On distribution functions of $\xi(3/2)^n \mod 1$

by

OTO STRAUCH (Bratislava)

1. Preliminary remarks. The question about distribution of $(3/2)^n \mod 1$ is most difficult. We present a selection of known conjectures:

(i) $(3/2)^n \mod 1$ is uniformly distributed in $[0,1]$.

(ii) $(3/2)^n \mod 1$ is dense in $[0,1]$.

(iii) (T. Vijayaraghavan [11])

$$\limsup_{n \to \infty} \{ (3/2)^n \} - \liminf_{n \to \infty} \{ (3/2)^n \} > 1/2,$$

where $\{x\}$ is the fractional part of x.

(iv) (K. Mahler [6]) There exists no $\xi \in \mathbb{R}^+$ such that $0 \leq \{\xi(3/2)^n\} < 1/2$ for $n = 0, 1, 2, \ldots$

(v) (G. Choquet [2]) There exists no $\xi \in \mathbb{R}^+$ such that the closure of $\{\{\xi(3/2)^n\}; n = 0, 1, 2, \ldots\}$ is nowhere dense in $[0,1]$.

Few positive results are known. For instance, L. Flatto, J. C. Lagarias and A. D. Pollington [3] showed that

$$\limsup_{n \to \infty} \{\xi(3/2)^n\} - \liminf_{n \to \infty} \{\xi(3/2)^n\} \geq 1/3$$

for every $\xi > 0$.

G. Choquet [2] gave infinitely many $\xi \in \mathbb{R}$ for which

$$1/19 \leq \{\xi(3/2)^n\} \leq 1 - 1/19 \quad \text{for } n = 0, 1, 2, \ldots$$

R. Tijdeman [9] showed that for every pair of integers k and m with $k \geq 2$ and $m \geq 1$ there exists $\xi \in [m, m + 1)$ such that

$$0 \leq \{\xi((2k+1)/2)^n\} \leq \frac{1}{2k-1} \quad \text{for } n = 0, 1, 2, \ldots$$

The connection between $(3/2)^n \mod 1$ and Waring’s problem (cf. M. Bennett [1]), and between Mahler’s conjecture (iv) and the $3x + 1$ problem (cf. [3]) is also well known.

1991 Mathematics Subject Classification: 11K31.

This research was supported by the Slovak Academy of Sciences Grant 1227.

[25]
In this paper we study the set of all distribution functions of sequences \(\xi(3/2)^n \mod 1, \xi \in \mathbb{R} \). It is motivated by the fact that some conjectures involving a distribution function \(g(x) \) of \(\xi(3/2)^n \mod 1 \) may be formulated as in (i)–(iv). For example, the following conjecture implies Mahler’s conjecture: If \(g(x) = \text{constant} \) for all \(x \in I \), where \(I \) is a subinterval of \([0,1] \), then the length \(|I| < 1/2 \).

The study of the set of distribution functions of a sequence, still unsatisfactory today, was initiated by J. G. van der Corput [10]. The one-element set corresponding to the notion of asymptotic distribution function of a sequence \(\mod 1 \) was introduced by I. J. Schoenberg [8]. Many papers have been devoted to the study of the asymptotic distribution function for exponentially increasing sequences. H. Helson and J.-P. Kahane [4] established the existence of uncountably many \(\xi \) such that the sequence \(\xi \theta^n \) does not have an asymptotic distribution function \(\mod 1 \), where \(\theta \) is some fixed real number > 1. I. I. Piatetski-Shapiro [7] characterizes the asymptotic distribution function for the sequence \(\xi q^n \mod 1 \), where \(q > 1 \) is an integer. For a survey, see the monograph by L. Kuipers and H. Niederreiter [5].

In Section 2, we recall the definition of a distribution function \(g \) and we define a mapping \(g \to g_\varphi \) associated with a given measurable function \(\varphi : [0,1] \to [0,1] \). The formula defining \(g \to g_\varphi \) was used implicitly by K. F. Gauss for \(\varphi(x) = 1/x \mod 1 \) in his well-known problem of the metric theory of continued fractions (\(g_\varphi \) is given e.g. in [5, Th. 7.6]). The induced transformation between derivatives \(g' \to g'_\varphi \) is the so-called Frobenius–Perron operator.

