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1. Introduction. Let n be a positive odd number greater than 1 with
n − 1 = 2st where t is odd. For a ∈ [1, n − 1], we say that n is a strong
pseudoprime to base a if

(1.1) either at ≡ 1 mod n or

a2it ≡ −1 mod n for some i ∈ {0, 1, . . . , s− 1}.
Now if for a given positive integer n we can find an integer a ∈ [1, n− 1]

such that (1.1) does not hold for a, then we know that n is composite. Such
an a is said to be a witness for n. Note that if a ∈ [1, n− 1] and (a, n) > 1,
then surely (1.1) fails, and such an a is a witness for n. There are many
other witnesses too. From the proof in [M] and [R], if n is an odd composite
greater than 9, then at least three-fourths of the φ(n) numbers in [1, n− 1]
coprime to n are witnesses for n. Of course, all the numbers in [1, n − 1]
that are not coprime to n are witnesses for n. If one picks t a’s at random
from [1, n − 1] and discovers that each satisfies (1.1), one cannot however
conclude that n is prime. We can conclude that if n is an odd composite
number, the probability that all the t randomly chosen a’s satisfy (1.1) is
less than 4−t.

It is natural to ask what can be said about the least positive witness,
denoted by w(n), for an odd composite n. Erdős [E1] and Pomerance [P2]
have shown that any fixed integer is a witness for most odd composite n,
so in particular w(n) will be 2 for most n. However, w(n) can be arbitrarily
large as shown by Alford, Granville and Pomerance in [AGP]. Since every
composite n has a prime divisor not exceeding

√
n, a trivial upper bound

for w(n) is
√
n but this upper bound is too large to give a polynomial

time algorithm that could prove primality. However, the works of Ankeny,
Weinberger, Oesterlé, and Bach (see [B]) show that if the Generalized Rie-
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mann Hypothesis (GRH) holds, then w(n) < 2 log2 n for all composite n
and we would thus have a polynomial time deterministic primality test. We
will show that this result also implies that if the GRH is true, then the
“average” of the w(n) is asymptotically 2. Specifically, let C(x) denote the
number of odd composite integers n not exceeding x and let

∑∗ denote a
sum over the n counted by C(x). We shall show in Theorem 2.1 that if the
GRH holds then

(1.2)
∑∗

w(n)
C(x)

∼ 2

as x → ∞. Since C(x) ∼ x/2, we can also write (1.2) as
∑∗

w(n) ∼ x as
x → ∞. So if (1.2) holds, we can conclude that even though w(n) can be
arbitrarily large, there cannot be too many odd composite n that have large
w(n).

In this paper, we also prove (1.2) without assuming the GRH.
There are two key results which are instrumental in our non-GRH proof

of (1.2). The first uses a theorem of Montgomery (see [Mo4]), which builds
on the work of Rodosskĭı (see [Ro]). Lagarias, Montgomery, and Odlyzko
(see [LMO]) derived a more general result following Rodosskĭı’s method and
the version used here is actually a specific example of this more general
result. We now state Montgomery’s theorem.

For a non-principal Dirichlet character χ let B(χ) denote the least pos-
itive integer a such that χ(a) 6= 1 and χ(a) 6= 0. For principal characters
χ we set B(χ) = 0. Also, for a Dirichlet character χ, and real numbers σ
and t with 1/2 ≤ σ ≤ 1 and t ≥ 0, let N(σ, t, χ) denote the number of
zeroes of the Dirichlet L-function L(s, χ) with s = β + γi and σ ≤ β ≤ 1
and |γ| ≤ t. Montgomery’s theorem states that there exists an absolute pos-
itive constant c1 such that for every Dirichlet character χ mod d and for
(log d)−1 < δ ≤ 1/2,

(1.3) N(1− δ, δ2 log d, χ) = 0⇒ B(χ) < (c1δ log d)1/δ.

