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Root systems and the Erdős–Szekeres Problem
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1. Introduction. An n-factor pure product is a polynomial which can be
expressed in the form

∏n
i=1(1 − xαi) for some natural numbers α1, . . . , αn.

We will use two different norms, both defined in terms of the expansion
of a pure product. Given a pure product

∏n
i=1(1 − xαi) whose expansion

as a polynomial is
∑∞
r=0 arx

r, the 1-norm of
∏n
i=1(1 − xαi) is denoted by

‖∏n
i=1(1−xαi)‖1 and is defined to be the sum of the absolute values of the

coefficients in the expansion, i.e.
∥∥∥
∞∑
r=0

arx
r
∥∥∥

1
:=

∞∑
r=0

|ar|.

The 2-norm is defined by
∥∥∥
∞∑
r=0

arx
r
∥∥∥

2
:=
( ∞∑
r=0

a2
r

)1/2
.

Two old problems to which norms of pure products are relevant are the
Prouhet–Tarry–Escott Problem and the Erdős–Szekeres Problem. We use
square brackets to delimit a list, and we call two lists (or, more precisely,
k-lists) [a1, . . . , ak] and [b1, . . . , bk] equal if (a1, . . . , ak) is a permutation of
(b1, . . . , bk). That is, a list is like a set except that repeated elements are
allowed, and a list is like a tuple except that the order of entries does not
matter. (Some authors call a list a multiset.) Suppose we have two unequal
lists of integers [a1, . . . , ak] and [b1, . . . , bk] such that

k∑

i=1

ari =
k∑

i=1

bri

for r = 1, . . . , d. Then we say that [a1, . . . , ak] and [b1, . . . , bk] form a multi-
grade of size k and degree d. The Prouhet–Tarry–Escott Problem is to find
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multigrades of the smallest possible size for each degree. It is known that
for any degree up to d = 9, there is a multigrade of size d + 1, and it is
conjectured (cf. [BI94, p. 10]) that this holds for all degrees. The connection
to pure products is that any n-factor pure product of 1-norm 2k can be used
to construct a multigrade of degree n− 1 and size k.

Erdős and Szekeres [ES58] asked how small the ∞-norm of an n-factor
pure product can be, where the ∞-norm of a polynomial is defined by

∥∥∥
d∑

i=0

aix
i
∥∥∥
∞

:= sup
{z∈C:|z|=1}

∣∣∣
d∑

i=0

aiz
i
∣∣∣,

where C is the set of complex numbers and |z| denotes the modulus
(i.e. absolute value) of the complex number z. At the start of Section 3,
we give some old inequalities relating the three different norms we have
mentioned.

Throughout this paper, N denotes the set of all natural numbers, and n
denotes the set {1, . . . , n}. If

∑∞
r=0 arx

r =
∏n
i=1(1− xαi), then for each r,

ar =
∣∣∣
{
I ⊆ n :

∑

i∈I
αi = r, |I| even

}∣∣∣−
∣∣∣
{
I ⊆ n :

∑

i∈I
αi = r, |I| odd

}∣∣∣.

So to make the 1-norm of
∏n
i=1(1 − xαi) as small as possible, we need to

pick the exponents α1, . . . , αn so as to maximise the number of disjoint pairs
{I, J} (that is, no two different pairs have the same I or the same J) such
that

∑
i∈I αi =

∑
j∈J αj where I, J ⊆ n, |I| even, and |J | odd. The same

criterion helps to make the 2-norm as small as possible, but one also has
to consider the magnitude of individual coefficients. Among pure products
having a given 1-norm, the ones with the smallest 2-norm will be those (if
there are any) whose expansions have no coefficients other than 0, 1, and −1.
That is, we want to choose α1, . . . , αn so that for every r ≥ 0, the number of
ways to express r as a sum of an even number of α1, . . . , αn and the number
of ways to express r as a sum of an odd number of α1, . . . , αn differ by at
most one.

For a definition of root systems, we refer the reader to Carter [C72]. For
the present, we will just describe the properties of root systems which are
useful in the context of constructing pure products of small norm. Positive
root systems are sets of vectors which have the property that a small num-
ber of vectors can be represented as a sum of positive roots in exactly one
way, and all other vectors can be represented as a sum of an even num-
ber of positive roots in exactly as many ways as they can be represented
as a sum of an odd number of positive roots. We construct pure products
of small norm essentially by projecting root systems down to one dimen-
sion and using the projections of the positive roots as exponents in pure
products.
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2. A construction from root systems. Let Π be a set of fundamental
roots of a root system Φ. Let Φ+ be the corresponding system of positive
roots. For r ∈ Φ, let Hr denote the hyperplane through the origin perpen-
dicular to r, and let wr denote the self-inverse bijection on points of the
space consisting of reflection in the hyperplane Hr. The Weyl group W as-
sociated with Φ is the group of bijections generated by {wπ : π ∈ Π} under
composition of functions. A chamber is a connected subset of V \ (

⋃
r∈ΦHr)

where V is the whole space. The intersection of the boundary of a chamber
with one of the reflecting hyperplanes is called a wall of the chamber. Define

S :=
1
2

∑

r∈Φ+

r.