In Section 3, choosing \(\varphi(x) \) as \(f(x) = 2x \mod 1 \) and \(h(x) = 3x \mod 1 \), we derive a functional equation of the type \(g_f = g_h \), for any distribution function \(g \) of \(\xi(3/2)^n \mod 1 \). As a consequence we give some sets of uniqueness for \(g \), where \(X \subset [0,1] \) is said to be a set of uniqueness if whenever \(g_1 = g_2 \) on \(X \), then \(g_1 = g_2 \) on \([0,1] \), for any two distribution functions \(g_1, g_2 \) of \(\xi(3/2)^n \mod 1 \) (different values of \(\xi \in \mathbb{R} \), for \(g_1, g_2 \), are also admissible). From this fact we derive an example of a distribution function that is not a distribution function of \(\xi(3/2)^n \mod 1 \) for any \(\xi \in \mathbb{R} \). We also conjecture that every measurable set \(X \subset [0,1] \) with measure \(|X| \geq 2/3 \) is a set of uniqueness. An integral criterion for \(g \) to satisfy \(g_f = g_h \) is also given.

In Section 4, we describe absolutely continuous solutions \(g \) of functional equations of the form \(g_f = g_1 \) and \(g_h = g_2 \) for given absolutely continuous distribution functions \(g_1, g_2 \).

In Section 5, we summarize the examples demonstrating all the above mentioned results.

2. Definitions and basic facts. For the purposes of this paper a distribution function \(g(x) \) will be a real-valued, non-decreasing function of the
Distribution functions of $\xi(3/2)^n \mod 1$ real variable x, defined on the unit interval $[0, 1]$, for which $g(0) = 0$ and $g(1) = 1$. Let $x_n \mod 1, n = 1, 2, \ldots$, be a given sequence. According to the terminology introduced in [5], for a positive integer N and a subinterval I of $[0, 1]$, let the counting function $A(I; N; x_n)$ be defined as the number of terms x_n, $1 \leq n \leq N$, for which $x_n \in I$.

A distribution function g is called a distribution function of a sequence $x_n \mod 1$, $n = 1, 2, \ldots$, if there exists an increasing sequence of positive integers N_1, N_2, \ldots such that

$$\lim_{k \to \infty} \frac{A([0, x); N_k; x_n)}{N_k} = g(x) \text{ for every } x \in [0, 1].$$

If each term $x_n \mod 1$ is repeated only finitely many times, then the semi-closed interval $[0, x)$ can be replaced by the closed interval $[0, x]$.

Every sequence has a non-empty set of distribution functions (cf. [5, Th. 7.1]). A sequence $x_n \mod 1$ having a singleton set $\{g(x)\}$ satisfies

$$\lim_{N \to \infty} \frac{A([0, x); N; x_n)}{N} = g(x) \text{ for every } x \in [0, 1]$$

and in this case $g(x)$ is called the asymptotic distribution function of a given sequence.

Let $\varphi : [0, 1] \to [0, 1]$ be a function such that, for all $x \in [0, 1]$, $\varphi^{-1}([0, x))$ can be expressed as the union of finitely many pairwise disjoint subintervals $I_i(x)$ of $[0, 1]$ with endpoints $\alpha_i(x) \leq \beta_i(x)$. For any distribution function $g(x)$ we put

$$g_{\varphi}(x) = \sum_i g(\beta_i(x)) - g(\alpha_i(x)).$$

The mapping $g \to g_{\varphi}$ is the main tool of the paper. A basic property is expressed by the following statement:

Proposition. Let $x_n \mod 1$ be a sequence having $g(x)$ as a distribution function associated with the sequence of indices N_1, N_2, \ldots. Suppose that each term $x_n \mod 1$ is repeated only finitely many times. Then the sequence $\varphi(\{x_n\})$ has the distribution function $g_{\varphi}(x)$ for the same N_1, N_2, \ldots, and vice versa every distribution function of $\varphi(\{x_n\})$ has this form.

