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congruent number elliptic curves
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Ken Ono (Princeton, N.J., and University Park, Penn.)

The relations. If N ≥ 1 is an odd square-free integer, then let E1(N)
and E2(N) denote the elliptic curves over Q

Ei(N) : y2 = x3 − 4i−1N2x,

and let ri(N) denote the rank of Ei(N). Similarly let Xi(N) denote the
Tate–Shafarevich group X(Ei(N)). If

q := e2πiz, η(z) := q1/24
∞∏
n=1

(1− qn), Θ(z) :=
∑

n∈Z
qn

2
,

then let f1(z) ∈ S3/2(128, χ0) and f2(z) ∈ S3/2(128, χ2) be eigenforms given
by

f1(z) := η(8z)η(16z)Θ(2z) =
∞∑
n=1

a1(n)qn,

f2(z) := η(8z)η(16z)Θ(4z) =
∞∑
n=1

a2(n)qn.

Throughout χt :=
(
t
·
)

shall denote Kronecker’s character for Q(
√
t). Both

forms lift, via the Shimura correspondence, to the cusp form associated with
the curve y2 = x3 − x:

∞∑
n=1

a(n)qn := η2(4z)η2(8z) = q

∞∏
n=1

(1− q4n)2(1− q8n)2.

Consequently, we obtain the following multiplicative formulae for square-free
t ≥ 1:
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(1)

a1(tm2) = a1(t)
∑

d|m
χ−1(d)µ(d)

(
t

d

)
a(m/d),

a2(tm2) = a2(t)
∑

d|m
χ−2(d)µ(d)

(
t

d

)
a(m/d).

Given ai(t), the integers ai(tm2) follow immediately from (1) since

(2) a(N) =
∑

x∈Z, y≥0
4x2+(2y+1)2=N

(−1)x+y(2y + 1).

This can be deduced by explicitly computing the Hecke Grössencharacter of
y2 = x3− x, or by computing the relevant Jacobstahl sums [B-E-W, Ch. 6],
or by classical q-series identities [M-O, Th. 3].

Tunnell [T] proved that if N ≥ 1 is an odd square-free integer, then

(3) L(Ei(N), 1) =
2i−1 ·Ω · ai(N)2

4
√

2i−1N
,

where

Ω :=
∞\
1

1√
x3 − x dx ∼ 2.622 . . .

Therefore assuming the Birch and Swinnerton-Dyer Conjecture, Ei(N) has
rank 0 if and only if ai(N) 6= 0. In addition if ai(N) 6= 0, then

(4)
√
|Xi(N)| = |ai(N)|

τ(N)

where τ(N) denotes the number of divisors of N. If the functions Ti(t,m)
are defined by

(5) T1(t,m)

:=
{

sign(a1(t))τ(t)
∑
d|m χ−1(d)µ(d)(t/d)a(m/d) if a1(t) 6= 0,

0 if a1(t) = 0,
(6) T2(t,m)

:=
{

sign(a2(t))τ(t)
∑
d|m χ−2(d)µ(d)(t/d)a(m/d) if a2(t) 6= 0,

0 if a2(t) = 0,

then by (1), (4), (5), and (6), if t ≥ 1 is an odd square-free integer, then

(7) ai(tm2) = Ti(t,m)
√
|Xi(t)|.

For convenience we define the sets S1(N) and F(N), the indices for the first
explicit Kronecker relation:
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S1(N) :=
{

(m, k) ∈ Z2
+

∣∣∣∣ k ≥ 3 odd,
2N − k2

m2 ∈ Z+ square-free,

r1

(
2N − k2

m2

)
= 0
}
,

F(N) := {(x, y) | x ∈ Z, y ≥ 0, and 4x2 + (2y + 1)2 = N}.

Theorem 1. If N is a positive integer , then

a1(N − 1) +
∞∑

k=1

a1(N − (2k + 1)2)

=
∑

x∈Z, y≥0
8x2+2(2y+1)2=N

(−1)y(2y + 1) + 2
∑

x∈Z, y≥0
16x2+4(2y+1)2=N

(−1)x+y(2y + 1).

P r o o f. If

F1(z) :=
∞∑
n=1

A1(n)qn := η(4z)η(8z)Θ(z)
∞∑

k=0

q(2k+1)2/2,

then it turns out that

F1(z) = C1(z) + 2η2(8z)η2(16z)

where C1(z) =
∑∞
n=1 b(n)qn is the newform associated with the elliptic

curve y2 = x3 + x.

In particular, all three forms are in S2(64) and the identity follows from
the standard dimension counting argument. In this case checking the identity
for the first 9 terms suffices. Therefore we find that A1(N) = b(N)+2a(N/2).
Using [B-E-W, Ch. 6], or [M-O, Th. 3], it turns out that

b(N) =
∑

(x,y)∈F(N)

(−1)y(2y + 1).

Assuming the Birch and Swinnerton-Dyer Conjecture, E1(t) for t ≥ 1 odd
and square-free has rank 0 if and only if a1(t) 6= 0. The proof now follows
immediately from (2) and (7).

Using the previous discussion we obtain the following immediate corol-
lary.

Corollary 1. Assuming the Birch and Swinnerton-Dyer Conjecture, if
2N − 1 is a positive square-free integer for which E1(2N − 1) has rank 0,
then
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T1(2N − 1, 1)
√
|X1(2N − 1)|

+
∑

(m,k)∈S1(N)

T1

(
2N − k2

m2 ,m

)√∣∣∣∣X1

(
2N − k2

m2

)∣∣∣∣

=
∑

(x,y)∈F(N)

(−1)y(2y + 1) + 2
∑

(x,y)∈F(N/2)

(−1)x+y(2y + 1).

