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whose sum of digits is fixed
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1. Throughout this paper we use the following notations: We write
e(α) = e2πiα. We denote by R, Z and N the sets of real numbers, integers,
and positive integers. We write l1 = logN , l2 = log logN , l3 = log log logN .
If F (N) = O(G(N)), then we write F (N)� G(N); if the implied constant
depends on certain parameters α, β, . . . (but on no other parameters), then
we write F (N) = Oα,β,...(G(N)) and F (N) �α,β,... G(N). We denote by
ω(n) the number of distinct prime factors of n and by Ω(n) the number of
prime factors of n counted with multiplicity.

Let g ∈ N be fixed with

(1.1) g ≥ 2.

If n ∈ N, then representing n in the number system to base g:

n =
µ∑

j=0

ajg
j , 0 ≤ aj ≤ g − 1, aµ ≥ 1,

we write

S(n) =
µ∑

j=0

aj .

The sum of digits function S has been studied by several authors in
different contexts (see [Mau] for a bibliography).

This function can be considered like a base g analogue of the usual
“number of prime factors” function. Its main property is the following
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“g-additive” property: for any integers k, a, b such that b < gk,

S(gka+ b) = S(a) + S(b).

The study of “g-additive” sequences will lead us to introduce complex
polynomials as generating functions.

For N ∈ N, m ∈ N and r ∈ Z we write U(m,r)(N) = {n : n ≤ N,S(n) ≡ r
(mod m)}.

The arithmetic structure of the sets Um,r(N) has been studied by Gel-
fond [Gel]. His main result which extends an earlier result of Fine [Fin] is
the following: if m ∈ N is fixed with

(1.2) (m, g − 1) = 1,

then for all r ∈ Z, the set U(m,r)(N) is well-distributed in the residue classes
modulo q. More exactly, if g ∈ N, m ∈ N, q ∈ N are fixed with (1.1), (1.2),
m > 1 and q > 1, and r ∈ Z, l ∈ Z, then for N →∞ we have

(1.3) |{n : n ∈ U(m,r)(N), n ≡ l (mod q)}| = N

mq
+O(Nλ)

where λ = λ(g,m) < 1 (and λ is independent of N , q, r, l). As an application
of this result, he showed that if g ∈ N, m ∈ N, z ∈ N are fixed with (1.1),
(1.2), and z > 1, and r ∈ Z, then for N →∞ we have

(1.4) |{n : n ∈ U(m,r)(N), there is no prime p with pz |n}|
=

N

mζ(z)
+O(Nλ1)

where λ1 = (1 + (z − 1)λ)/z with the number λ defined above. Moreover,
he studied another application of similar type.

In [M-S] we continued the study of the arithmetic structure of the sets
U(m,r)(N). First we showed that if g ∈ N, m ∈ N are fixed with (1.1) and
(1.2), and r ∈ Z, N ∈ N, A,B ⊂ {1, . . . , N}, then

(1.5)
∣∣∣∣|{(a, b) : a ∈ A, b ∈ B, S(a+ b) ≡ r (mod m)}| − |A| · |B|

m

∣∣∣∣
≤ γNλ(|A| · |B|)1/2

with γ = γ(g,m), λ = λ(g,m) < 1. Next we showed that the elements
of U(m,r)(N) satisfy an Erdős–Kac type theorem: if g, m, r are defined as
above, then

(1.6)
∣∣∣∣

1
|U(m,r)(N)| |{n : n ∈ U(m,r)(N), ω(n)− l2 ≤ xl1/22 }|

− (2π)−1/2
x\
−∞

e−u
2/2 du

∣∣∣∣ < cl3l
−1/2
2
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with some constant c = c(g,m), uniformly in all real x and N ∈ N, N ≥ 3.
Finally, we showed that defining g, m, r as above and writing

Ω(g, n) =
∑

pα‖n
(p,g)=1

α,

for ε > 0, N > N0(ε) we have

(1.7) max
n∈U(m,r)(N)

ω(n) >
(

1
2
− ε
)

logN
log logN

and for N > N0(g,m) we have

(1.8) max
n∈U(m,r)(N)

Ω(g, n) > c logN

with c = c(g,m) > 0. (See [F-M1] and [F-M2] for a further related result.)

2. All the results above cover the set U(m,r)(N) whose cardinality is
(1 + o(1))(N/m) so that, roughly speaking, it is a set of positive density
(recall that m is fixed). Since the integers characterized by a simple digit
property have a very specific structure and they can be studied very effec-
tively by the generating function principle, one expects that it can be proved
that much “thinner” sets of this type still have a nice arithmetic structure.
The most natural way to construct “thin” sets of this type is to consider
the sets

Vk = Vk(N) = {n : n ≤ N, S(n) = k}
where k ∈ N, 0 ≤ k ≤ (g − 1)

( logN
log g + 1

)
. Indeed, it could be deduced easily

from Theorem 1 below that for every k we have

|Vk(N)| �g N(logN)−1/2,

and |Vk(N)| → ∞ arbitrary slowly if k →∞ sufficiently slowly so that these
sets are much thinner than the sets U(m,r)(N). In this paper our goal is to
show that, in spite of the much smaller cardinality, the sets Vk(N) possess
the same “nice” arithmetic structure as the sets U(m,r)(N); in particular,
k → ∞ is sufficient to ensure that Vk(N) is well-distributed in the residue
classes of small moduli, moreover, we will show that if k is close to its mean
value g−1

2 · logN
log g , then Vk(N) satisfies an Erdős–Kac type theorem.

First we will need a lower bound, uniform in k, for |Vk(N)| (Corollary 1
below). For our purpose, it will be sufficient to consider the somewhat sim-
pler case when N is of the form gν − 1. In other words, for N ∈ N define
ν = ν(N) by

(2.1) gν − 1 ≤ N < gν+1 − 1
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and write

(2.2) M = M(N) = gν − 1.

For 0 < k < (g − 1)ν, clearly n ∈ Vk(M) holds if and only if M − n ∈
V(g−1)ν−k(M) so that

(2.3) |Vk(M)| = |V(g−1)ν−k(M)|.
Thus we may assume that k does not exceed the mean value of S(n) (for
1 ≤ n ≤ N):

(2.4) k ≤ g − 1
2

ν.

To estimate |Vk(M)|, we will use a variant of the saddle point method
(see, e.g., [Ten]). First we have to introduce a parameter r = r(N, k). Con-
sider the generating function

P (x) = x−k(1 + x+ . . .+ xg−1)ν (x ∈ R, x > 0)

whose constant term is, clearly, |Vk(gν − 1)| = |Vk(M)|. To minimize the
contribution of the other terms, we have to solve the equation

P ′(x) = x−k−1(1 + x+ . . .+ xg−1)ν−1

× (−k(1 + x+ . . .+ xg−1) + νx(1 + 2x+ . . .+ (g − 1)xg−2)) = 0.

For x > 0, this equation can be written in the equivalent form

Q(x) = −k(1 + x+ . . .+ xg−1) + νx(1 + 2x+ . . .+ (g − 1)xg−2)(2.5)

= (ν(g − 1)− k)xg−1 + (ν(g − 2)− k)xg−2 + . . .+ (ν − k)x− k
= 0.