Proof. The form of $g_{\varphi}(x)$ is a consequence of

$$A([0, x); N_k; \varphi(\{x_n\})) = \sum_i A(I_i(x); N_k; x_n)$$

and

$$A(I_i(x); N_k; x_n) = A([0, \beta_i(x)); N_k; x_n) - A([0, \alpha_i(x)); N_k; x_n) + o(N_k).$$

On the other hand, suppose that $\tilde{g}(x)$ is a distribution function of $\varphi(\{x_n\})$ associated with N_1, N_2, \ldots. The Helly selection principle guarantees a suit-
able subsequence N_{n_1}, N_{n_2}, \ldots for which some $g(x)$ is a distribution function of $x_n \mod 1$. Thus $\tilde{g}(x) = g_\varphi(x)$. ■

It should be noted that if all of the intervals $I_i(x)$ are of the form $[\alpha_i(x), \beta_i(x))$, then $o(N_k) = 0$ and the assumption of finiteness of repetition is superfluous.

In this paper we take for $\varphi(x)$ the functions

$$f(x) = 2x \mod 1 \quad \text{and} \quad h(x) = 3x \mod 1.$$

In this case, for every $x \in [0, 1]$, we have

$$g_f(x) = g(f_1^{-1}(x)) + g(f_2^{-1}(x)) - g(1/2),$$

$$g_h(x) = g(h_1^{-1}(x)) + g(h_2^{-1}(x)) + g(h_3^{-1}(x)) - g(1/3) - g(2/3),$$

with inverse functions

$$f_1^{-1}(x) = x/2, \quad f_2^{-1}(x) = (x + 1)/2,$$

and

$$h_1^{-1}(x) = x/3, \quad h_2^{-1}(x) = (x + 1)/3, \quad h_3^{-1}(x) = (x + 2)/3.$$

3. Properties of distribution functions of $\xi(3/2)^n \mod 1$. Piatetski-Shapiro [7], by means of ergodic theory, proved that a necessary and sufficient condition that the sequence $\xi q^n \mod 1$ with integer $q > 1$ has a distribution function $g(x)$ is that $g_\varphi(x) = g(x)$ for all $x \in [0, 1]$, where $\varphi(x) = qx \mod 1$. For $\xi(3/2)^n \mod 1$ we only prove the following similar property.

Theorem 1. Every distribution function $g(x)$ of $\xi(3/2)^n \mod 1$ satisfies

$$g_f(x) = g_h(x) \quad \text{for all} \quad x \in [0, 1].$$

Proof. Using $\{q\{x\}\} = \{qx\}$ for any integer q, we have $\{2\{\xi(3/2)^n\}\} = \{3\{\xi(3/2)^{n-1}\}\}$. Therefore $f(\{\xi(3/2)^n\})$ and $h(\{\xi(3/2)^{n-1}\})$ form the same sequence and the rest follows from the Proposition. ■

The above theorem yields the following sets of uniqueness for distribution functions of $\xi(3/2)^n \mod 1$.

Theorem 2. Let g_1, g_2 be any two distribution functions satisfying

$$g_i f(x) = (g_i) h(x) \quad \text{for} \quad i = 1, 2 \quad \text{and} \quad x \in [0, 1].$$

Set

$$I_1 = [0, 1/3], \quad I_2 = [1/3, 2/3], \quad I_3 = [2/3, 1].$$

If $g_1(x) = g_2(x)$ for $x \in I_i \cup I_j$, $1 \leq i \neq j \leq 3$, then $g_1(x) = g_2(x)$ for all $x \in [0, 1]$.

Proof. Assume that a distribution function g satisfies $g_f = g_h$ on $[0, 1]$ and let J_i, J'_j, J''_k be the intervals from $[0, 1]$ described in Figure 1.
There are three cases of \(I_i \cup I_j \).

1\(^{\circ} \). Consider first the case \(I_2 \cup I_3 \). Using the values of \(g \) on \(I_2 \cup I_3 \), and the equation \(g_f = g_h \) on \(J_1 \), we can compute \(g(h_1^{-1}(x)) \) for \(x \in J_1 \). Mapping \(x \in J_1 \) to \(x' \in J_2 \) by using \(h_1^{-1}(x) = f_1^{-1}(x') \), we find \(g(f_1^{-1}(x)) \) for \(x \in J_2 \). Then, by the equation \(g_f = g_h \) on \(J_2 \) we can compute \(g(h_1^{-1}(x)) \) for \(x \in J_2 \); hence we have \(g(f_1^{-1}(x)) \) for \(x \in J_3 \), etc. Thus we have \(g(x) \) for \(x \in I_1 \).

2\(^{\circ} \). Similarly for the case \(I_1 \cup I_2 \).

