 7.1], and [2, 18.3]:

2-rkCS(L) = k, 2-rkC(E) = k − 1.

Also, using [2, 4.2, 7.4, 9.1], one finds

2-rkC(M) = 2k − 1.

Since we are assuming condition (i), k−1 is the exact power of 2 dividing
h(E). Thus, 4-rkCS(L) = 0 if and only if 4-rkC(M) = 0. The following
lemma will complete the proof of the theorem:

Lemma 4.7. Suppose condition (i) of Theorem 1.2 holds. Then 4-rkC(M)
= 0 if and only if Λ has no nontrivial EVD’s.

P r o o f. Let ε be the fundamental unit of E. By (i) we know NmE/Q(ε) =
−1. Thus, NmM/K(ε) = −1. Since O∗K = {±1}, H0(Gal(M/K),O∗M ) = 0.
(Here we are using the modified Tate cohomology.) Let S′ be the set of
infinite primes of K and the finite primes of K which ramify in M . These
finite primes are exactly the P1, . . . ,P2k. Let US′ be the set of S′ units of K.
US′ is generated by the set {−1, π1, . . . , π2k}. Since h(K) = 1, Theorem 19.3
of [2] implies that 4-rkC(M) = 0 if and only if the group

{cl(y) ∈ US′/U2
S′ : y is a norm from M/K}

has order 4. Since −1 and d are norms from M/K, this group has order at
least 4. It has order greater than 4 exactly when a proper divisor d′ of d is
a norm from M/K. By the Hasse norm theorem, d′ is a norm from M/K if
and only if it is a local norm for all primes of K. That is, d′ is a norm from
M/K if and only if

(d′, d)P = 1
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for all primes P of K. Let V1 = {πi : πi | d′} and V2 = {πi : πi - d′}. If πi
divides d′, then

(d′, d)Pi =
(
d′,

d

d′

)

Pi

=
(
πi,

d

d′

)

Pi

=
∏

πj -d′
(πi, πj)Pi .

Similarly, if πi - d′, then (d′, d)Pi =
∏
πj |d′(πi, πj)Pi . Thus (d, d′)P = 1 for

all primes of K if and only if {V1, V2} is an EVD of Λ. This EVD is nontrivial
exactly when d′ is a proper divisor of d.

5. Examples. 1. First we take d = 41 ·89 ·97 ·137. In this case, condition
(1) from Theorem 3.3 fails, since {{41, 137}, {89, 97}} is an EVD of Γ . For
the graph Λ, we have labeled the vertices so that a = −3 + 4

√−2, b =
−9 + 2

√−2, c = −5 − 6
√−2, and d = −3 + 8

√−2. The vertices a′, b′, c′,
and d′ correspond to the conjugates of a, b, c, and d. In this case, only one
pair of conjugates are adjacent, so condition (ii) of Theorem 1.2 holds. We
see that {{a, a′, d, d′}, {b, b′, c, c′}} is an EVD for Λ.

2. Next consider d = 89 · 97 · 137 · 233. The graph Γ has no nontrivial
EVD’s so condition (1) of Theorem 3.3 holds. In the graph Λ we have a =
−9 + 2

√−2, b = −5− 6
√−2, c = −3 + 8

√−2, and d = 15− 2
√−2. Since a

and d are adjacent to their conjugates, we see that condition (ii) of Theorem
1.2 fails, and {{a, b′, c, d′}, {a′, b, c′, d}} is an EVD of Λ.

3. Finally, let d = 17 · 41 · 89 · 97. Then Γ has no nontrivial EVD’s, so
condition (1) of Theorem 3.3 holds. In Λ, a = 3 − 2

√−2, b = −3 + 4
√−2,

c = −9 + 2
√−2, and d = −5 − 6

√−2. Only one conjugate pair of vertices
are adjacent, so condition (ii) of Theorem 1.2 also holds. We see that Λ in
fact has no nontrivial EVD’s.
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