Then Q(0) = −k < 0 and, by (2.1),

(2.6) Q(1) = ν
(g − 1)g

2
− gk = g

(
g − 1

2
ν − k

){
= 0 for k = g−1

2 ν,
> 0 for k < g−1

2 ν.

Thus Q(x) has at least one zero in the interval (0, 1]. On the other hand,
the sequence ν(g − 1) − k, ν(g − 2) − k, . . . , ν − k, −k of the coefficients
of Q(x) has exactly one change of sign, thus by Descartes’ rule of signs
(see, e.g., [P-S], Vol. II, p. 41, Problem 36), Q(x) has at most one positive
zero. It follows that Q(x) has exactly one zero in (0, 1]. Denote this unique
zero by r = r(N, k) so that

(2.7) r = 1 for k =
g − 1

2
ν and 0 < r < 1 for 0 < k <

g − 1
2

ν

and, by (2.5),

(2.8) Q(r) = −k(1 + r + . . .+ rg−1) + νr(1 + 2r + . . .+ (g − 1)rg−2) = 0
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whence

(2.9)
r + 2r2 + . . .+ (g − 1)rg−1

1 + r + . . .+ rg−1 =
k

ν
.

Moreover, it follows easily from (2.8) that

r =
k

ν − k for g = 2

and

(2.10) r =
k

ν
−
(
k

ν

)2

+O

((
k

ν

)3)
for g ≥ 3, k = o(ν),

while for ∆ = g−1
2 ν − k = o(ν), by (2.6) and

Q′(1) = −k
g−1∑

j=1

j + ν

g−1∑

j=1

j2 =
(g − 1)g(ν(2g − 1)− 3k)

6
(� ν),

we have

r = 1− Q(1)
Q′(1)

+Og

((
Q(1)
Q′(1)

)2)
(2.11)

= 1−∆
(

(g − 1)(ν(2g − 1)− 3k)
6

)−1

= 1− 12∆
(g2 − 1)ν

+Og(∆2ν−2)

for ∆ = g−1
2 ν − k = o(ν).

We will prove the following result:

Theorem 1. Uniformly for k →∞, k ≤ g−1
2 ν we have

(2.12) |Vk(M)| = r−k(1 + r + . . .+ rg−1)νπ1/2(Dν)−1/2(1 +Og(Dν)−1/2)

where

(2.13) D = 2π2(B −A2)

with

A =
( g−1∑

j=1

jrj
)( g−1∑

j=0

rj
)−1

=
k

ν
and B =

( g−1∑

j=1

j2rj
)( g−1∑

j=0

rj
)−1

.

Note that a simple computation gives

D = 2π2 (r2g − g2rg+1 + 2(g2 − 1)rg − g2rg−1 + 1)r
(r − 1)2(rg − 1)2
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however, in order to estimate D, it is better to use the definitions of A
and B. Indeed, by 0 < r < 1 and Cauchy’s inequality we have

D = 2π2(B −A2)(2.14)

= 2π2
( g−1∑

j=0

rj
)−2( g−1∑

j=1

j2rj
g−1∑

j=0

rj −
( g−1∑

j=1

jrj
)2)

= 2π2
( g−1∑

j=0

rj
)−2( g−1∑

j=1

j2rj +
( g−1∑

j=1

j2rj
g−1∑

j=1

rj −
( g−1∑

j=1

jrj
)2))

≥ 2π2g−2r

and

(2.15) D ≤ 2π2B < 2π2g2r.

By (2.7), (2.9) and (2.10) there are positive constants c1 = c1(g) and c2 =
c2(g) such that uniformly for k →∞ we have

(2.16) c1
k

ν
< r < c2

k

ν
.

By (2.14)–(2.16), there are positive constants c3 = c3(g) and c4 = c4(g) such
that the product Dν appearing in (2.11) satisfies

(2.17) c3k < Dν < c4k.

Moreover, for fixed k, |Vk(N)| is clearly an increasing function of N . Thus,
using also (2.3), we obtain the following result which will play an important
role later in the proof of Theorem 2:

Corollary 1. There is a positive constant c5 = c5(g) such that , writing

(2.18) l = min(k, (g − 1)ν − k),

uniformly for l→∞ we have

|Vk(N)| ≥ |Vk(M)| = |Vl(M)| > c5r
−l(1 + r + . . .+ rg−1)ν l−1/2.

In the important special case when k is near the mean value of S(n), we
will deduce from Theorem 1 that

Corollary 2. For N →∞ and

(2.19) ∆ =
g − 1

2
ν − k = o(ν),

we have

|Vk(M)| = 61/2π−1/2(g2 − 1)−1/2Mν−1/2(2.20)

× exp
(
− 6
g2 − 1

· ∆
2

ν
+Og(∆3ν−2 + ν−1/2)

)
.
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In the other extreme case when k is far from the mean value, it follows
from Theorem 1 that

Corollary 3. Defining l by (2.18), for g ≥ 3, l→∞, l = o(ν) we have

(2.21) |Vk(M)| = |Vl(M)|

= 2−1/2π−1/2 exp
(
− l log

l

ν
+ l − 1

2
log l − 1

2
· l
ν

+
l2

2ν
+O(l3ν−2 + l−1/2)

)
.

Note that for l = o(ν1/2) this is (1 + o(1))
(
ν
l

)
as expected. It could be

shown that for l� ν1/2 it is not so anymore.
Next we will show that if

(2.22) 0 < k < (g − 1)ν, l = min(k, (g − 1)ν − k)→∞
and

(2.23) m < exp(c6l1/2),

then Vk is well-distributed in the modulo m residue classes:

Theorem 2. There exist positive constants l0, c7, c8 (all depending on
g only) such that if n, k, m ∈ N, m ≥ 2, ((g − 1)g,m) = 1, h ∈ Z,

(2.24) l > l0

and (2.23) holds, then

(2.25)
∣∣∣∣|{n : n ∈ Vk(N), n ≡ h (mod m)}| − 1

m
|Vk(N)|

∣∣∣∣

< c7
1
m
|Vk(N)| exp

(
− c8 l

logm

)
.

Note that a condition of type ((g − 1)g,m) = 1 is necessary. Indeed, it
is easy to see that if, say, m = p is a prime number with p | (g − 1)g, and
l→∞ sufficiently slowly, then Vk(N) is not well-distributed in the modulo
p residue classes.

One may apply Theorem 2 to prove the Vk analogue of Gelfond’s result
(1.4):

Theorem 3. If g, z ∈ N, g, z ≥ 2, then there are constants N0, c9, c10

(each depending on g and z only) such that if N, k ∈ N, N > N0,
∣∣∣∣
g − 1

2
ν − k

∣∣∣∣ < c9(logN)3/4,
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then the number of those integers n with n ∈ Vk(N) which are not divisible
by the zth power of a prime p with ((g − 1)g, p) = 1 is

(
ζ(z)

∏

p | (g−1)g

(
1− 1

pz

))−1

|Vk(N)|(1 +O(exp(−c10(logN)1/2))).

(Here |Vk(N)| can be estimated by using Corollary 2.) Indeed, by using
also Corollary 2, Theorem 3 can be derived from Theorem 2 in the same
way as (1.4) from (1.3), thus we will not give the details here.

Next, one would like to prove the Vk analogue of our result (1.5). Unfor-
tunately, we have not been able to prove such a theorem (Theorem 2 is not
strong enough for this purpose). Thus, in particular, we have not been able
to prove the following conjecture:

Conjecture 1. If ε > 0, N > N0(ε), A,B ⊂ {1, . . . , N} and |A|, |B| >
εN , then there are integers a, b such that a ∈ A, b ∈ B and

S(a+ b) = [(g − 1)ν/2].

The Vk analogue of (1.6) provides the most interesting problem. Indeed,
we will prove the following theorem:

Theorem 4. For every positive number K there are effectively com-
putable constants ν0 = ν0(g,K) and c11 = c11(g,K) with the following
properties: Let

(2.26) ν ∈ N, ν > ν0, ν > 2,

(2.27) N = gν − 1 (= M(N)),

k ∈ N and , writing ∆ = g−1
2 ν − k,

(2.28) |∆| < K(logN)1/2.

Let FN (z) denote the frequency of those elements n of Vk(N), amongst all
the elements of Vk(N), for which ω(n)− log logN ≤ z√log logN . Then

(2.29)
∣∣∣∣FN (z)− 1√

2π

z\
−∞

e−u
2/2 du

∣∣∣∣ < c11
log log logN√

log logN

uniformly in all real z (and ν, k satisfying (2.26) and (2.28)).

Besides Theorem 2, this is our other main result. Namely, the proof is
much more difficult than the proof of (1.6) and, in particular, a non-trivial
application of the large sieve will be needed.

Note that the result could be extended easily to general integers N in-
stead of considering integers N of the special form (2.27); however, although
the same argument goes through this extension would make the formulas
involved much more complicated and thus we decided to restrict ourselves
to the simpler special case (2.27).
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Note, moreover, that the upper bound on the right hand side of (2.28)
could be replaced by a slightly greater one, but to replace it by, say,
(logN)1−ε further ideas would be needed.

Finally, looking for the Vk analogue of (1.7), we can prove the following
slightly weaker result:

Theorem 5. There are positive constants N0, c12, c13 such that if N ,
k ∈ N, N > N0 and

∣∣k − g−1
2 ν

∣∣ < c12ν, then

max
n∈Vk(N)

ω(n) > c13
logN

log logN
.

Indeed, this can be proved by the same method as the one used in the
proof of (1.7), except that while the proof of (1.7) used an argument from
[Er-P-S-S], here we have to replace this argument by the one used in the
proof of Theorem 1 in [S-S].

On the other hand, we have not been able to give any reasonable lower
bound for maxn∈Vk(N)Ω(g, n) so that, for example, we have not been able
to settle the following conjecture:

Conjecture 2. For N ∈ N, N > N0 there is an integer n such that
1 ≤ n ≤ N , S(n) = [(g − 1)ν/2] and

Ω(g, n) > c14 logN

with some positive constant c14 = c14(g).

3. P r o o f o f T h e o r e m 1. As we saw in Section 2, |Vk(M)| is the
coefficient of zk in the generating function

f(z) = (ϕ(z))ν (z ∈ C)

where

ϕ(z) = 1 + z + . . .+ zg−1.

Thus we have

(3.1) |Vk(M)| = r−k
1\
0

f(re(α))e(−kα) dα = r−k(1 + r + . . .+ rg−1)νJ

where r = r(M) is defined in Section 2 and

(3.2) J =
1\
0

(U(α))νe(−kα) dα =
\

|α|≤δ
+

\
δ<|α|≤1/2

= J1 + J2

with

(3.3) U(α) =
1 + re(α) + . . .+ rg−1e((g − 1)α)

1 + r + . . .+ rg−1
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and δ = k−1/2 log k. Uniformly for |α| ≤ 1/2 we have

U(α) = U(0) + U ′(0)α+
1
2
U ′′(0)α2 +Og(rα3)

where

U(0) = 1,

U ′(0) = 2πi
( g−1∑

j=1

jrj
)( g−1∑

j=1

rj
)−1

= 2πiA

where by (2.9),

(3.4) A = k/ν,

and U ′′(0) = −4π2B so that

U(α) = 1 + 2πiAα− 2π2Bα2 +Og(rα3).

Clearly, A = Og(r) and B = Og(r). Thus by (3.4), it follows that for |α| <
α0 = α0(g),

U(α) = exp
(

2πi
k

ν
α−Dα2 +Og(rα3)

)

where D = 2π2(B −A2) (so that D satisfies (2.13)).
Thus the integral J1 in (3.2) can be rewritten as

J1 =
\

|α|≤δ
exp(2πikα−Dνα2 +Og(rνα3))e(−kα) dα

=
\

|α|≤δ
exp(−Dνα2 +Og(rνα3)) dα.

By (2.16) we have rν = Og(k) so that by the definition of δ, for |α| ≤ δ we
have

J1 =
\

|α|≤δ
exp(−Dνα2) dα+Og

(
rν

\
|α|≤δ

|α|3 exp(−Dνα2) dα
)

(3.5)

=
∞\
−∞

exp(−Dνα2) dα+O
(∞\
δ

exp(−Dνα2) dα
)

+Og

(
rν

δ\
0

α3 exp(−Dνα2) dα
)
.

Substituting α = (2Dν)−1/2x we get
∞\
−∞

exp(−Dνα2) dα = (2Dν)−1/2
∞\
−∞

exp(−x2/2) dx(3.6)

= π1/2(Dν)−1/2
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(since it is well known from probability theory that the last integral is equal
to (2π)1/2), and the substitution α = (Dν)−1/2x1/2 gives

∞\
δ

exp(−Dνα2) dα =
1
2

(Dν)−1/2
∞\

Dνδ2

x−1/2 exp(−x) dx(3.7)

<
1
2

(Dν)−1/2(Dνδ2)−1/2
∞\

Dνδ2

exp(−x) dx

=
1
2

(Dνδ)−1 exp(−Dνδ2).

Moreover, substituting α = (Dν)−1/2x we get

rν

δ\
0

α3 exp(−Dνα2) dα = rD−2ν−1
(Dν)1/2δ\

0

x3 exp(−x2) dx(3.8)

< rD−2ν−1
∞\
0

x3 exp(−x2) dx

= O(rD−2ν−1).

Finally, in order to estimate J2, we need the following lemma:

Lemma 1. For 0 < r ≤ 1 and all α ∈ R we have

|U(α)| ≤ 1− 2r
g
‖α‖2.

P r o o f. Clearly,
∣∣∣∣
1 + re(α)

1 + r

∣∣∣∣
2

=
(1 + r)2 − 2r(1− cos 2πα)

(1 + r)2

= 1− 2r
(1 + r)2 2 sin2 πα ≤ 1− r(2‖α‖)2 = 1− 4r‖α‖2

whence |1 + re(α)| ≤ (1 + r)(1− 4r‖α‖2)1/2 ≤ (1 + r)(1− 2r‖α‖2).
By 0 < r ≤ 1, it follows that

|U(α)| = |1 + re(α) + r2e(2α) + . . .+ rg−1e((g − 1)α)|
1 + r + . . .+ rg−1

≤ |1 + re(α)|+ r2 + . . .+ rg−1

1 + r + . . .+ rg−1

≤ (1 + r)(1− 2r‖α‖2) + r2 + . . .+ rg−1

1 + r + . . .+ rg−1

= 1− 2(1 + r)r‖α‖2
1 + r + . . .+ rg−1 ≤ 1− 2r‖α‖2

g

which completes the proof of the lemma.
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The application of Lemma 1 gives

|J2| =
∣∣∣

\
δ<α≤1/2

(U(α))νe(−kα) dα
∣∣∣ ≤ 2

1/2\
δ

|U(α)|ν dα

≤ 2
1/2\
δ

(
1− 2r‖α‖2

g

)ν
dα <

(
1− 2rδ2

g

)ν
.