3\(^{\circ} \). In the case \(I_1 \cup I_3 \), first we compute \(g(1/2) \) by using \(g_f(1/2) = g_h(1/2) \), and then we divide the infinite process of computation of \(g(x) \) for \(x \in I_2 \) into two parts:

In the first part, using \(g(y) \), for \(y \in I_1 \cup I_3 \), and \(g_f = g_h \) on \([0,1] \), we compute \(g(h_2^{-1}(x)) \) for \(x \in J'_1 \). Mapping \(x \in J'_1 \rightarrow x' \in J'_2 \) by \(h_2^{-1}(x) = f_1^{-1}(x') \) and employing \(g_f = g_h \) we find \(g(h_2^{-1}(x)) \) for \(x \in J'_2 \). In the same way this leads to \(g(f_2^{-1}) \) on \(J'_3 \), \(g(h_2^{-1}) \) on \(J'_3 \), \(g(f_1^{-1}) \) on \(J'_4 \), \(g(h_2^{-1}) \) on \(J'_4 \), and so on.
Similarly, in the second part, from \(g \) on \(I_1 \cup I_3 \) and \(g_f = g_h \) on \([0, 1]\) we find \(g(h^{-1}) \) on \(J'_1 \), \(g(f_2^{-1}) \) on \(J''_2 \), \(g(h_2^{-1}) \) on \(J''_3 \), etc.

In both parts these infinite processes do not cover the values \(g(2/5) \) and \(g(3/5) \). The rest follows from the equations \(g_f(1/5) = g_h(1/5) \) and \(g_f(4/5) = g_h(4/5) \).

Next we derive an integral formula for testing \(g_f = g_h \). Define
\[
F(x, y) = |\{2x\} - \{3y\}| + |\{2y\} - \{3x\}| - |\{2x\} - \{2y\}| - |\{3x\} - \{3y\}|.
\]

Theorem 3. A continuous distribution function \(g \) satisfies \(g_f = g_h \) on \([0, 1]\) if and only if
\[
\int_0^1 F(x, y) \, dx \, dy = 0.
\]

Proof. Let \(x_n, n = 1, 2, \ldots, \) be an auxiliary sequence in \([0, 1]\) such that all \((x_m, x_n)\) are points of continuity of \(F(x, y) \), and let \(c_X(x) \) be the characteristic function of a set \(X \). Applying \(c_{[0, x]}(x_n) = c_{(x_n, 1]}(x) \), we can compute
\[
\int_0^1 \left(\frac{1}{N} \sum_{n=1}^N c_{f^{-1}(0, x)}(x_n) - \frac{1}{N} \sum_{n=1}^N c_{h^{-1}(0, x)}(x_n) \right)^2 \, dx \\
= \frac{1}{N^2} \sum_{m,n=1}^N F_{f,h}(x_m, x_n),
\]
where
\[
F_{f,h}(x, y) = \max(f(x), h(y)) + \max(f(y), h(x)) \\
- \max(f(x), f(y)) - \max(h(x), h(y)) \\
= \frac{1}{2}(|f(x) - h(y)| + |f(y) - h(x)| - |f(x) - f(y)| - |h(x) - h(y)|).
\]

Applying the well-known Helly lemma we have
\[
\int_0^1 (g_f(x) - g_h(x))^2 \, dx = \int_0^1 F_{f,h}(x, y) \, dx \, dy
\]
for any continuous distribution function \(g \). Here \(2F_{f,h}(x, y) = F(x, y) \).

4. Inverse mapping to \(g \rightarrow (g_f, g_h) \)

Theorem 4. Let \(g_1, g_2 \) be two absolutely continuous distribution functions satisfying \((g_1)_h(x) = (g_2)_f(x)\) for \(x \in [0, 1] \). Then an absolutely continuous distribution function \(g(x) \) satisfies \(g_f(x) = g_1(x) \) and \(g_h(x) = g_2(x) \).
for \(x \in [0, 1] \) if and only if \(g(x) \) has the form