Corollary 2. Assuming the Birch and Swinnerton-Dyer Conjecture, if
2N − 1 is a positive square-free integer for which E1(2N − 1) has rank 0
and ordp(N) is odd for some prime p ≡ 3 (mod 4), then

|X1(2N − 1)|

=
1

τ(2N − 1)2

( ∑

(m,k)∈S1(N)

T1

(
2N − k2

m2 ,m

)√∣∣∣∣X1

(
2N − k2

m2

)∣∣∣∣
)2

.

We now define the index sets S2(N), H(N), and I(N) for the second
Kronecker relation:

S2(N) :=
{

(m, k) ∈ Z2
+

∣∣∣∣
N − 4k2

m2 ∈ Z+ square-free, r2

(
N − k2

m2

)
= 0
}
,

H(N) := {(x, y) | x ∈ Z, y ≥ 0, and 16x2 + (2y + 1)2 = N},
I(N) := {(x, y) | x, y ≥ 0, and 4(2x+ 1)2 + (2y + 1)2 = N}.
Theorem 2. If N is a positive integer , then

a2(N) + 2
∞∑

k=1

a2(N − 4k2)

=
∑

x∈Z, y≥0
16x2+(2y+1)2=N

(−1)x+yχ2(2y + 1)(2y + 1)

− 4
∑

x,y≥0
4(2x+1)2+(2y+1)2=N

(−1)x+1χ2(2y + 1)(2x+ 1).

P r o o f. If

F2(z) :=
∞∑
n=1

A2(n)qn := f2(z)Θ(4z),

then it is easy to deduce that

F ∗(z) :=
∑

n≡1,3,7,11,13,15 (mod 16)

A2(n)qn −
∑

n≡5,9 (mod 16)

A2(n)qn

is the newform associated with the elliptic curve y2 = x3 − 2x. The proof
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now follows from the explicit Jacobstahl sums
∑p−1
x=0((x3−2x)/p) which can

be found in [B-E-W, 6.1.2, 6.2.1].

As immediate corollaries we obtain:

Corollary 3. Assuming the Birch and Swinnerton-Dyer Conjecture, if
N ≥ 1 is an odd square-free integer for which E2(N) has rank 0, then

T2(N, 1)
√
|X2(N)|+ 2

∑

(m,k)∈S2(N)

T2

(
N − 4k2

m2 ,m

)√∣∣∣∣X2

(
N − 4k2

m2

)∣∣∣∣

=
∑

(x,y)∈H(N)

(−1)x+yχ2(2y+1)(2y+1)−4
∑

(x,y)∈I(N)

(−1)x+1χ2(2y+1)(2x+1).

Corollary 4. Assuming the Birch and Swinnerton-Dyer Conjecture,
if N is a positive odd square-free integer for which E2(N) has rank 0 and
ordp(N) = 1 for some prime p ≡ 3 (mod 4), then

|X2(N)| = 4
τ(N)2

( ∑

(m,k)∈S2(N)

T2

(
N − 4k2

m2 ,m

)√∣∣∣∣X2

(
N − 4k2

m2

)∣∣∣∣
)2

.

We conclude with an application to the following question due to Koly-
vagin.

Kolyvagin’s question. If E/Q is an elliptic curve and p is prime,
are there infinitely many quadratic twists ED for which

|X(ED)| 6≡ 0 (mod p)?

Corollary 5. If p is prime, then there are infinitely many square-free
integers N and M for which

r1(N) = 0 and |X1(N)| 6≡ 0 (mod p),

r2(M) = 0 and |X2(M)| 6≡ 0 (mod p).

P r o o f. If p = 2, then this is a standard application of 2-descents. By
Rubin’s theorem, if p is odd and p divides |Xi(N)| when ai(N) 6= 0, then
p | ai(N). The result now follows easily from the unconditional recurrences
for ai(N) in Theorems 1 and 2.

Remarks. Using the fact that |X1(1)| = |X2(1)| = 1 (i.e. via Rubin’s
theorem [R] and (4)), Corollaries 1 and 3 conditionally capture the orders
of all the Tate–Shafarevich groups of rank 0 congruent number curves. The
only feature that may appear to be a mystery are the signs of ai(t) which
are part of Ti(t,m). However, one can easily deduce these signs from the
recurrence relations since

√
Xi(N) is always a positive integer. Therefore

these relations are closed in the sense that no additional information is
required apart from the fact that ai(1) = 1.
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The existence of these Kronecker-type formulae is not necessary for ob-
taining Corollary 5. In a forthcoming paper, the author and C. Skinner [O-S]
show how to obtain such results, in a more general setting, in the absence
of Kronecker-type formulae. N. Jochnowitz [J] also obtains such results via
a completely different argument.

The Kronecker relations presented here have the pleasant property that
they are explicit and only depend on the traces of Frobenius of the elliptic
curves

y2 = x3 − x, y2 = x3 + x, y2 = x3 − 2x.
In particular, the E1(N) and E2(N) are simply twists of these special curves.
It is of some interest to classify those rare elliptic curves E for which one can
obtain Kronecker formulae for orders of Tate–Shafarevich groups of families
of twists, especially those formulae which only depend on the Frobenius of
special twists of E.
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