The result that makes our construction of pure products useful is The-
orem 1. Theorem 1 is essentially a well-known theorem of Weyl [C72, The-
orem 10.1.8; M72, equation 0.1], which is usually expressed in the form of
the equation

e−S
∏

r∈Φ+

(1− er) =
∑

w∈W
(−1)l(w)ew(S).

In [M96], we state and prove the interesting part of this theorem in (we
believe) a clearer presentation than those in the literature. In particular, we
do not mention any ring, module, Lie algebra, or [C72] “alternating element
of a rational group algebra”. We need one more definition before repeating
our statement from [M96].

Call a chamber C odd if it satisfies the following two conditions: there is
exactly one Ω ⊆ Φ+ such that S−∑Ω ∈ C, and for every point p in a wall
of C, exactly half the subsets Ω ⊆ Φ+ such that S −∑Ω = p have even
cardinality. Theorem 1 is the interesting part of Weyl’s theorem.

Theorem 1. Every chamber is odd.

For every v ∈ V, define

a(v) :=
∣∣∣
{
Ω ⊆ Φ+ :

∑
Ω = v, |Ω| even

}∣∣∣

−
∣∣∣
{
Ω ⊆ Φ+ :

∑
Ω = v, |Ω| odd

}∣∣∣.

Corollary 2. There are exactly |W | points v ∈ V for which |a(v)| = 1,
and a(v) = 0 for all other v ∈ V.

P r o o f. This is clear from Theorem 1 since there are exactly |W | cham-
bers [C72, Corollary 2.3.3].

It is easy to see that for any natural numbers α1, . . . , αn and a,
‖∏n

i=1(1−xαi)‖ = ‖∏n
i=1(1−xaαi)‖ for the 1-norm, 2-norm, and∞-norm.
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Every n-factor pure product has 1-norm at least 2n. In [M94], S. Maltby an-
swered the question: For which natural numbers β1, . . . , βn, γ1, . . . , γn does
‖∏n

i=1(1 − xbβi+cγi)‖1 = 2n for all b, c ∈ N? This question is equivalent
to asking: In 2-dimensional space V with basis vectors π1, π2, for what sets
of n vectors {p1,1π1 + p1,2π2, . . . , pn,1π1 + pn,2π2} does the construction in
Lemma 3 produce a pure product of 1-norm 2n for all d1, d2 ∈ N? S. Maltby
found that, in fact, the construction produces such pure products if and only
if the pi,j ’s come from a 2-dimensional root system.

Let l be the rank of Φ and label the fundamental roots π1, . . . , πl. Let
n = |Φ+| and label the positive roots r1, . . . , rn. For i = 1, . . . , n and j =
1, . . . , l, let pi,j be such that

∑l
j=1 pi,jπj = ri. Since Π is a basis of V, the

pi,j ’s are uniquely determined. And since Φ+ is a positive root system, the
pi,j ’s are all non-negative integers [C72, Proposition 2.1.6]. For any given
α1, . . . , αn ∈ N, define for every k ∈ N ∪ {0},
b(k) :=

∣∣∣
{
I ⊆ n :

∑

i∈I
αi = k, |I| even

}∣∣∣−
∣∣∣
{
I ⊆ n :

∑

i∈I
αi = k, |I| odd

}∣∣∣.

It is easy to see that
∏n
i=1(1− xαi) =

∑∞
k=0 b(k)xk.

Lemma 3 is intuitively clear if one thinks of the function p as a projection
from the space V to 1-dimensional space. Remember that Π is a basis of V,
so p in the lemma is well-defined.

Lemma 3. Let d1, . . . , dl ∈ N. Define p : V → R by

p
( l∑

i=1

ciπi

)
:=

l∑

i=1

cidi.

For i = 1, . . . , n, let αi = p(ri) =
∑l
j=1 pi,jdj. Then for every k ∈ N ∪ {0},

b(k) =
∑

p(v)=k

a(v).

We are now able to prove our desired result.

Theorem 4. Let d1, . . . , dl ∈ N. For i = 1, . . . , n, let αi =
∑l
j=1 pi,jdj.

Then ∥∥∥
n∏

i=1

(1− xαi)
∥∥∥

1
≤ |W |

where W is the Weyl group of Φ.

P r o o f. We have
∥∥∥

n∏

i=1

(1− xαi)
∥∥∥

1
=
∥∥∥
∞∑

k=0

b(k)xk
∥∥∥

1
=
∞∑

k=0

|b(k)|.

Since a(v) = 0 whenever p(v) 6∈ N ∪ {0}, Lemma 3 tells us that
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∞∑

k=0

|b(k)| =
∞∑

k=0

∣∣∣
∑

p(v)=k

a(v)
∣∣∣ ≤

∞∑

k=0

∑

p(v)=k

|a(v)| =
∑

v∈V
|a(v)|.

And Corollary 2 tells us that∑

v∈V
|a(v)| = |W |.

There is a reason why one could allow the dj ’s in Theorem 4 to be any
integers (not necessarily positive) which do not yield any αi = 0, but there
is another reason why the resulting new permitted values of dj ’s would be
redundant. Suppose one allows polynomials to include terms with negative
exponents, and suppose also that one adjusts the definition of the 1-norm
and 2-norm to include coefficients of negative exponents the same as coeffi-
cients of positive ones. Then, for any natural numbers α1, . . . , αn, it is easy
to see that the following equalities hold for the 1-norm, the 2-norm, and the
∞-norm:∥∥∥(1− x−α1)

n∏

i=2

(1− xαi)
∥∥∥ =

∥∥∥x−α1(xα1 − 1)
n∏

i=2

(1− xαi)
∥∥∥

=
∥∥∥− x−α1

n∏

i=1

(1− xαi)
∥∥∥ =

∥∥∥
n∏

i=1

(1− xαi)
∥∥∥.

From this we see that if we allow negative exponents in the factors of a pure
product, we can replace them with their absolute values and the expansion
will have the same coefficients, but associated with different exponents, and
perhaps with reversed signs, so that the norms are not affected. Because of
this, it would make sense to allow the dj ’s to be any integers not yielding any
αi = 0. The resulting pure product

∏n
i=1(1− xαi) would be equivalent, for

our purposes, to the pure product
∏n
i=1(1−x|αi|). Notice that while replacing

some αi’s with the corresponding −αi’s does not change the expansion in
any important way, replacing some dj ’s with the corresponding −dj ’s is
a more complicated matter and it may appear that allowing negative dj ’s
would result in pure products not attainable with only positive dj ’s. We now
explain why the new pure products that this would allow are not different
in any important way from the ones attainable using only positive dj ’s.

Theorem 5. Suppose d1, . . . , dl ∈ Z are such that for i = 1, . . . , n,
αi 6= 0 where αi = |∑l

j=1 pi,jdj |. Then there exist d′1, . . . , d
′
l ∈ N such

that if α′i =
∑l
j=1 pi,jd

′
j for i = 1, . . . , n, then (α′1, . . . , α

′
n) is a permutation

of (α1, . . . , αn).

P r o o f. We define dot products by

(x1, . . . , xk) · (y1, . . . , yk) :=
k∑

i=1

xiyi.
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Since some of the tuples in this proof represent vectors relative to the non-
orthonormal basis Π, dot products involving these tuples do not satisfy the
usual lengths-cosine relationship. So, for instance, saying that (x1, . . . , xk) ·
(y1, . . . , yk) = 0 is not equivalent to saying that x1π1 + . . .+xkπk is perpen-
dicular to y1π1 + . . .+ ykπk.

For i = 1, . . . , n, if (pi,1, . . . , pi,l) · (d1, . . . , dl) > 0 then let εi = 1; and if
(pi,1, . . . , pi,l) · (d1, . . . , dl) < 0 then let εi = −1. So we have the equation




ε1p1,1 . . . ε1p1,l

ε2p2,1 . . . ε2p2,l
...

...
εnpn,1 . . . εnpn,l






d1
...
dl


 =




α1

α2
...
αn


 .

For i = 1, . . . , n, let r′i = εiri. So for i = 1, . . . , n, r′i =
∑l
j=1 εipi,jπj

and r′i is a root in the root system Φ; r′i is either ri or −ri—whichever
one has positive dot product with (d1, . . . , dl). That is, all the r′i’s lie on
the same side of the hyperplane of vectors having zero dot product with
(d1, . . . , dl) (which are not necessarily perpendicular to (d1, . . . , dl) since
the coordinates (pi,1, . . . , pi,l) of each ri are with respect to the basis Π
which is not orthonormal). This means that {r′i : i ∈ I} is a positive root
system of the same type as Φ+—call this positive root system Φ′+. Denote
the fundamental roots of Φ′+ by π′1, . . . , π

′
l and put Π ′ = {π′1, . . . , π′l}. For

i = 1, . . . , n, let (p′i,1, . . . , p
′
i,l) be the coordinates of r′i relative to Π ′. That

is, each r′i =
∑l
j=1 p

′
i,jπ
′
j . Since Φ+ and Φ′+ are positive root systems of the

same type, we know that the matrices



p1,1 . . . p1,l

p2,1 . . . p2,l
...

...
pn,1 . . . pn,l


 and




p′1,1 . . . p′1,l
p′2,1 . . . p′2,l

...
...

p′n,1 . . . p′n,l




have the same rows, but not necessarily in the same order. So we prove the
theorem if we show that there exist d′1, . . . , d

′
l ∈ N satisfying




p′1,1 . . . p′1,l
p′2,1 . . . p′2,l

...
...

p′n,1 . . . p′n,l






d′1
...
d′l


 =




α1

α2
...
αn


 .

For j = 1, . . . , l, let i′j be so that r′i′
j

= π′j . So for j = 1, . . . , l, p′i′
j
,1, . . . , p

′
i′
j
,l

are all 0 except for p′i′
j
,j = 1. Hence, the only assignment of d′1, . . . , d

′
l

that can satisfy the matrix multiplication above is to let each d′j = αi′
j
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since we require

αi′
j

= (p′i′
j
,1, . . . , p

′
i′
j
,l) · (d′1, . . . , d′l)

= (0, . . . , 0, 1, 0, . . . , 0) · (d′1, . . . , d′j−1, d
′
j , d
′
j+1, . . . , d

′
l) = d′j .

Notice that this means we are choosing d′1, . . . , d
′
l to be natural numbers.

Now we just need to verify that for i = 1, . . . , n, αi =
∑l
j=1 p

′
i,jd
′
j . This

is actually fairly easy to see from equalities we have already established. The
details are as follows. For i = 1, . . . , n, r′i =

∑l
j=1 p

′
i,jπ
′
j , so (p′i,1, . . . , p

′
i,l)

=
∑l
j=1 p

′
i,j(p

′
i′
j
,1, . . . , p

′
i′
j
,l) and (εipi,1, . . . , εipi,l) =

∑l
j=1 p

′
i,j(εi′jpi′j ,1, . . .

. . . , εi′
j
pi′
j
,l). Now

l∑

j=1

p′i,jd
′
j = (p′i,1, . . . , p

′
i,l) · (d′1, . . . , d′l)

=
( l∑

j=1

p′i,j(p
′
i′
j
,1, . . . , p

′
i′
j
,l)
)
· (d′1, . . . , d′l)

=
l∑

j=1

p′i,j((p
′
i′
j
,1, . . . , p

′
i′
j
,l) · (d′1, . . . , d′l))

=
l∑

j=1

p′i,jαi′j =
l∑

j=1

p′i,j((εi′jpi′j ,1, . . . , εi′jpi′j ,l) · (d1, . . . , dl))

=
( l∑

j=1

p′i,j(εi′jpi′j ,1, . . . , εi′jpi′j ,l)
)
· (d1, . . . , dl)

= (εipi,1, . . . , εipi,l) · (d1, . . . , dl) = αi.

In the next theorem, we choose the dj ’s so that the restriction of p
to {∑Ω : Ω ⊆ Φ+} is one-to-one. One can do this by choosing dj =
(C + 1)j where C = max{c1, . . . , cl} and

∑l
j=1 cjπj =

∑
Φ+, but we will

use slightly smaller dj ’s. Notice that when we make the restriction of p to
{∑Ω : Ω ⊆ Φ+} one-to-one, the reason this makes the 2-norm small is that
the coefficients in the expansion of the pure product we construct are each
0, 1, or −1. Few methods are known for constructing such products.

Theorem 6. Let c1, . . . , cl be such that
∑l
j=1 cjπj =

∑
Φ+. Let d1 = 1

and assign d2, . . . , dl inductively by dj = dj−1(cj−1 + 1). (That is, dj =∏j−1
k=1(ck + 1).) For i = 1, . . . , n, let αi =

∑l
j=1 pi,jdj. Then

∥∥∥
n∏

i=1

(1− xαi)
∥∥∥

2
=
√
|W |.
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P r o o f. Similarly to the proof of Theorem 4, we can say that

∥∥∥
n∏

i=1

(1− xαi)
∥∥∥

2
=
∥∥∥
∞∑

k=0

b(k)xk
∥∥∥

2

=
( ∞∑

k=0

|b(k)|2
)1/2

=
( ∞∑

k=0

∣∣∣
∑

p(v)=k

a(v)
∣∣∣
2)1/2

.

Observe by the following that if k ∈ N ∪ {0} and v ∈ {∑Ω : Ω ⊆ Φ+} are
such that p(v) = k, then v is uniquely determined. We know v =

∑l
j=1 vjπj

for some v1, . . . , vl ∈ N ∪ {0} such that each vj ≤ cj . Since dl >
∑l−1
j=1 cjdj ,

we know that vl = bk/dlc, and we find vl−1 similarly after reducing k modulo
dl, and so on. So for every k ∈ N∪{0} we have |∑p(v)=k a(v)| ∈ {0, 1} and,
hence, |∑p(v)=k a(v)|2 = |∑p(v)=k a(v)|. Together with Corollary 2, this
tells us that

( ∞∑

k=0

∣∣∣
∑

p(v)=k

a(v)
∣∣∣
2)1/2

=
( ∞∑

k=0

∣∣∣
∑

p(v)=k

a(v)
∣∣∣
)1/2

= |W |1/2.

Every indecomposable root system is of one of the following types.
This table (except for the last column) is copied from Carter’s book
[C72, p. 43]. (A decomposable root system is one of the form

⋃
i∈I Φi where

2 ≤ |I| finite, each Φi is an indecomposable root system of rank li, and the
Φi’s are embedded in (

∑
i∈I li)-space so that r ⊥ s for all distinct i, j ∈ I

and all r ∈ Φi and s ∈ Φj .)

Table 1. All indecomposable root systems

Root system Φ n = |Φ+| |W | |W |
Al (l ≥ 1) 1

2 l(l + 1) (l + 1)! (
√

2n+ 1/4 + 1/2)!
Bl (l ≥ 2) l2 2ll! 2

√
n√n!

Cl (l ≥ 3) l2 2ll! ditto

Dl (l ≥ 4) l(l − 1) 2l−1l! 2
√
n+1/4−1/2(

√
n+ 1/4 + 1/2)!

G2 6 12
F4 24 27 · 32

E6 36 27 · 34 · 5
E7 63 210 · 34 · 5 · 7
E8 120 214 · 35 · 52 · 7

Some readers may wonder about the less restrictive definition of root
systems which allows a type known as BC. The root system BCl has l(l+1)
positive roots and the number corresponding to |W | for our purposes is
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(l + 1)!2l. This makes BC-type root systems less useful to us than B- and
C-type root systems.

Carter [C72, Section 3.6] explicitly lists the roots of each root system in
terms of an orthonormal basis. From these descriptions, we get the following
αi’s using the construction in Theorem 4. For Al,

{αi : 1 ≤ i ≤ n} = {di + . . .+ dj : 1 ≤ i ≤ j ≤ l}.
For Bl,

{αi : 1 ≤ i ≤ n} = {di + . . .+ dj : 1 ≤ i ≤ j ≤ l}
∪ {di + . . .+ dj−1 + 2(dj + . . .+ dl) : 1 ≤ i < j ≤ l}.

For Cl,

{αi : 1 ≤ i ≤ n}
= {di + . . .+ dj−1 : 1 ≤ i < j ≤ l}
∪ {di + . . .+ dj−1 + 2(dj + . . .+ dl−1) + dl : 1 ≤ i < j ≤ l}
∪ {2(di + . . .+ dl−1) + dl : 1 ≤ i ≤ l}.

For Dl,

{αi : 1 ≤ i ≤ n}
= {di + . . .+ dj−1 : 1 ≤ i < j ≤ l}
∪ {di + . . .+ dj−1 + 2(dj + . . .+ dl−2) + dl−1 + dl : 1 ≤ i < j ≤ l}.

From Table 1, we see that using B-type root systems in Theorems 7
and 9, we can construct n-factor pure products

∏n
i=1(1− xαi) so that

∥∥∥
n∏

i=1

(1− xαi)
∥∥∥

1
≤ 2
√
n
√
n! ≤ (2

√
n)
√
n

and
∥∥∥

n∏

i=1

(1− xαi)
∥∥∥

2
=
√

2
√
n
√
n! ≤ (2

√
n)
√
n/4.

We now compare these bounds to those obtainable by methods in the liter-
ature.

3. Comparisons with old results. The relevant results in the litera-
ture are concerned mainly with the∞-norms of pure products. The 1-norm,
2-norm, and ∞-norm are related by the following easily verified inequalities
(cf. [BI94]). For any polynomial p(x),

‖p(x)‖1√
deg p(x) + 1

≤ ‖p(x)‖2 ≤ ‖p(x)‖∞ ≤ ‖p(x)‖1 ≤ ‖p(x)‖22.
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If one starts searching for pure products of small norm, one is likely
to get the notion that for general n ∈ N,

∏n
i=1(1 − xi) will have small

norm, but this example turns out to be disappointing. According to Erdős
& Szekeres [ES58],

lim
n→∞

(∥∥∥
n∏

i=1

(1− xi)
∥∥∥
∞

)1/n
> 1.

In other words, there is a constant c > 1 so that for large n, the ∞-norm
of the n-factor pure product

∏n
i=1(1 − xi) is roughly cn. Atkinson [A61]

and Dobrowolski [D79] showed by different methods that for any natural
number k,

∥∥∥
k−1∏

i=1

(1− xi)k−i
∥∥∥
∞
≤ kk/2.

(Borwein & Ingalls [BI94] incorrectly gave the outer exponent in this pure
product as k − i − 1 instead of k − i.) Letting n = k(k − 1)/2, so that
k = 1/2 +

√
2n+ 1/4, we can say that this construction yields an n-factor

pure product having ∞-norm at most (1/2 +
√

2n+ 1/4)1/4+
√
n/2+1/16. If

we allow the approximation k ≈ √2n, this bound simplifies to
√

2n
√
n/2

. (In
[BI94], Borwein & Ingalls say incorrectly that k ≤ √2n.) This pure product
can be constructed by using Ak−1 as the root system in Theorem 4 and
letting d1 = . . . = dk−1 = 1. Borwein & Ingalls [BI94] observed, essentially,
that Dobrowolski’s method achieves the same result for any values of the di’s.
The method relies on expressing the pure product in terms of a Vandermonde
determinant and is not useful for root systems other than A-type.

The best bounds in the literature are only existence results—the authors
do not give a construction of pure products witnessing their bounds, they
only show that such pure products exist. Also, they do not express these
bounds precisely, they only give the order. The exponent in Odlyzko’s bound
[O82] is the cube root 3

√
n(lnn)4, improving on the square root in the expo-

nent of
√

2n
√
n/2

. Kolountzakis [K94] improved on Odlyzko’s bound, getting
an exponent of 3√n. According to Odlyzko [O95], recent unpublished work
of S. V. Konyagin and A. S. Belov makes a major improvement on these
results, showing that there exists a constant c so that A∞(n) ≤ ec(lnn)4

for
all n ∈ N. Our results will not approach these bounds, but our examples
have the advantage of being explicit constructions.

If we construct a pure product
∏n
i=1(1 − xαi) from Ak−1 as in Theo-

rem 4, we know that ‖∏n
i=1(1 − xαi)‖1 ≤ (

√
2n+ 1/4 + 1/2)!. Further-

more, by choosing the di’s as in Theorem 6, we see that this bound is tight.