\[
g(x) = \begin{cases}
\Psi(x) + \Phi(x) - 1/6 & \text{for } x \in [0, 1/6], \\
\Psi(x) + \Phi(x) + g_1(1/3) - 1/6 & \text{for } x \in [1/6, 2/6], \\
\Psi(x) + \Phi(x) - 1/6 - g_1(2x - 1/3) + g_2(3x - 1) & \text{for } x \in [2/6, 3/6], \\
2\Phi(x) + g_1(1/3) - g_2(2/3) + g_2(1/2) - \Psi(x - 3/6) + g_1(2x - 1) & \text{for } x \in [3/6, 4/6], \\
-\Psi(x) + 2\Phi(x) + g_1(1/3) - g_2(2/3) + g_2(1/2) - \Phi(x - 4/6) + g_1(2x - 1) & \text{for } x \in [4/6, 5/6], \\
-\Psi(x) + \Phi(x) + g_1(1/3) + \Psi(x - 5/6) - \Phi(x - 5/6) - g_1(2x - 5/3) + g_2(3x - 2) & \text{for } x \in [5/6, 1],
\end{cases}
\]

where \(\Psi(x) = \int_0^x \psi(t) \, dt \), \(\Phi(x) = \int_0^x \phi(t) \, dt \) for \(x \in [0, 1/6] \), and \(\psi(t), \phi(t) \) are Lebesgue integrable functions on \([0, 1/6] \) satisfying

\[
0 \leq \psi(t) \leq 2g_1'(2t), \quad 0 \leq \phi(t) \leq 2g_2'(2t + 1/3),
\]

\[
2g_1'(2t) - 3g_2'(3t + 1/2) \leq \psi(t) - \phi(t) \leq -2g_1'(2t + 1/3) + 3g_2'(3t),
\]

for almost all \(t \in [0, 1/6] \).

Proof. We shall use a method which is applicable for any two commuting \(f, h \) having finitely many inverse functions.

The starting point is the set of new variables \(x_i(t) \):

\[
x_1(t) := f_1^{-1} \circ h_1^{-1} \circ h \circ f(t) = h_1^{-1} \circ f_1^{-1} \circ f \circ h(t),
\]

\[
x_2(t) := f_1^{-1} \circ h_2^{-1} \circ h \circ f(t) = h_1^{-1} \circ f_2^{-1} \circ f \circ h(t),
\]

\[
x_3(t) := f_1^{-1} \circ h_3^{-1} \circ h \circ f(t) = h_2^{-1} \circ f_2^{-1} \circ f \circ h(t),
\]

\[
x_4(t) := f_2^{-1} \circ h_1^{-1} \circ h \circ f(t) = h_1^{-1} \circ f_1^{-1} \circ f \circ h(t),
\]

\[
x_5(t) := f_2^{-1} \circ h_2^{-1} \circ h \circ f(t) = h_3^{-1} \circ f_1^{-1} \circ f \circ h(t),
\]

\[
x_6(t) := f_2^{-1} \circ h_3^{-1} \circ h \circ f(t) = h_3^{-1} \circ f_2^{-1} \circ f \circ h(t).
\]

Here the different expressions of \(x_i(t) \) follow from the fact that \(f(h(x)) = h(f(x)) \), \(x \in [0, 1] \). For \(t \in [0, 1/6] \) we have \(x_i(t) = t + (i - 1)/6, i = 1, \ldots, 6 \).

Substituting \(x = h_j^{-1} \circ h \circ f(t), j = 1, 2, 3 \), into \(g_j(x) = g_1(x) \), and \(x = f_1^{-1} \circ f \circ h(t), i = 1, 2 \), into \(g_0(x) = g_2(x) \) we have five linear equations for \(g(x_k(t)), k = 1, \ldots, 6 \). Abbreviating the composition \(f^{-1}_i \circ h_j^{-1} \circ h \circ f(t) \) as \(f_1^{-1}h_2^{-1}h_3f(t) \), and \(x_i(t) \) as \(x_i \), we can write

\[
g(x_1) + g(x_4) - g(1/2) = g_1(h_1^{-1}h_2f(t)),
\]

\[
g(x_2) + g(x_5) - g(1/2) = g_1(h_2^{-1}h_3f(t)),
\]

\[
g(x_3) + g(x_6) - g(1/2) = g_1(h_3^{-1}h_1f(t)),
\]

\[
g(x_1) + g(x_3) + g(x_5) - g(1/3) - g(2/3) = g_2(f_1^{-1}f_2h(t)),
\]