For 0 < x < 1 we have 1− x < exp(−x), thus it follows that

(3.9) |J2| < exp
(−2rν

g
δ2
)
.

Combining (3.2) and (3.5)–(3.9), by (2.16) and (2.17) we get

J = J1 + J2(3.10)

= π1/2(Dν)−1/2

+Og

(
(Dνδ)−1 exp(−Dνδ2) + rD−2ν−1 + exp

(
− 2rν

g
δ2
))

= π1/2(Dν)−1/2 +Og

(
1
Dν

)
.

(2.12) follows from (3.1) and (3.10), and this completes the proof of
Theorem 1.

P r o o f o f C o r o l l a r y 2. By (2.3), we may assume that k ≤
(g − 1)ν/2. It follows from (2.11) and (2.19) by an easy computation that

A =
k

ν
=
g − 1

2
+O(∆ν−1)

and

B =
(g − 1)(2g − 1)

6
+Og(∆ν−1)

whence

(3.11) D = 2π2(B −A2) =
π2

6
(g2 − 1) +O(∆ν−1).

Moreover, writing η = 1− r so that, by (2.11),

(3.12) η =
12∆

(g2 − 1)ν
+Og(∆2ν−2),

we have

r−k = exp(−k log(1− η)) = exp
(
kη + 1

2kη
2 +O(kη3)

)
(3.13)

= exp
((

g − 1
2

ν −∆
)
η +

g − 1
4

νη2 +Og(∆3ν−2)
)
.
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Next, writing h(x) = 1 + x+ . . .+ xg−1, we have

h = 1 + r + . . .+ rg−1 = h(1− η) = h(1)− h′(1)η + 1
2h
′′(1)η2 +Og(η3)

= g − (g − 1)g
2

η +
(g − 2)(g − 1)g

6
η2 +Og(η3)

so that

(3.14) (1 + r + . . .+ rg−1)ν = (h(r))ν

= gν
(

1− g − 1
2

η +
(g − 2)(g − 1)

6
η2 +Og(η3)

)ν

= (1 +O(M−1))

×M exp
(
ν log

(
1−

(
g − 1

2
η − (g − 2)(g − 1)

6
η2 +Og(η3)

)))

= (1 +O(M−1)) exp
(
− g − 1

2
νη +

(g − 1)(g − 5)
24

νη2 +Og(∆3ν−2)
)
.

Combining (3.13) and (3.14), and using (3.12), we get

(3.15) r−k(1 + r + . . .+ rg−1)ν

= (1 +O(M−1))M exp
(
−∆η +

g2 − 1
24

νη2 +Og(∆3η−2)
)

= (1 +O(M−1))M exp
(
− 6
g2 − 1

· ∆
2

ν
+Og(∆3ν−2)

)
.

(2.20) follows from (2.12), (3.11) and (3.15), and this completes the proof
of Corollary 2.

P r o o f o f C o r o l l a r y 3. By (2.3), we may assume that k ≤ g−1
2 ν.

By g ≥ 3, it follows from (2.8) and (2.10) that

B =
r + 4r2 +O(r3)
1 + r +O(r2)

= r + 3r2 +O(r3) =
k

ν
+ 2
(
k

ν

)2

+O

((
k

ν

)3)

so that, by (2.13),

D = 2π2(B −A2) = 2π2
(
k

ν
+
(
k

ν

)2

+O

((
k

ν

)3))
.

It follows that the factor π1/2(Dν)−1/2 appearing in (2.12) is

π1/2(Dν)−1/2 = 2−1/2π−1/2(k + k2ν−1 +O(k3ν−2))−1/2(3.16)

= 2−1/2π−1/2k−1/2
(

1− 1
2
· k
ν

+O(k2ν−2)
)
.
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Moreover, by g ≥ 3 and (2.10) we have

(3.17) r−k(1 + r + . . .+ rg−1)ν

= exp(−k log r + ν log(1 + r + r2 +O(r3)))

= exp
(
− k log

k

ν

(
1− k

ν
+O

((
k

ν

)2))
+ ν

(
r +

r2

2

)
+O(νr3)

)

= exp
(
− k log

k

ν
+ k +

k2

2ν
+O(k3ν−2)

)
.

Since now l = k, (2.21) follows from (3.16) and (3.17) and this completes
the proof of Corollary 3.

4. P r o o f o f T h e o r e m 2. Assume first that k ≤ (g−1)ν/2. Consider
the generating function

(4.1) G(z, γ) =
N∑
n=1

zS(n)e(nγ)

(where z ∈ C, γ ∈ R) so that

1
m

m∑

j=1

e

(
− hj

m

)
G

(
z,
j

m

)
=

∑

1≤n≤N
n≡h (modm)

zS(n).

Thus taking z = re(β) where r = r(N, k) is defined in Section 2, we have

(4.2) |{n : n ∈ Vk(N), n ≡ h (mod m)}|

= r−k
1\
0

e(−kβ)
∑

1≤n≤N
n≡h (modm)

(re(β))S(n) dβ

=
1
m
r−k

m∑

j=1

1\
0

e

(
− kβ − hj

m

)
G

(
re(β),

j

m

)
dβ.

Here the term with j = m is

1
m
r−k

1\
0

e(−kβ)G(re(β), 0) dβ

=
1
m
r−k

1\
0

e(−kβ)
( N∑
n=1

rS(n)e(S(n)β)
)
dβ =

1
m
|Vk(N)|.

Thus it follows from (4.2) that
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(4.3)
∣∣∣∣|{n : n ∈ Vk(N), n ≡ h (mod m)}| − 1

m
|Vk(N)|

∣∣∣∣

≤ 1
m
r−k

m−1∑

j=1

1\
0

∣∣∣∣G
(
re(β),

j

m

)∣∣∣∣ dβ.

Write N in the form

N =
t∑

j=1

bjg
νj , ν1 > . . . > νt, bj ∈ {1, . . . , g − 1} for j = 1, . . . , t,

so that, defining ν = ν(N) as in Section 2, we have ν1 = ν if N ≥ gν and
ν1 = ν − 1 if N = gν − 1. Moreover, for l = 1, . . . , t, let Al denote the set of
the integers n that can be represented in the form

(4.4) n =
l−1∑

i=1

big
νi + xgνl +

νl−1∑
u=0

yug
u

where x ∈ {0, 1, . . . , bl − 1}, yu ∈ {0, 1, . . . , j − 1} for u = 0, 1, . . . , νl − 1,
and let At+1 = {N}. Then clearly we have

t+1⋃

l=1

Al = {0, 1, . . . , N} and Aj ∩ Al = ∅ for 1 ≤ j < l ≤ t+ 1

so that, writing S(0) = 0 and using (4.1) and (4.4), for all β, γ ∈ R we have

1 +G(re(β), γ) = 1 +
N∑
n=1

(re(β))S(n)e(nγ)

=
t+1∑

l=1

∑

n∈Al
rS(n)e(S(n)β + nγ)

=
t+1∑

l=1

∑

n∈Al
(re(β))S(n)e(nγ)

=
t∑

l=1

∑
x

∑
y0

. . .
∑
yνl−1

(re(β))b1+...+bl−1+x+y0+...+yνl−1

× e((b1gν1 + . . .+ bl1g
νl−1 + xgνl + y0g

0 + . . .