From Proposition 2.1 in [Bur] we know that one can find a character χ mod n
such that B(χ) = G(n) where G(n) is the smallest G such that the positive
integers less than or equal to G and coprime to n generate (Z/nZ)∗. By
Lemma 2.4 in [Bur], we also know that for odd composite n, w(n) ≤ G(n)
so if the hypothesis in (1.3) holds, we obtain an upper bound for w(n) as
well as G(n) and this will be a major component of our main theorem.

The second key result involves the use of zero density estimates for the
number of zeroes of Dirichlet L-functions in specified regions. In particular,
from a result due to Gallagher (see [G]) in 1970, for 1/2 ≤ σ ≤ 1 and t ≥ 1
we have
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(1.4)
∑

d≤t

∑

χmod d
χ primitive

N(σ, t, χ) ≤ c2tc3(1−σ)

for absolute constants c2 and c3. It should be noted that results similar to
(1.4) (but with more complicated upper bounds) were previously obtained by
Bombieri [Bo], Jutila [Ju1], and Montgomery [Mo1], [Mo2]. Also Selberg [Se]
derived a generalization of (1.4). Motohashi in 1983 (see [Mot]) showed that
c3 can be taken to be 8 over the same range for σ and t and in 1990 Coleman
[C] showed, using a result of Heath-Brown [HB], that for 1/2 ≤ σ ≤ 1, t ≥ 1,
c3 can be taken as 64/9 + ε with c2 now being dependent upon ε. However,
the best result for our purposes comes from two 1977 papers of Jutila [Ju2]
and [Ju3] which give a value of 6 + ε for c3 if 4/5 ≤ σ ≤ 1 and with c2 now
being dependent upon ε. In 1979, Heath-Brown in [HB] extended this range
for σ to 11/14 ≤ σ ≤ 1.

Using these ideas we not only prove (1.2) but also the following (see
Corollary 3.3): for all x ≥ 2,

(1.5)
∑

n≤x
G(n) = O(x(log x)97).

So (1.5) implies that the average of G(n) for positive integers n ≤ x is
O(log97 x). It should also be noted that Bach and Huelsbergen conjecture
that

(1.6)
1
x

∑

n≤x
G(n) ∼ log log x log log log x

as x→∞. So our upper bound for the average may still be far from its true
value. But by choosing z = (log x)97 in Theorem 3.2 we see that all “large”
G(n) can be ignored in trying to prove (1.6). It should also be remembered
that the GRH implies that G(n) = O(log2 n) (see [Mo3]). We were not able
to prove this result without assuming the GRH, but we have proved, as
mentioned above, that the average of G(n) for positive integers n ≤ x is
bounded by a power of log x.

It should also be noted that Burgess and Elliott obtained in [BE] a result
similar to (1.5) for primitive roots. Namely, they showed that if g(p) is the
least primitive root mod p and p is an odd prime then

1
π(x)

∑

p≤x
g(p) = O((log x)2(log log x)4).

Since G(p) ≤ g(p), this immediately gives us that the average of the G(p),
taken over the primes not exceeding x, is O((log x)2(log log x)4). Note that
this is close to the upperbound for the average that one would get by as-
suming the GRH.
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Similar results can be obtained for w(n). Recalling that
∑∗ denotes a

sum over odd composite positive n which are at most x, we will show that
for all x ≥ 1 and z > (log x)8,

(1.7)
∑∗

w(n)>z

w(n) = O

(
x

z7/2
(log x)28

)
.

This result combined with a result from [P2] gives (1.2) as a corollary with-
out the use of the GRH.

I would like to thank Carl Pomerance and Andrew Granville for their
considerable input into this paper which was derived from my dissertation
(University of Georgia, 1995).

2. w(n) on average. In this section we will prove our main theorem
that the average value of w(n) is asymptotically 2. First we will show why
one would suspect that this would be the case. Recall that

∑∗ is a sum over
odd composite integers less than or equal to x and that C(x) is the number
of odd composites less than or equal to x.

Theorem 2.1. If the GRH holds, then
∑∗

w(n)
C(x)

∼ 2

as x→∞.

P r o o f. Since w(n) ≥ 2 for odd composite n,
∑∗

w(n)
C(x)

≥ 2.

Furthermore, ∑∗
w(n) =

∑∗

w(n)=2

2 +
∑∗

w(n)6=2

w(n).

To prove our result it will suffice to show that

lim
x→∞

∑∗
w(n) 6=2 w(n)

C(x)
= 0.

Since C(x) ∼ x/2 (as the primes have density 0), this is equivalent to
∑∗

w(n) 6=2

w(n) = o(x).

Noting that w(n) 6= 2⇒ 2n−1 ≡ 1 mod n, from [P2] we see that the number
of odd composite n ≤ x with w(n) 6= 2 is bounded by xL(x)−1/2 for large x
where L(x) = exp((log x log log log x)/ log log x). From [B], we see that the
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GRH implies that w(n) < 2 log2 n. Thus
∑∗

w(n)6=2

w(n) < 2xL(x)−1/2 log2 x = o(x)

for x→∞. This completes the proof.

Recall that B(χ) denotes the least positive integer a such that χ(a) 6= 1
and χ(a) 6= 0.

Theorem 2.2. For all x ≥ 2 and z ≥ (log x)8, we have uniformly ,
∑∗

w(n)>z

w(n) = O

(
x

z7/2
(log x)28

)
.

P r o o f. We may assume that x exceeds some arbitrarily large bound.
From Proposition 2.1 in [Bur] we can find a non-principal character

χn mod n such that B(χn) = G(n). Letting ψ denote the primitive character
mod d that induces χn, we have by Lemma 2.5 in [Bur] that w(n) ≤ B(ψ).
By Theorem 3.6 in [Bur] for every ε > 0, we have B(ψ) = Oε(d1/(3

√
e)+ε).

Since (3
√
e)−1 < .21, there thus exists an absolute constant E such that

w(n) ≤ Ed.21. Since w(n) > z ≥ log8 x, we have d.21 > E−1(log8 x). So by
letting x be sufficiently large, we have d.01 > E and thus w(n) ≤ d.22 < d2/9.

Letting f(χ) denote the conductor of χ we see that
∑∗

w(n)>z

w(n) =
∑

z9/2<d≤x

∑∗

w(n)>z
f(χn)=d

w(n).

For a Dirichlet character χ and for σ ∈ R, with 1/2 ≤ σ ≤ 1, and for
t ∈ R with t ≥ 0, recall that N(σ, t, χ) denotes the number of zeroes of the
Dirichlet L-function L(s, χ) with s = β + γi, σ ≤ β ≤ 1 and |γ| ≤ t.

From Montgomery’s result (1.3) there exists an absolute constant c1
such that for non-principal Dirichlet characters χ mod d and for 1/2 ≤ σ <
1− (log d)−1,

(2.1) N(σ, (1− σ)2 log d, χ) = 0⇒ B(χ) < (c1(1− σ) log d)1/(1−σ).

Now let σ := 1 − (1.001 log log x)/(log z). Since z ≥ (log x)8, we have σ ≥
.874. Also, for x > 4 and z9/2 < d, we have σ < 1 − (log z9/2)−1 < 1 −
(log d)−1; so for all d with z9/2 < d ≤ x, we can apply (2.1).

Let ψ be the primitive character mod d that induces χn. We have the
identity (see page 37 of [D])

L(s, χn) = L(s, ψ)
∏

p|n
p - d

(1− ψ(p)p−s)
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where the product is taken over primes p. Thus we have N(σ, d, χn) =
N(σ, d, ψ). Let Ud denote the set of primitive characters θ of modulus d
such that N(σ, d, θ) > 0. We see from (2.1) that for d = f(χn) = f(ψ),

ψ 6∈ Ud ⇒ N(σ, d, ψ) = 0(2.2)

⇒ N(σ, d, χn) = 0

⇒ N(σ, (1− σ)2 log d, χn) = 0

⇒ B(χn) < (c1(1− σ) log d)1/(1−σ)

⇒ w(n) < (c1(1− σ) log d)1/(1−σ).