Clearly, this bound is an improvement on the bound of
√

2n
√

2n
resulting

from Borwein & Ingalls’s inequalities ‖p‖1 ≤ ‖p‖2∞ and ‖∏n
i=1(1−xαi)‖∞ ≤
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√
2n
√
n/2

. However, one is really only interested in how small the smallest
1-norm of an n-factor pure product can be. In this sense, we cannot im-
prove on Dobrowolski’s example in which d1 = . . . = dk−1 = 1 so that∏n
i=1(1− xαi) =

∏k
i=1(1− xi)k−i. Then, at least for k ≥ 4,

∥∥∥
n∏

i=1

(1− xαi)
∥∥∥

1
≤
∥∥∥

k∏

i=1

(1− xi)k−i
∥∥∥
∞

√√√√1 + deg
k∏

i=1

(1− xi)k−i

≤ kk/2
√√√√1 +

k∑

i=1

i(k − i) < kk/2

√√√√
k∑

i=1

(k/2)2

= kk/2
√
k(k/2)2 = kk/2

k3/2

2
=

1
2
k(k+3)/2

≈
√

2n
(
√

2n+3)/2 ≈
√

2n
√
n/2

.

For the 2-norm, Theorem 6 improves on the literature. Using Borwein

& Ingalls’s inequalities ‖p‖2 ≤ ‖p‖∞ and ‖∏n
i=1(1 − xαi)‖∞ ≤

√
2n
√
n/2

,

we get the bound ‖∏n
i=1(1 − xαi)‖2 ≤

√
2n
√
n/2

. Using A-type root sys-
tems in Theorem 6 to construct the same pure product, we get the small
improvement

∥∥∥
n∏

i=1

(1− xαi)
∥∥∥

2
=
√

(
√

2n+ 1/4 + 1/2)!.

Better than this, using B- or C-type root systems in Theorem 6, we get
(for n ≥ 36)

∥∥∥
n∏

i=1

(1− xαi)
∥∥∥

2
=
√

2
√
n
√
n! <

√√
n
√
n

=
√
n

√
n/4

.

Using Theorem 6 with B- or C-type root systems is better than any other
method known for constructing pure products of small 2-norm.

We now consider pure products having particular numbers of factors. In
Table 2, each pn is an n-factor pure product of minimal known 1-norm. A
table of pure products of minimal known 1-norm appeared in Borwein &
Ingalls’s paper [BI94]. We found a few errors and corrections for their table,
but it seems pointless to report these now since Borwein has since improved
on these results. The results in Table 2 are Borwein’s [B96] for n = 15, 24,
28, and 30 through 70. Some of the other pure products in this table are also
Borwein’s [B96], but they are not actually improvements on other results
in terms of the size of the 1-norm. Other results are in [BI94], [M97], and
[M96]. We include 2-norms in the table since, as far as we know, no search
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has been made specifically for pure products of small 2-norm. We use two
kinds of ellipsis in the table. The single ellipsis “...” means that every num-
ber between the bounds appears exactly once, and the double ellipsis “:::”
means that every odd number between the bounds appears exactly once.

Table 2. Exponents of pure products of least known 1-norm

n ‖pn‖1 ‖pn‖22 Exponents of pn

3 6 6 [1, 2, 3]
4 8 10 [1, 2, 3, 4]
5 10 10 [1, 3, 4, 5, 7]
6 12 12 [1, 2, 3, 4, 5, 7]
7 16 16 [1, 2, 3, 4, 5, 7, 11]
8 16 16 [2, 3, 5, 7, 8, 11, 13, 19]
9 20 20 [2, 3, 5, 7, 8, 11, 13, 17, 19]

10 24 24 [1, ..., 5, 7, 9, 11, 13, 17]
11 28 28 [1, 2, 3, 5, 7, 8, 9, 11, 13, 17, 19]
12 36 40 [1, ..., 9, 11, 13, 17]
13 48 52 [1, ..., 9, 11, 13, 17, 19]
14 56 56 [1, 3, ..., 7, 10, 11, 13, 16, 17, 19, 23, 29]
15 52 52 [1, 3, ..., 7, 9, 10, 11, 13, 16, 17, 19, 23, 29]
16 60 68 [1, ..., 11, :::, 19, 23]
17 68 68 [1, ..., 7, 9, 10, 11, 13, 14, 16, 17, 19, 23, 29]
18 84 94 [1, ..., 11, 13, 14, 16, 17, 19, 22, 23]
19 100 108 [1, ..., 11, :::, 25, 29]
20 116 132 [1, ..., 11, :::, 27, 31]
21 130 142 [1, ..., 11, :::, 31]
22 140 152 [1, ..., 9, :::, 33, 37]
23 156 168 [1, ..., 11, :::, 33, 37]
24 192 208 [1, ..., 11, 13, 14, 15, :::, 31, 35, 37]
25 188 204 [1, ..., 11, :::, 37, 41]
26 228 256 [1, ..., 11, :::, 41]
27 276 324 [1, ..., 13, :::, 41]
28 292 350 [1, ..., 13, :::, 41, 47]
29 392 696 [1, 1, 2, 2, 3, ..., 27]
30 396 760 [1, 1, 2, 2, 3, 3, 4, ..., 27]
31 414 714 [1, 1, 2, 2, 3, ..., 29]
32 456 852 [1, 1, 2, 2, 3, 3, 4, ..., 29]
33 482 930 [1, 1, 2, 2, 3, 3, 4, ..., 29, 31]
34 516 974 [1, 1, 2, 2, 3, 3, 4, ..., 31]
35 604 1248 [1, 1, 2, 2, 3, 3, 4, ..., 31, 33]
36 616 1200 [1, 1, 2, 2, 3, 3, 4, ..., 33]
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Table 2 (cont.)