+ yνl−1g
νl−1)γ) + (re(β))S(N)e(Nγ)

whence, by 0 < r < 1,
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(4.5) |G(re(β), γ)|

≤ 2 +
t∑

l=1

rb1+...+bl
∣∣∣
bl−1∑
x=0

(re(β + gνlγ))x
∣∣∣
νl−1∏
u=0

∣∣∣
g−1∑
yu=0

(re(β + guγ))yu
∣∣∣.

Thus using 0 < r < 1 and defining U(α) by (3.3), we obtain

|G(re(β), γ)| ≤ 2 +
t∑

l=1

rl−1g(1 + r + . . .+ rg−1)νl
νl−1∏
u=0

|U(β + guγ)|.

It follows that defining the positive integer g by νq ≥ ν/2 > νq+1 (if νt ≥ ν/2
then we put q = t), by |U(α)| ≤ 1 (for all α ∈ R) for j = 1, . . . ,m − 1 we
have

(4.6) |G(re(β), j/m)| ≤ 2 + g
(∑

1
+
∑

2

)

where

(4.7)
∑

1
=

q∑

l=1

rl−1(1 + r + . . .+ rg−1)νl
(ν/2)−1∏
u=0

∣∣∣∣U
(
β + gu

j

m

)∣∣∣∣,

∑
2

=
t∑

l=q+1

rl−1(1 + r + . . .+ rg−1)νl .

Clearly, νl ≤ ν1 − (l− 1) ≤ ν − (l− 1) for all j. Thus by 0 < r < 1, the first
factor in

∑
1 can be estimated in the following way:

(4.8)
q∑

l=1

rl−1(1 + r + . . .+ rg−1)νl

≤ (1 + r + . . .+ rg−1)ν
∞∑

j=0

(
r

1 + r + . . .+ rg−1

)j

≤ (1 + r + . . .+ rg−1)ν
∞∑

j=0

(
r

1 + r

)j

= (1 + r + . . .+ rg−1)ν(1 + r) < 2(1 + r + . . .+ rg−1)ν .

To estimate the second factor, first we use Lemma 1:
(ν/2)−1∏
u=0

∣∣∣∣U
(
β + gu

j

m

)∣∣∣∣ ≤
(ν/2)−1∏
u=0

(
1− 2r

g

∥∥∥∥β + gu
j

m

∥∥∥∥
2)

(4.9)

≤ exp
(
− 2r

g

(ν/2)−1∑
u=0

∥∥∥∥β + gu
j

m

∥∥∥∥
2)

since 1− x ≤ e−x for x ≥ 0.
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Next, we need the following lemma:

Lemma 2. If g, m, % ∈ N, g ≥ 2, ((g−1)g,m) = 1, m ≥ 2, 1 ≤ j ≤ m−1,

(4.10) % ≥ 2
logm
log g

+ 8

and β ∈ R, then

%−1∑
u=0

∥∥∥∥β + gu
j

m

∥∥∥∥
2

≥ (g − 1)2

128g4 ·
%

logm
.

This lemma will be proved in the next section, first we will complete the
proof of Theorem 2.

It follows from (2.23) that (4.10) holds with [ν/2] in place of % so that
Lemma 2 can be applied to estimate the sum in the exponent in (4.9). In
view of (2.16), we obtain

(4.11)
[ν/2]−1∏
u=0

∣∣∣∣U
(
β + gu

j

m

)∣∣∣∣

≤ exp
(
− r(g − 1)2

64g5 · [ν/2]
logm

)
< exp

(
− c15

k

logm

)
.

To estimate
∑

2, for q + 1 ≤ l ≤ t define i by l = q + i so that l ≥ 1 + i
whence l − 1 ≥ i. Moreover, we have

νl = νq+i ≤ νq+1 − (i− 1) < ν/2− (i− 1)

so that, by 0 < r ≤ 1 and using (2.16),

∑
2
≤

t−q∑

i=1

ri(1 + r + . . .+ rg−1)(ν/2)−(i−1)(4.12)

≤ (1 + r + . . .+ rg−1)ν/2
∞∑

j=0

(
r

1 + r

)j

≤ 2(1 + r + . . .+ rg−1)ν(1 + r + . . .+ rg−1)−ν/2

≤ 2(1 + r + . . .+ rg−1)ν(1 + r)−ν/2

< 2(1 + r + . . .+ rg−1)ν
(

1 + c1
k

ν

)−ν/2

< (1 + r + . . .+ rg−1)ν exp(−c16k).

It follows from (4.3), (4.6)–(4.8), (4.11) and (4.12) that
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(4.13)
∣∣∣∣|{n : n ∈ Vk(N), n ≡ h (mod m)}| − 1

m
|Vk(N)|

∣∣∣∣

≤ 1
m
r−k

m−1∑

j=1

1\
0

∣∣∣∣2 + g(1 + r + . . .+ rg−1)ν

×
(

2 exp
(
− c15

k

logm

)
+ exp(−c16k)

)∣∣∣∣ dβ

≤ r−k(1 + r + . . .+ rg−1)ν exp
(
− c17

k

logm

)
.

(2.25) follows from Corollary 1, (2.23) and (4.13), and this completes the
proof in the case k ≤ (g − 1)ν/2.

Finally, if (g− 1)ν/2 < k < (g− 1)ν (by (2.22) k < (g− 1)ν holds), then
we replace the generating function G(z, γ) in (4.1) by

G?(z, γ) =
N∑
n=1

z(g−1)ν−S(n)e(nγ),

and we set z = re(β) where r = r(N, l) = r(N, (g − 1)ν − k) is defined in
Section 2. The rest of the proof is similar to the case k ≤ (g − 1)ν/2.

5. P r o o f o f L e m m a 2. We will prove slightly more: we will prove
the lemma replacing the condition ((g − 1)g,m) = 1 by (g,m) = 1 and

(5.1)
j

m
∈
g−2⋃
t=0

]
t

g − 1
,
t+ 1
g − 1

[
.

(Clearly, (5.1) follows from (g − 1,m) = 1 and 1 ≤ j ≤ m− 1.)
We will proceed in five steps.

F i r s t s t e p: We show that if 0 < j/m ≤ 1/g and (m, g) = 1 then there
exists n, 0 ≤ n ≤ logm/ log g, such that

∥∥∥∥gn+1 j

m
− gn j

m

∥∥∥∥ ≥
g − 1
2g2 .

• If 1/(2g) ≤ j/m ≤ 1/g then 1/2 ≤ gj/m ≤ 1 and

gj

m
− j

m
=

(g − 1)j
m

≥ g − 1
2g

.

• If 0 < j/m ≤ 1/(2g), let n be the smallest integer such that

gn
j

m
≤ 1

2g
≤ gn+1 j

m
≤ 1

2
.
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Then n ≤ logm/ log g and

gn+1 j

m
− gn j

m
= (g − 1)gn

j

m
≥ g − 1

2g2 .

S e c o n d s t e p: We show that if 0 < j/m < 1/(g − 1) and (m, g) = 1
then there exists n, 0 ≤ n ≤ 1 + logm/ log g, such that∥∥∥∥gn+1 j

m
− gn j

m

∥∥∥∥ ≥
g − 1
2g2 .

It follows clearly from the first step that if (g − 1)/g ≤ j/m < 1 then,
for n as before,∥∥∥∥gn+1 j

m
− gn j

m

∥∥∥∥ =
∥∥∥∥gn+1

(
1− j

m

)
− gn

(
1− j

m

)∥∥∥∥ ≥
g − 1
2g2

because 0 < (m− j)/m ≤ 1/g.
Suppose now that

g − 2
g − 1

<
j

m
≤ g − 2
g − 1

+
1
g
,

so that
j

m
− g − 2
g − 1

=
j(g − 1)−m(g − 2)

m(g − 1)
∈
]

0,
1
g

]

and we can apply the result from the first step (note that (m(g−1), g) = 1):
there exists n,

0 ≤ n ≤ log(m(g − 1))
log g

≤ 1 +
logm
log g

,

such that ∥∥∥∥gn+1
(
j

m
− g − 2
g − 1

)
− gn

(
j

m
− g − 2
g − 1

)∥∥∥∥ ≥
g − 1
2g2 .

Since for every integer n ≥ 0,

gn
g − 2
g − 1

= − 1
g − 1

(mod 1),

we have proved that ∥∥∥∥gn+1 j

m
− gn j

m

∥∥∥∥ ≥
g − 1
2g2 .

But
g − 2
g − 1

+
1
g
≥ g − 1

g
so that we have shown that if (g − 2)/(g − 1) < j/m < 1 then there exists
n, 0 ≤ n ≤ 1 + logm/ log g such that∥∥∥∥gn+1 j

m
− gn j

m

∥∥∥∥ ≥
g − 1
2g2 .
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The second step follows by the same argument as before (we remark that if
0 < j/m < 1/(g − 1), then (g − 2)/(g − 1) < (m− j)/m < 1).

T h i r d s t e p: We show that if

j

m
∈
g−2⋃
t=0

]
t

g − 1
,
t+ 1
g − 1

[

and (m, g) = 1 then there exists n, 0 ≤ n ≤ 2 + logm/ log g, such that∥∥∥∥gn+1 j

m
− gn j

m

∥∥∥∥ ≥
g − 1
2g2 .

Let k ∈ {0, . . . , g − 2} be fixed and consider for any

j

m
∈
]

t

g − 1
,
t+ 1
g − 1

[

the rational number
j

m
− t

g − 1
=
j(g − 1)− tm
m(g − 1)

∈
]

0,
1

g − 1

[
.

Since (m(g − 1), g) = 1, it follows from the second step that there exists n,

0 ≤ n ≤ 1 +
logm(g − 1)

log g
≤ 2 +

logm
log g

such that ∥∥∥∥gn+1
(
j

m
− t

g − 1

)
− gn

(
j

m
− t

g − 1

)∥∥∥∥ ≥
g − 1
2g2 .

As for any integer n ≥ 0,

gn
t

g − 1
≡ t

g − 1
(mod 1),

we have completed the third step.

F o u r t h s t e p: If (g,m) = 1 and

j

m
∈
g−2⋃
t=0

]
t

g − 1
,
t+ 1
g − 1

[

then for any β ∈ R we have

∑

n≤[logm/ log g]+3

∥∥∥∥β + gn
j

m

∥∥∥∥
2

≥ (g − 1)2

8g4 .

This step follows easily from the inequality
∥∥∥∥β + gn+1 j

m

∥∥∥∥
2

+
∥∥∥∥β + gn

j

m

∥∥∥∥
2

≥ 1
2

∥∥∥∥gn+1 j

m
− gn j

m

∥∥∥∥
2

.



Integers whose sum of digits is fixed 165

F i f t h s t e p: If (g,m) = 1,

j

m
∈
g−2⋃
t=0

]
t

g − 1
,
t+ 1
g − 1

[
, b =

[
logm
log g

]
+ 4

and % = bq + r (with 0 ≤ r < b) then for any β ∈ R we have

∑
u<%

∥∥∥∥β + gu
j

m

∥∥∥∥
2

≥ q (g − 1)2

8g4 .

We have
∑
u<ν

∥∥∥∥β + gu
j

m

∥∥∥∥
2

≥
∑

u<bq

∥∥∥∥β + gu
j

m

∥∥∥∥
2

=
∑

i<q

∑

bi≤u<b(i+1)

∥∥∥∥β + gu
j

m

∥∥∥∥
2

=
∑

i<q

∑

u<b

∥∥∥∥β + gu
gbij

m

∥∥∥∥
2

.

Thus to get the result, it is enough to prove that for any integer n ≥ 0 we
have {

gnj

m

}
∈
g−2⋃
t=0

]
t

g − 1
,
t+ 1
g − 1

[
.

Suppose that there exist n ≥ 0, t ∈ {0, . . . , g − 2} and v ∈ Z such that
gnj/m = t/(g− 1) + v. Then j(g− 1)gn = tm+ vm(g− 1) so that m would
divide j(g− 1) (because (m, g) = 1), which would contradict our hypothesis
j/m ∈ ⋃g−2

t=0 ] t/(g−1), (t+ 1)/(g−1)[. To prove Lemma 2, it is now enough
to remark that as bq ≤ % < b(q + 1) we have

q >
%

b
− 1 =

%[ logm
log g

]
+ 4
− 1 ≥ %

logm
log g + 4

− 1.

But for % ≥ 2 logm/ log g + 8 we have
%

logm
log g + 4

− 1 ≥ %

2
( logm

log g + 4
) ≥ 1

16
· %

logm

because
logm+ 4 log g

logm
≤ 1 +

4 log g
log 2

≤ 8 log g.

6. P r o o f o f T h e o r e m 4. We may assume that k ≤ g−1
2 ν since

the case k > g−1
2 ν can be handled similarly (see the remark at the end of

Section 4).
We will apply the general Kubilius model described in Elliott’s book [Ell]

(Chapter 3, pp. 129–132). Let G(z) be the frequency corresponding to FN (z)
when ω(n) is replaced by ω1(n), the function which counts the number of
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distinct prime divisors p of n with ld1 < p ≤ exp(l1/l3), where d will be fixed
later independently of N . The role of the aj in that model is here played
by the elements of Vk(N). We set q = exp(l1/l3), X = |Vk(N)|, η(v) = v−1.
Then the function S appearing there will be

∑

ld1<p≤q

log p
p− 1

,

which is ≤ log q + O(1). If now Wp, ld1 < p ≤ q, are independent random
variables, distributed according to

Wp =
{

1 with probability 1/p,
0 with probability 1− 1/p,

then

(6.1)
∣∣∣G(z)− P

( ∑

ld1<p≤q
Wp ≤ z

√
l2 + l2

)∣∣∣

≤ 10 exp
(
− logw

8 log q
log
(

logw
S

))
+

12
|Vk(N)|

∑′

m≤w4

4ω(m)|R(m)|

= E1 + E2

where ′ indicates that m is squarefree and composed of primes in the interval
(ld1 , q]. The remainder R(m) is given by