\[
g(x_2) + g(x_4) + g(x_6) - g(1/3) - g(2/3) = g_2(f_2^{-1}f_2h(t)).
\]
Summing up the first three equations and, respectively, the next two equations, we find the necessary condition
\[
g_1(1/3) + g_1(2/3) + 3g(1/2) + (g_1)h(hf(t))
= (g_2)f(fh(t)) + g_2(1/2) + 2(g(1/3) + g(2/3))
\]
for \(t \in [0, 1/6]\), which is equivalent to
\[
g_1(1/3) + g_1(2/3) - g_2(1/2) = 2(g(1/3) + g(2/3)) - 3g(1/2)
\]
and
\[
(g_1)h(x) = (g_2)f(x)
\]
for \(x \in [0, 1]\). Eliminating the fourth equation which depends on the others we can compute \(g(x_1), \ldots, g(x_6)\) by using \(g(x_1), g(x_2), g(1/3), g(1/2),\) and \(g(2/3)\) as follows:
\[
\begin{align*}
g(x_3) &= g(1/3) + g(2/3) - g(1/2) - g(x_1) + g(x_2) \\
&= g_1(h_2^{-1}hf(t)) + g_2(f_1^{-1}fh(t)), \\
g(x_4) &= g(1/2) - g(x_1) + g_1(h_1^{-1}hf(t)), \\
g(x_5) &= g(1/2) - g(x_2) + g_1(h_2^{-1}hf(t)), \\
g(x_6) &= g(1/3) + g(2/3) - g(1/2) + g(x_1) - g(x_2) \\
&= g_1(h_1^{-1}hf(t)) + g_2(f_2^{-1}fh(t)),
\end{align*}
\]
for all \(t \in [0, 1/6]\). Putting \(t = 0\) and \(t = 1/6\), we find
\[
\begin{align*}
g(1/2) &= 2g(1/3) - 2g(1/6) + g_1(1/3) - g_1(2/3) + g_2(1/2), \\
g(2/3) &= 2g(1/3) - 3g(1/6) + 2g_1(1/3) - g_1(2/3) + g_2(1/2).
\end{align*}
\]
These values satisfy the necessary condition \(g_1(1/3) + g_1(2/3) - g_2(1/2) = 2(g(1/3) + g(2/3)) - 3g(1/2)\). Moreover, \(g(1/3) = g(x_2(1/6)), g(1/6) = g(x_2(0)),\) and thus \(g(x_3), \ldots, g(x_6)\) can be expressed by only using \(g(x_1), g(x_2)\). Next, we simplify (1) by using
\[
\begin{align*}
h_1^{-1}hf(t) &= ff_2^{-1}h_1^{-1}hf(t) = f(x_1) & \text{for } g(x_4), \\
h_2^{-1}hf(t) &= ff_1^{-1}h_2^{-1}hf(t) = f(x_5) & \text{for } g(x_5), \\
f_1^{-1}fh(t) &= hh_2^{-1}f_1^{-1}fh(t) = h(x_3) & \text{and} \\
h_2^{-1}hf(t) &= ff_1^{-1}h_2^{-1}hf(t) = f(x_2) & \text{for } g(x_3), \\
f_2^{-1}fh(t) &= hh_3^{-1}f_2^{-1}fh(t) = h(x_6) & \text{and} \\
h_1^{-1}hf(t) &= ff_1^{-1}h_1^{-1}hf(t) = f(x_1) & \text{for } g(x_6).
\end{align*}
\]
Now, each \(g(x_i)\) can be expressed as \(g(x), x \in [(i-1)/6, i/6]\). To do this we use the identity
\[
x_i(x_j(t)) = x_i(t) \quad \text{for } t \in [0, 1] \text{ and } 1 \leq i, j \leq 6,
\]
which immediately follows from the fact that
\[f_{i}^{-1}h_{j}^{-1}hf_{k}^{-1}h_{l}^{-1}hf(t) = f_{i}^{-1}h_{j}^{-1}hf(t). \]

For example,
\[g(x_{3}) = g(1/3) + g(2/3) - g(1/2) - g(x_{1}) + g(x_{2}) - g_{1}(f(x_{2})) + g_{2}(h(x_{3})), \]
for \(t \in [0,1/6] \), which is the same as
\[g(x) = g(1/3) + g(2/3) - g(1/2) - g(x_{1}(x)) + g(x_{2}(x)) - g_{1}(f(x_{2}(x))) + g_{2}(h(x)) \]
for \(x \in [2/6,3/6] \). In our case \(x_{1}(x) = x - i/6 \) and \(x_{2}(x) = x + 1/6 - i/6 \) for \(x \in [i/6,(i + 1)/6] \) and \(i = 0,...,5 \).

Now, assuming the absolute continuity of \(g(x_{1}) \) and \(g(x_{2}) \) we can write
\[g(x_{1}(t)) = \int_{0}^{t} \psi(u) \, du, \]
\[g(x_{2}(t)) = \int_{0}^{1/6} \psi(u) \, du + \int_{0}^{t} \phi(u) \, du \]
for \(t \in [0,1/6] \).

Summing up the above we find the expression \(g(x) \) in the theorem. For the monotonicity of \(g(x) \) we can investigate \(g'(x_{i}(t)) \geq 0 \) for \(t \in [0,1/6] \) and \(i = 1,...,6 \), which immediately leads to the inequalities for \(\psi \) and \(\phi \) given in our theorem.

5. Examples and concluding remarks

1. Define a one-jump distribution function \(c_{\alpha} : [0,1] \rightarrow [0,1] \) such that \(c_{\alpha}(0) = 0 \), \(c_{\alpha}(1) = 1 \), and
\[c_{\alpha}(x) = \begin{cases} 0 & \text{if } x \in [0,\alpha), \\ 1 & \text{if } x \in (\alpha,1]. \end{cases} \]

The distribution functions \(c_{0}(x), c_{1}(x) \), and \(x \) satisfy \(g_{f}(x) = g_{h}(x) \) for every \(x \in [0,1] \).

2. Taking \(g_{1}(x) = g_{2}(x) = x \), further solutions of \(g_{f} = g_{h} \) follow from Theorem 4. In this case
\[0 \leq \psi(t) \leq 2, \quad 0 \leq \phi(t) \leq 2, \quad -1 \leq \psi(t) - \phi(t) \leq 1, \]
for all \(t \in [0,1/6] \). Putting \(\psi(t) = \phi(t) = 0 \), the resulting distribution
function is
\[
g_3(x) = \begin{cases}
0 & \text{for } x \in [0, 2/6], \\
x - 1/3 & \text{for } x \in [2/6, 3/6], \\
2x - 5/6 & \text{for } x \in [3/6, 5/6], \\
x & \text{for } x \in [5/6, 1].
\end{cases}
\]

Taking \(g_1(x) = g_2(x) = g_3(x) \), this \(g_3(x) \) can be used as a starting point for a further application of Theorem 4 which gives another solution of \(g_f = g_h \).

3. Computing
\[
\int_{j/6}^{(j+1)/6} \int_{j/6}^{(j+1)/6} F(x, y) \, dx \, dy
\]
for \(i, j = 1, \ldots, 5 \) directly, we can find
\[
\prod_{j=0}^{11} F(x, y) \, dg_3(x) \, dg_3(y) = 0,
\]
which is also a consequence of Theorem 3 and \((g_3)_f = (g_3)_h \).

4. Since the mapping \(g \to g_\phi \) is linear, the set of all solutions of \(g_f = g_h \) is convex.

5. Since \(x_f = x_h \), Theorem 2 leads to the fact that the following distribution function \(g_4(x) \) is not a distribution function of \(\xi (3/2)_n \mod 1 \), for any \(\xi \in \mathbb{R} \):
\[
g_4(x) = \begin{cases}
x & \text{for } x \in [0, 2/3], \\
x^2 - (2/3)x + 2/3 & \text{for } x \in [2/3, 1].
\end{cases}
\]

6. By Figure 1, \(X = [2/9, 1/3] \cup [1/2, 1] \) is also a set of uniqueness. Moreover, \(|X| = 11/18 < 2/3 \). Similarly for \([0, 1/2] \cup [2/3, 7/9]\).

7. Since all the components of \(f^{-1}([0, x]) \) and \(h^{-1}([0, x]) \) are semiclosed the fact that, for fixed \(\xi \neq 0 \) and \(m \), \(\{\xi (3/2)_n^m\} \) only for finitely many \(n \), was not used in the proof of Theorem 1.

References

Mathematical Institute of the Slovak Academy of Sciences
Štefánikova ul. 49
814 73 Bratislava, Slovakia
E-mail: strauch@mau.savba.sk

Received on 27.12.1995
and in revised form on 3.12.1996