n ‖pn‖1 ‖pn‖22 Exponents of pn

37 688 1440 [1, 1, 2, 2, 3, 3, 4, ..., 33, 35]
38 664 1338 [1, 1, 2, 2, 3, 3, 4, ..., 35]
39 740 1460 [1, 1, 2, 2, 3, 3, 4, ..., 35, 37]
40 804 1564 [1, 1, 2, 2, 3, 3, 4, ..., 37]
41 908 1976 [1, 1, 2, 2, 3, 3, 4, ..., 37, 39]
42 924 1996 [1, 1, 2, 2, 3, 3, 4, ..., 39]
43 952 2032 [1, 1, 2, 2, 3, 3, 4, ..., 39, 41]
44 1028 2144 [1, 1, 2, 2, 3, 3, 4, ..., 41]
45 1132 2516 [1, 1, 2, 2, 3, 3, 4, ..., 41, 43]
46 1176 2866 [1, 1, 2, 2, 3, 3, 4, ..., 43]
47 1254 2910 [1, 1, 2, 2, 3, 3, 4, 4, 5, ..., 43]
48 1288 3180 [1, 1, 2, 2, 3, 3, 4, 4, 5, ..., 44]
49 1484 3692 [1, 1, 2, 2, 3, 3, 4, 4, 5, ..., 45]
50 1604 4400 [1, 1, 2, 2, 3, 3, 4, 4, 5, ..., 46]
51 1632 4416 [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ..., 45, 47]
52 1740 4586 [1, 1, 2, 2, 3, 3, 4, 5, 5, 6, ..., 47, 49]
53 1602 3686 [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ..., 47, 49]
54 1784 4616 [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, ..., 47, 49]
55 1916 4924 [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ..., 50]
56 2144 5928 [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ..., 51]
57 2188 3988 [1, 2, 2, 3, ..., 25, :::, 33, 34, 35, :::, 85]
58 2352 4828 [1, 2, 2, 3, ..., 27, :::, 33, 34, 35, :::, 85]
59 2256 4068 [1, 2, 2, 3, ..., 25, :::, 33, 34, 35, :::, 89]
60 2456 4780 [1, 2, 2, 3, ..., 27, :::, 33, 34, 35, :::, 89]
61 2742 5486 [1, 2, 2, 3, ..., 27, :::, 33, 34, 35, :::, 89, 101]
62 2760 5164 [1, 2, 2, 3, ..., 27, :::, 93, 101]
63 2992 5940 [1, 2, 2, 3, 4, 4, 5, ..., 27, :::, 93, 101]
64 3232 6884 [1, 2, 2, 3, ..., 29, :::, 93, 101, 107]
65 3130 6190 [1, 2, 2, 3, ..., 29, :::, 95, 101, 107]
66 3108 5904 [1, 2, 2, 3, ..., 29, :::, 97, 101, 107]
67 3508 7272 [1, 2, 2, 3, ..., 29, :::, 37, 38, 39, :::, 97, 101, 107]
68 3864 8224 [1, 2, 2, 3, ..., 29, :::, 97, 101, 107, 109, 111]
69 4464 10968 [1, 2, 2, 3, ..., 29, :::, 63, 64, 65, :::, 97, 101, 107, 109, 111]
70 4592 11444 [1, 2, 2, 3, ..., 29, :::, 45, 46, 47, :::, 63, 64, 65, :::, 97, 101, 107, 109, 111]

Theorem 4 gives an upper bound on the 1-norm of any pure product
constructed from root systems as described. It seems likely that good choices
of the di’s in this construction will actually provide 1-norms much smaller
than this upper bound. The most ambitious goal is to see if we can use the
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root system constructions to match the smallest known 1-norms, and for this
purpose it seems best to begin by comparing the bounds from Theorem 4
with the best known 1-norms to see if any are already close. Since Borwein
(and Ingalls’s) results do not go up to 120-factor pure products, we take
p120 to be (p60)2.

Table 3. Comparing best known norms to norms from root systems

n System |W | ‖pn‖1 ‖pn‖22
1 A1 2 2 2
3 A2 6 6 6
6 A3 24 12 12

10 A4 120 24 24
15 A5 720 52 52

4 B2 8 8 10
9 B3, C3 48 20 20

16 B4, C4 384 60 68
25 B5, C5 3840 188 204

12 D4 192 36 40
20 D5 1920 116 132
30 D6 23,040 396 760

6 G2 12 12 12

24 F4 1152 192 208

36 E6 51,840 616 1200
63 E7 2,903,040 2992 5940

120 E8 696,729,600 1,440,480 1,025,261,796

We see from Table 3 that constructions according to Theorem 4 always
match the best known 1-norms when the root system used is A1, A2, B2, or
G2. This does not hold in other cases but it would be interesting to know
if we can always match the best known (or even best possible) results using
the construction in Theorem 4 if we choose suitable values for the di’s.

From [M97], we know that the least possible 1-norm of a 9-factor pure
product is 20 and that there are only five ways (up to multiplication of all the
exponents by a constant) to achieve this—the list of exponents [α1, . . . , α9]
must be one of the following:

[1, 2, 3, 4, 5, 7, 9, 11, 13],

[1, 2, 3, 5, 7, 8, 9, 11, 13],

[1, 2, 3, 5, 7, 8, 11, 13, 19],

[1, 4, 5, 6, 7, 9, 11, 13, 17],

[2, 3, 5, 7, 8, 11, 13, 17, 19].
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The only root systems that produce 9 factors in the construction in The-
orem 4 are B3 and C3. Can B3 or C3 produce any of the 9-exponent lists
above using this construction? No. The details of the tedious case examina-
tions appear in [M96].

For a given number of roots, decomposable root systems tend to have
larger Weyl groups than indecomposable root systems do, so one might
think it hopeless to ask if any of these 9-factor pure products of minimal
1-norm can be constructed from a decomposable root system. In fact, it is
trivial to construct any pure product

∏n
i=1(1 − xαi) from a decomposable

root system—just use the root system constructed from n copies of A1 and
let di = αi for i = 1, . . . , n. However, any resulting smallness of the norm
will not be due to properties of root systems so this is not an enlightening
answer.

The list of exponents of p10 is [1, 2, 3, 4, 5, 7, 9, 11, 13, 17] and ‖p10‖1 = 24.
The only root system that produces 10-factor pure products is A4, and A4

does not produce p10, but it does come tantalisingly close. Using A4 in
the construction in Theorem 4 and letting (d1, d2, d3, d4) = (4, 1, 2, 10), we
get [α1, . . . , α10] = [1, 2, 3, 4, 5, 7, 10, 12, 13, 17], which differs from the list in
question only in that 9 and 11 are replaced by 10 and 12. Unfortunately,
this tiny change has a substantial effect on the 1-norm, upping it from 24
to 60.

The preceding examples discourage hope that root systems are always
the best way to construct pure products of small norm, but perhaps if we
look at Table 3 comparing the best known results with the worst possible
by root systems, we can find a largish example where these quantities are
not far apart. We seem to have such an example in F4 which produces
24-factor pure products of 1-norm at most 27 · 32 = 1152, while the least
known 1-norm of a 24-factor pure product is 192. Because of the freedom
we have in choosing d1, d2, d3, d4, we might expect to be able to produce a
pure product using F4 in Theorem 4 which has 1-norm much less than the
worst case of 1152. In fact, a substantial improvement is possible, but not to
the point of breaking any records as far as we can see. The least 1-norm we
have found for a 24-factor pure product constructed from A4 by the method
in Theorem 4 is 328 and the exponents [αi] in the pure product are

[1, 2, 3, 4, 6, 7, 8, 9, 10, 16, 20, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 38, 54].

Insofar as 120-factor pure products have been investigated at all in the
literature, the construction in Theorem 4 using E8 is an improvement, at
least in terms of producing a small 2-norm. The norms for p120 in Table
3 are based on taking p120 = (p60)2, which is about the best we can ex-
trapolate from the literature. (Borwein & Ingalls [BI94] only searched for
pure products of small 1-norm up to 100 factors, and the largest good one
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they found had only 60 factors. Borwein [B96] decided to only keep track
of n-factor pure products having 1-norm less than n2, of which he found
examples only up to n = 70.) Another 120-factor pure product from the
literature is that of Atkinson [A61] and Dobrowolski [D79] which is the A15

construction using d1 = . . . = d15 = 1. This yields 1-norm 10,642,137,208
and 2-norm square root of 672,106,633,395,797,608, both much worse than
the norms from E8. Furthermore, remember that |W | given in Table 3 for
E8 is an upper bound on the 1-norm and that with appropriate choices of
d1, . . . , d8, we expect that a much smaller 1-norm is possible.

In Theorem 6, we see that with an appropriate choice of the di’s in
Theorem 4, we can use any root system with n positive roots and associated
Weyl group W to construct an n-factor pure product having |W | coefficients
1 or −1 and all other coefficients 0. One might wonder if there is always a
choice of the di’s so that this construction produces a polynomial in which all
coefficients are ±1 (and none are zero). Considering A2, we can see quickly
that the answer is no. The pure product we get from A2 is

(1−xd1)(1−xd2)(1−xd1+d2) = 1−xd1−xd2 +x2d1+d2 +xd1+2d2−x2d1+2d2 .

To get the coefficient of x to be ±1, we need d1 = 1 and d2 ≥ 2 (assuming,
without loss of generality, that d2 ≥ d1). Then, to get the coefficient of x2 to
be ±1, we need d2 = 2. The resulting pure product is 1−x−x2 +x4 +x5−x6

in which x3 has coefficient 0.
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