Note that this result uses the fact that (1 − σ)2 log d < d and the fact
that w(n) ≤ B(χn) as previously mentioned, as well as the result that
N(σ, d, χn) = N(σ, d, ψ). Since σ ≥ .874, for large x we have

(c1(1− σ) log d)
1

1−σ ≤ (.126c1 log x)
log z

1.001 log log x

≤ (log1.001 x)
log z

1.001 log log x = z.

So if w(n) > z, by (2.2) we must have ψ ∈ Ud. Thus, our sum for w(n) will
have an upper bound of

∑

z9/2<d≤x

∑

ψ∈Ud

∑∗

χn induced byψ

w(n).

Since w(n) ≤ d2/9 we see that (since d |n whenever ψ ∈ Ud and ψ induces
χn)

∑∗

w(n)>z

w(n) ≤
∑

z9/2<d≤x

∑

ψ∈Ud

∑

n≤x,d|n
d2/9(2.3)

≤
∑

z9/2<d≤x

∑

ψ∈Ud

x

d
· d2/9

= x
∑

z9/2<d≤x
#Udd−7/9.

Recall that since σ ≥ .874, from Jutila’s result mentioned in Section 1
we have

∑

d≤t
#Ud =

∑

d≤t

∑

χ mod d
χ primitive
N(σ,d,χ)>0

1 ≤
∑

d≤t

∑

χmod d
χ primitive

N(σ, d, χ)(2.4)

= Oε(t(6+ε)(1−σ)).

Letting bd := #Ud and choosing ε = .01, we thus see that there is a
constant c′ such that



The average least witness is 2 333

(2.5)
∑

d≤t
bd ≤ c′t6.01(1−σ).

Also from (2.3) we have

(2.6)
∑∗

w(n)>z

w(n) ≤ x
∑

z9/2<d≤x
bdd
−7/9.

From (2.5) and (2.6), we see by partial summation and a computation
that

∑∗

w(n)>z

w(n) = O

(
x

z7/2
(log x)28

)
.

We have used the fact that 6.01(1− σ)− 7/9 < −.02051 < 0 and that

(z9/2)6.01(1−σ)−7/9 = (log x)27.072045z−7/2.

This concludes the proof of Theorem 2.2.

It should be noted that this upper bound can be improved somewhat by
taking a sharper upper bound for w(n) from [Bur] and being more careful
with the other estimates. By choosing sharper estimates in this proof one
can show that for all x ≥ 2 and z ≥ (log x)6(1− 1

3
√
e

)−1+γ where γ > 0 we
have ∑∗

w(n)>z

w(n) = Oγ(xz1−( 1
3
√
e

+.0014+.004γ)−1

(log x)18.03
√
e+.09

√
eγ).

Corollary 2.3. Let C(x) denote the number of odd composite integers
less than or equal to x. Then

∑∗
w(n)

C(x)
∼ 2

as x→∞.

P r o o f. Fix an ε > 0 and let z be a positive real number. We have
∑∗

w(n) = 2C(x) +
∑∗

2<w(n)≤z
(w(n)− 2) +

∑∗

w(n)>z

(w(n)− 2).

Now w(n) > 2 implies that n is a strong pseudoprime to base 2, and from
[P2] we know that the number of such odd composite integers less than or
equal to x does not exceed xL(x)−1/2 for sufficiently large x, where

L(x) = exp(log x log log log x/ log log x).

Thus ∑∗

2<w(n)≤z
(w(n)− 2) ≤ z · xL(x)−1/2
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for x sufficiently large. Letting z = L(x)1/9(log x)56/9 in Theorem 2.2 we see
that for x sufficiently large,

∑∗
w(n) = 2C(x) +O(xL(x)−7/18(log x)56/9).

Using the fact that C(x) ