Tate–Shafarevich groups of the congruent number elliptic curves

by

KEN ONO (Princeton, N.J., and University Park, Penn.)

The relations. If $N \ge 1$ is an odd square-free integer, then let $E_1(N)$ and $E_2(N)$ denote the elliptic curves over \mathbb{Q}

$$E_i(N): \quad y^2 = x^3 - 4^{i-1}N^2x_i$$

and let $r_i(N)$ denote the rank of $E_i(N)$. Similarly let $III_i(N)$ denote the Tate–Shafarevich group $III(E_i(N))$. If

$$q := e^{2\pi i z}, \quad \eta(z) := q^{1/24} \prod_{n=1}^{\infty} (1-q^n), \quad \Theta(z) := \sum_{n \in \mathbb{Z}} q^{n^2},$$

then let $f_1(z) \in S_{3/2}(128, \chi_0)$ and $f_2(z) \in S_{3/2}(128, \chi_2)$ be eigenforms given by

$$f_1(z) := \eta(8z)\eta(16z)\Theta(2z) = \sum_{n=1}^{\infty} a_1(n)q^n,$$

$$f_2(z) := \eta(8z)\eta(16z)\Theta(4z) = \sum_{n=1}^{\infty} a_2(n)q^n.$$

Throughout $\chi_t := \left(\frac{t}{\cdot}\right)$ shall denote Kronecker's character for $\mathbb{Q}(\sqrt{t})$. Both forms lift, via the Shimura correspondence, to the cusp form associated with the curve $y^2 = x^3 - x$:

$$\sum_{n=1}^{\infty} a(n)q^n := \eta^2(4z)\eta^2(8z) = q \prod_{n=1}^{\infty} (1-q^{4n})^2(1-q^{8n})^2.$$

Consequently, we obtain the following multiplicative formulae for square-free $t \ge 1$:

1991 Mathematics Subject Classification: Primary 11G40.

The author is supported by NSF grants DMS-9508976 and DMS-9304580.

^[247]

K. Ono

 $a_1(tm^2) = a_1(t) \sum_{d|m} \chi_{-1}(d) \mu(d) \left(\frac{t}{d}\right) a(m/d),$

(1)

$$a_{2}(tm^{2}) = a_{2}(t) \sum_{d|m} \chi_{-2}(d)\mu(d) \left(\frac{t}{d}\right) a(m/d).$$

Given $a_i(t)$, the integers $a_i(tm^2)$ follow immediately from (1) since

(2)
$$a(N) = \sum_{\substack{x \in \mathbb{Z}, y \ge 0\\4x^2 + (2y+1)^2 = N}} (-1)^{x+y} (2y+1).$$

This can be deduced by explicitly computing the Hecke Grössencharacter of $y^2 = x^3 - x$, or by computing the relevant Jacobstahl sums [B-E-W, Ch. 6], or by classical *q*-series identities [M-O, Th. 3].

Tunnell [T] proved that if $N \ge 1$ is an odd square-free integer, then

(3)
$$L(E_i(N), 1) = \frac{2^{i-1} \cdot \Omega \cdot a_i(N)^2}{4\sqrt{2^{i-1}N}},$$

where

$$\Omega := \int_{1}^{\infty} \frac{1}{\sqrt{x^3 - x}} \, dx \sim 2.622 \dots$$

Therefore assuming the Birch and Swinnerton-Dyer Conjecture, $E_i(N)$ has rank 0 if and only if $a_i(N) \neq 0$. In addition if $a_i(N) \neq 0$, then

(4)
$$\sqrt{|III_i(N)|} = \frac{|a_i(N)|}{\tau(N)}$$

where $\tau(N)$ denotes the number of divisors of N. If the functions $\mathfrak{T}_i(t,m)$ are defined by

(5)
$$\mathfrak{T}_{1}(t,m)$$

$$:= \begin{cases} \operatorname{sign}(a_{1}(t))\tau(t)\sum_{d|m}\chi_{-1}(d)\mu(d)(t/d)a(m/d) & \text{if } a_{1}(t) \neq 0, \\ 0 & \text{if } a_{1}(t) = 0, \end{cases}$$

(6)
$$\mathfrak{T}_{2}(t,m)$$

$$:= \begin{cases} \operatorname{sign}(a_{2}(t))\tau(t)\sum_{d|m}\chi_{-2}(d)\mu(d)(t/d)a(m/d) & \text{if } a_{2}(t) \neq 0, \\ 0 & \text{if } a_{2}(t) = 0, \end{cases}$$

then by (1), (4), (5), and (6), if $t \ge 1$ is an odd square-free integer, then

(7)
$$a_i(tm^2) = \mathfrak{T}_i(t,m)\sqrt{|III_i(t)|}.$$

For convenience we define the sets $\mathfrak{S}_1(N)$ and $\mathfrak{F}(N)$, the indices for the first explicit Kronecker relation:

248

$$\mathfrak{S}_{1}(N) := \left\{ (m,k) \in \mathbb{Z}_{+}^{2} \mid k \geq 3 \text{ odd}, \ \frac{2N-k^{2}}{m^{2}} \in \mathbb{Z}_{+} \text{ square-free}, \\ r_{1}\left(\frac{2N-k^{2}}{m^{2}}\right) = 0 \right\},$$
$$\mathfrak{F}(N) := \{ (x,y) \mid x \in \mathbb{Z}, \ y \geq 0, \text{ and } 4x^{2} + (2y+1)^{2} = N \}.$$

THEOREM 1. If N is a positive integer, then

$$a_1(N-1) + \sum_{k=1}^{\infty} a_1(N - (2k+1)^2)$$

=
$$\sum_{\substack{x \in \mathbb{Z}, y \ge 0 \\ 8x^2 + 2(2y+1)^2 = N}} (-1)^y (2y+1) + 2 \sum_{\substack{x \in \mathbb{Z}, y \ge 0 \\ 16x^2 + 4(2y+1)^2 = N}} (-1)^{x+y} (2y+1).$$

Proof. If

$$F_1(z) := \sum_{n=1}^{\infty} A_1(n) q^n := \eta(4z) \eta(8z) \Theta(z) \sum_{k=0}^{\infty} q^{(2k+1)^2/2},$$

then it turns out that

$$F_1(z) = C_1(z) + 2\eta^2(8z)\eta^2(16z)$$

where $C_1(z) = \sum_{n=1}^{\infty} b(n)q^n$ is the newform associated with the elliptic curve $y^2 = x^3 + x$.

In particular, all three forms are in $S_2(64)$ and the identity follows from the standard dimension counting argument. In this case checking the identity for the first 9 terms suffices. Therefore we find that $A_1(N) = b(N) + 2a(N/2)$. Using [B-E-W, Ch. 6], or [M-O, Th. 3], it turns out that

$$b(N) = \sum_{(x,y)\in\mathfrak{F}(N)} (-1)^y (2y+1).$$

Assuming the Birch and Swinnerton-Dyer Conjecture, $E_1(t)$ for $t \ge 1$ odd and square-free has rank 0 if and only if $a_1(t) \ne 0$. The proof now follows immediately from (2) and (7).

Using the previous discussion we obtain the following immediate corollary.

COROLLARY 1. Assuming the Birch and Swinnerton-Dyer Conjecture, if 2N-1 is a positive square-free integer for which $E_1(2N-1)$ has rank 0, then

$$\begin{aligned} \mathfrak{T}_{1}(2N-1,1)\sqrt{|III_{1}(2N-1)|} \\ &+ \sum_{(m,k)\in\mathfrak{S}_{1}(N)}\mathfrak{T}_{1}\left(\frac{2N-k^{2}}{m^{2}},m\right)\sqrt{\left|III_{1}\left(\frac{2N-k^{2}}{m^{2}}\right)\right|} \\ &= \sum_{(x,y)\in\mathfrak{F}(N)}(-1)^{y}(2y+1)+2\sum_{(x,y)\in\mathfrak{F}(N/2)}(-1)^{x+y}(2y+1). \end{aligned}$$

COROLLARY 2. Assuming the Birch and Swinnerton-Dyer Conjecture, if 2N-1 is a positive square-free integer for which $E_1(2N-1)$ has rank 0 and $\operatorname{ord}_p(N)$ is odd for some prime $p \equiv 3 \pmod{4}$, then

 $|III_1(2N-1)|$

$$= \frac{1}{\tau (2N-1)^2} \bigg(\sum_{(m,k) \in \mathfrak{S}_1(N)} \mathfrak{T}_1\bigg(\frac{2N-k^2}{m^2}, m\bigg) \sqrt{\bigg| III_1\bigg(\frac{2N-k^2}{m^2}\bigg) \bigg|} \bigg)^2.$$

We now define the index sets $\mathfrak{S}_2(N)$, $\mathfrak{H}(N)$, and $\mathfrak{I}(N)$ for the second Kronecker relation:

$$\mathfrak{S}_{2}(N) := \left\{ (m,k) \in \mathbb{Z}_{+}^{2} \middle| \frac{N-4k^{2}}{m^{2}} \in \mathbb{Z}_{+} \text{ square-free, } r_{2}\left(\frac{N-k^{2}}{m^{2}}\right) = 0 \right\},$$

$$\mathfrak{H}(N) := \{ (x,y) \mid x \in \mathbb{Z}, \ y \ge 0, \text{ and } 16x^{2} + (2y+1)^{2} = N \},$$

$$\mathfrak{I}(N) := \{ (x,y) \mid x, y \ge 0, \text{ and } 4(2x+1)^{2} + (2y+1)^{2} = N \}.$$

THEOREM 2. If N is a positive integer, then

$$a_{2}(N) + 2\sum_{k=1}^{\infty} a_{2}(N - 4k^{2})$$

$$= \sum_{\substack{x \in \mathbb{Z}, y \ge 0 \\ 16x^{2} + (2y+1)^{2} = N}} (-1)^{x+y} \chi_{2}(2y+1)(2y+1)$$

$$-4 \sum_{\substack{x, y \ge 0 \\ 4(2x+1)^{2} + (2y+1)^{2} = N}} (-1)^{x+1} \chi_{2}(2y+1)(2x+1).$$

Proof. If

$$F_2(z) := \sum_{n=1}^{\infty} A_2(n)q^n := f_2(z)\Theta(4z),$$

then it is easy to deduce that

$$F^*(z) := \sum_{n \equiv 1,3,7,11,13,15 \pmod{16}} A_2(n)q^n - \sum_{n \equiv 5,9 \pmod{16}} A_2(n)q^n$$

is the newform associated with the elliptic curve $y^2 = x^3 - 2x$. The proof

now follows from the explicit Jacobstahl sums $\sum_{x=0}^{p-1}((x^3-2x)/p)$ which can be found in [B-E-W, 6.1.2, 6.2.1].

As immediate corollaries we obtain:

COROLLARY 3. Assuming the Birch and Swinnerton-Dyer Conjecture, if $N \ge 1$ is an odd square-free integer for which $E_2(N)$ has rank 0, then

$$\begin{aligned} \mathfrak{T}_{2}(N,1)\sqrt{|III_{2}(N)|} &+ 2\sum_{(m,k)\in\mathfrak{S}_{2}(N)}\mathfrak{T}_{2}\bigg(\frac{N-4k^{2}}{m^{2}},m\bigg)\sqrt{\Big|III_{2}\bigg(\frac{N-4k^{2}}{m^{2}}\bigg)\Big|} \\ &= \sum_{(x,y)\in\mathfrak{H}(N)}(-1)^{x+y}\chi_{2}(2y+1)(2y+1) - 4\sum_{(x,y)\in\mathfrak{I}(N)}(-1)^{x+1}\chi_{2}(2y+1)(2x+1). \end{aligned}$$

COROLLARY 4. Assuming the Birch and Swinnerton-Dyer Conjecture, if N is a positive odd square-free integer for which $E_2(N)$ has rank 0 and $\operatorname{ord}_p(N) = 1$ for some prime $p \equiv 3 \pmod{4}$, then

$$|III_{2}(N)| = \frac{4}{\tau(N)^{2}} \bigg(\sum_{(m,k)\in\mathfrak{S}_{2}(N)} \mathfrak{T}_{2}\bigg(\frac{N-4k^{2}}{m^{2}}, m\bigg) \sqrt{\bigg|III_{2}\bigg(\frac{N-4k^{2}}{m^{2}}\bigg)\bigg|}\bigg)^{2}.$$

We conclude with an application to the following question due to Kolyvagin.

KOLYVAGIN'S QUESTION. If E/\mathbb{Q} is an elliptic curve and p is prime, are there infinitely many quadratic twists E_D for which

$$|III(E_D)| \not\equiv 0 \pmod{p}?$$

COROLLARY 5. If p is prime, then there are infinitely many square-free integers N and M for which

$$r_1(N) = 0 \quad and \quad |III_1(N)| \neq 0 \pmod{p},$$

$$r_2(M) = 0 \quad and \quad |III_2(M)| \neq 0 \pmod{p}.$$

Proof. If p = 2, then this is a standard application of 2-descents. By Rubin's theorem, if p is odd and p divides $|III_i(N)|$ when $a_i(N) \neq 0$, then $p \mid a_i(N)$. The result now follows easily from the unconditional recurrences for $a_i(N)$ in Theorems 1 and 2.

Remarks. Using the fact that $|III_1(1)| = |III_2(1)| = 1$ (i.e. via Rubin's theorem [R] and (4)), Corollaries 1 and 3 conditionally capture the orders of all the Tate–Shafarevich groups of rank 0 congruent number curves. The only feature that may appear to be a mystery are the signs of $a_i(t)$ which are part of $\mathfrak{T}_i(t,m)$. However, one can easily deduce these signs from the recurrence relations since $\sqrt{III_i(N)}$ is always a positive integer. Therefore these relations are closed in the sense that no additional information is required apart from the fact that $a_i(1) = 1$.

K. Ono

The existence of these Kronecker-type formulae is not necessary for obtaining Corollary 5. In a forthcoming paper, the author and C. Skinner [O-S] show how to obtain such results, in a more general setting, in the absence of Kronecker-type formulae. N. Jochnowitz [J] also obtains such results via a completely different argument.

The Kronecker relations presented here have the pleasant property that they are explicit and only depend on the traces of Frobenius of the elliptic curves

$$y^2 = x^3 - x$$
, $y^2 = x^3 + x$, $y^2 = x^3 - 2x$

In particular, the $E_1(N)$ and $E_2(N)$ are simply twists of these special curves. It is of some interest to classify those *rare* elliptic curves E for which one can obtain Kronecker formulae for orders of Tate–Shafarevich groups of families of twists, especially those formulae which only depend on the Frobenius of special twists of E.

References

- [B-E-W] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, Wiley, to appear.
 - [C] J. E. Cremona, Algorithms for Elliptic Curves, Cambridge Univ. Press, 1992.
 - [D] L. E. Dickson, History of the Theory of Numbers, Vol. 3, G. E. Strechert & Co., 1934.
 - [J] N. Jochnowitz, Congruences between modular forms of half integral weights and implications for class numbers and elliptic curves, preprint.
 - [M-O] Y. Martin and K. Ono, *Eta-quotients and elliptic curves*, Proc. Amer. Math. Soc., to appear.
 - [O-S] K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms mod l, preprint.
 - [R] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560.
 - [S] J. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986.
 - [T] J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323–334.

School of Mathematics	Department of Mathematics
Institute for Advanced Study	Penn State University
Princeton, New Jersey 08540	University Park, Pennsylvania 16802
U.S.A.	U.S.A.
E-mail: ono@math.ias.edu	E-mail: ono@math.psu.edu

Received on 15.10.1996 and in revised form on 9.4.1997

(3062)