(6.2) R(m) = |{n : n ∈ Vk(N), n ≡ 0 (mod m)}| − 1
m
|Vk(N)|

and the estimate (6.1) is valid for all q ≥ 2, 8 max(log q, S) ≤ logw.
If we set w = N1/24, the first error term E1 in (6.1) is clearly

(6.3) E1 = O(l−j2 )

for each fixed j > 0.
The estimate of the second error term E2 in (6.1) will be based on the

large sieve inequality [Mon]:

Lemma 3. If U ∈ Z, V ∈ Z, aU+1, aU+2, . . . , aU+V are complex numbers,
X is a set of real numbers for which ‖x − x′‖ ≥ δ > 0 whenever x and x′

are distinct members of X, and we write

S(x) =
U+V∑

n=U+1

ane(nx),

then
∑

x∈X
|S(x)|2 ≤ (δ−1 + V )

U+V∑

n=U+1

|an|2.
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Moreover, observe that by (4.3) and (6.2), and as in (4.4) and (4.5)
(indeed, now 1 +G(z, γ) =

∏ν−1
u=0 ϕ(ze(guγ)) ), we have

|R(m)| ≤ 1
m
r−k

m−1∑

j=1

1\
0

∣∣∣∣G
(
re(β),

j

m

)∣∣∣∣ dβ(6.4)

≤ 1
m
r−k

m−1∑

j=0

1\
0

(
1 +

∣∣∣∣
ν−1∏
u=0

ϕ

(
re

(
β + gu

j

m

))∣∣∣∣
)
dβ

(where r, U(α), ϕ(z), G(z, γ) are defined as in Sections 2–4).
In order to obtain a good upper bound via large sieve, first we have to

replace the trigonometric polynomial
∏ν−1
u=0 U(β+ guα) of degree N in α by

polynomials of lower degree. Indeed, write

µ1 = [ν/2], µ2 = ν − [ν/2],

G1(β, γ) =
µ1−1∏
u=0

ϕ(re(β + guγ)),(6.5)

G2(β, γ) =
µ1+µ2−1∏
u=µ1

ϕ(re(β + guγ)),(6.6)

H1(β, γ) = G1(β, γ),(6.7)

H2(β, γ) = G2(β, g−µ1γ) =
µ2−1∏
v=0

ϕ(re(β + gvγ)),(6.8)

so that

(6.9) max(µ1, µ2) ≤ [ν/2] + 1 ≤ (ν/2) + 1,

(6.10) G1(β, γ)G2(β, γ) = H1(β, γ)H2(β, gµ1γ) =
ν−1∏
u=0

ϕ(re(β + guγ)),

H1(β, γ), H2(β, γ) are of the form

Hi(β, γ) =
gµi−1∑
n=0

a(i)
n (β)e(nγ) for i = 1, 2,

and, by (6.9), for fixed β the degree of the trigonometric polynomials
Hi(β, γ) (in γ) is

degHi(β, γ) = gµi − 1 ≤ g(ν/2)+1(6.11)

< g2g(ν−1)/2< g2N1/2 for i = 1, 2.

Since every m in the sum in E2 is composed of primes greater than
ld1 , we have (g,m) = 1. Thus by (6.4)–(6.8), (6.10) and by the inequality
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|ab| ≤ 1
2 (|a|2 + |b|2), it follows that for such m we have

|R(m)| ≤ r−k
1\
0

(
1 +

1
m

m−1∑

j=1

∣∣∣∣G1

(
β,

j

m

)
G2

(
β,

j

m

)∣∣∣∣
)
dβ

≤ r−k
1\
0

(
1 +

1
m

(m−1∑

j=1

∣∣∣∣G1

(
β,

j

m

)∣∣∣∣
2

+
m−1∑

j=1

∣∣∣∣G2

(
β,

j

m

)∣∣∣∣
2))

dβ

= r−k
1\
0

(
1 +

1
m

(m−1∑

j=1

∣∣∣∣H1

(
β,

j

m

)∣∣∣∣
2

+
m−1∑

j=1

∣∣∣∣H2

(
β, gµ1

j

m

)∣∣∣∣
2))

dβ

= r−k
1\
0

(
1 +

1
m

2∑

i=1

m−1∑

j=1

∣∣∣∣Hi

(
β,

j

m

)∣∣∣∣
2)

dβ.

It follows that

E2 � r−k|Vk(N)|−1
1\
0

∑′

m≤w4

4ω(m)
(

1 +
1
m

2∑

i=1

m−1∑

j=1

∣∣∣∣Hi

(
β,

j

m

)∣∣∣∣
2)

dβ

� r−k|Vk(N)|−1 max
β

( ∑′

m≤w4

4ω(m)
(

1 +
1
m

2∑

i=1

m−1∑

j=1

∣∣∣∣Hi

(
β,

j

m

)∣∣∣∣
2))

whence, using ω(m) = o(logm),

E2 � r−k|Vk(N)|−1(6.12)

×
(
N5/24 + max

β

2∑

i=1

∑′

m≤w4

4ω(m)

m

m−1∑

j=1

∣∣∣∣Hi

(
β,

j

m

)∣∣∣∣
2)
.

Here the fractions j/m, 1 ≤ j ≤ m − 1, may be collected according to the
value m/δ of (j,m). For a fixed divisor δ of m, the reduced fractions t/δ,
1 ≤ t ≤ δ − 1, (t, δ) = 1 will occur just once. Thus, for i = 1, 2 and every
real β we have

(6.13)
∑′

m≤w4

4ω(m)

m

m−1∑

j=1

∣∣∣∣Hi

(
re(β),

j

m

)∣∣∣∣
2

≤
∑′

1<δ≤w4

4ω(δ)

δ

∑

1≤t≤δ−1
(t,δ)=1

∣∣∣∣Hi

(
re(β),

t

δ

)∣∣∣∣
2 ∑′

h≤w4/δ

4ω(h)

h
.

Here the innermost sum is

≤
∏

p≤q

(
1 +

4
p

)
� (log q)4 � l41.
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We split the δ’s into two classes, according to whether ω(δ) > K log logN
or not, where K is a large positive number to be fixed later; denote these
two classes by D1 (the one with ω(δ) > K log logN) and D2.

Clearly, the coefficient a(i)
n (β) of Hi(β, γ) is maximal in β if β = 0:

(6.14) |a(i)
n (β)| ≤ a(i)

n (0),

and we have

Hi(0, γ) =
gµi−1∑
n=0

a(i)
n (0)e(nγ) =

µi−1∏
u=0

ϕ(re(guγ)) = 1 +
gµi−1∑
n=1

rS(n)e(nγ)

so that, by (6.9),

gµi−1∑
n=0

(a(i)
n (0))2 = 1 +

gµi−1∑
n=0

r2S(n) =
µi−1∏
u=0

ϕ(r2)(6.15)

= (1 + r2 + . . .+ r2(g−1))µi

≤ (1 + r2 + . . .+ r2(g−1))(ν/2)+1 ≤ g
(

1− r2g

1− r2

)ν/2
.

Thus by using the large sieve (Lemma 3), in view of (6.11) we deduce for
δ ∈ D1 that

∑

1≤t≤δ−1
(t,δ)=1

∣∣∣∣Hi

(
re(β),

t

δ

)∣∣∣∣
2

≤
δ∑
t=1

∣∣∣∣Hi

(
re(β),

t

δ

)∣∣∣∣
2

≤ (g2N1/2 + δ)
gµi−1∑
n=0

|a(i)
n (β)|2

≤ (g2N1/2 + w4)
gµi−1∑
n=0

(a(i)
n (0))2

< 2g3N1/2
(

1− r2g

1− r2

)ν/2
.

Thus for all β, the contribution of the δ’s with δ ∈ D1 to the upper bound
in (6.13) is

�g l
4
1N

1/2
(

1− r2g

1− r2

)ν/2 ∑

δ∈D1

23ω(δ)−Kl2

δ

�g l
12−K log 2
1 N1/2

(
1− r2g

1− r2

)ν/2

(uniformly in β).
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If δ ∈ D2, then by δ > 1 and since the prime factors of δ are greater than
ld1 , we have δ > ld1 . Thus using again the large sieve (Lemma 3), in view of
(6.11), (6.14) and (6.15) we see that the contribution of the δ’s with δ ∈ D2

to the upper bound in (6.13) is

� l41
∑′

1<δ≤w4

4Kl2

ld1

∑

1≤t≤δ−1
(t,δ)=1

∣∣∣∣Hi

(
re(β),

t

δ

)∣∣∣∣
2

≤ l4+K log 4−d
1

∑

δ≤w4

∑

1≤t≤δ−1
(t,δ)=1

∣∣∣∣Hi

(
re(β),

t

δ

)∣∣∣∣
2

≤ l4+K log 4−d
1 (g2N1/2 + w8)

gµi−1∑
n=0

|a(i)
n (β)|2

�g l
4+K log 4−d
1 N1/2

(
1− r2g

1− r2

)ν/2

(again, uniformly in β). Thus we find from (6.12) and (6.13) that

(6.16) E2 �g r
−k|Vk(N)|−1

×
(
N5/24 + (l12−K log 2

1 + l4+K log 4−d
1 )N1/2

(
1− r2g

1− r2

)ν/2)
.

By (2.12), (2.14), (2.15), (2.28) and (3.14) we have

(6.17) r−k|Vk(N)|−1

= (1 + r + . . .+ rg−1)−νπ−1/2(Dν)1/2(1 +Og(Dν)−1/2)

�g N
−1ν1/2 exp

(
g − 1

2
νη +

(g − 1)(g − 5)
24

νη2 +Og(∆3ν−2)
)

so that, by (2.28) and (3.12),

(6.18) r−k|Vk(N)|−1 �g N
−1l1/2 exp(Og(∆)).

It follows from (3.12) and (6.18) that for N large enough,

(6.19) r−k|Vk(N)|−1N5/24 < N−1/2.

Moreover, by r = 1− η we have
(

1− r2g

1− r2

)ν/2
=
(

1− (1− η)2g

1− (1− η)2

)ν/2
(6.20)

=
(
g

(
1− (g − 1)η +

4g2 − 9g + 5
6

η2 +O(η3)
))ν/2



Integers whose sum of digits is fixed 171

= gν/2
(

exp
(
− (g − 1)η +

g2 − 3g + 2
6

η2 +O(η3)
))ν/2

� N1/2 exp
(
− g − 1

2
νη +

g2 − 3g + 2
12

νη2 +O(νη3)
)
.

It follows from (3.12), (6.18) and (6.20) that

(6.21) r−k|Vk(N)|−1N1/2
(

1− r2g

1− r2

)ν/2

�g l
1/2
1 exp

((
(g − 1)(g − 5)

24
+
g2 − 3g + 2

12

)
νη2 +Og(∆3ν−2 + νη3)

)

= l
1/2
1 exp

(
g2 − 4g + 3

8
νη2 +Og(∆3ν−2)

)

= l
1/2
1 exp

(
18(g − 3)

(g − 1)(g + 1)2 ·
∆2

ν
+Og(∆3ν−2)

)
�g,K l1/2.

Choosing first K and then d sufficiently large, we deduce from (6.16),
(6.19) and (6.21) that

(6.22) E2 �g,K N−1/2 + (l12−K log 2
1 + l4+K log 4−d

1 )l1/21 < l−1
1

if N is large enough in terms of g and K.
It follows from (6.1), (6.3) and (6.22) that choosing d sufficiently large

we have ∣∣∣G(z)− P
( ∑

ld1<p≤q
Wp ≤ z

√
l2 + l2

)∣∣∣�g,K l−1
2 .

Next, using the Berry–Esseen inequality [Ess], in the same way as in [Ell-S]
we compare P (

∑
ld1<p≤qWp ≤ z

√
l2 + l2) with ψ(z), the normal distribution

with mean 0 and variance 1. As in [Ell-S], we obtain

(6.23) |G(z)− ψ(z)| �g,K l3l
−1/2
2 .

To complete the proof of the theorem it suffices to show that

(6.24) |FN (z)−G(z)| �g,K l3l
−1/2
2 .

If n ≤ N , then n may have at most log n/ log q ≤ l3 distinct prime divi-
sors p with p > q. Thus, by the uniformity of the estimate (6.23), removing
the restriction p ≤ q in the definition of ω1(n) changes G(z) by an amount
which is �g,K l3l

−1/2
2 .

Finally, let ω2(n) denote the number of distinct prime divisors of n which
do not exceed ld1 . Let L be a large positive number to be fixed later, and
write D = [Ll3]. As above, removing the restriction p > ld1 in the definition
of ω1(n) for those integers n ∈ Vk(N) for which ω2(n) ≤ D changes G(z)
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by an amount which is �L l3l
−1/2
2 . Thus it suffices to show that, for L

large enough, the frequency of the integers n with ω2(n) > D amongst the
elements of Vk(N) is � l3l

−1
2 :

(6.25) |{n : ω2(n) > D, n ∈ Vk(N)}| �g,K l3l
−1
2 |Vk(N)|.

Set S = {n : ω2(n) > D,n ∈ Vk(N)}, and let E denote the set of the
integers e which are composed of D distinct prime factors not exceeding ld1 :

e = p1 . . . pD, p1 < . . . < pD ≤ ld1 .
Clearly, n ∈ S implies that there is an e ∈ E with e/n so that

(6.26) |S| ≤
∑

e∈E
|{n : n ∈ Vk(N), n ≡ 0 (mod e)}|.

If e ∈ E then for fixed L and N →∞,

e ≤ (ld1)D ≤ exp(Ldl2l3) = exp(o(l1/2)) = exp(o(k1/2))

so that by Theorem 2 we have

(6.27) |{n : n ∈ Vk(N), n ≡ 0 (mod e)}|
<

1
e
|Vk(N)|

(
1 + c7 exp

(
− c8 k

log e

))

= (1 + o(1))
1
e
|Vk(N)| < 2

e
|Vk(N)|.

It follows from (6.26) and (6.27) that

|S| < 2|Vk(N)|
∑

e∈E

1
e

= 2|Vk(N)|
∑

p1<...<PD≤ld1

1
p1 . . . pD

≤ 2|Vk(N)| 1
D!

(∑

p≤ld1

1
p

)D
< 2|Vk(N)|

(
e(l3 +O(1))

D

)D

= 2|Vk(N)| exp((1 + l4 + o(1)− logD)D)

= |VK(N)| exp((1− logL+ o(1))Ll3).

Choosing L = 10, for large N we obtain

|S| < l−10
2 |Vk(N)|,

which proves (6.25) and completes the proof of Theorem 4.
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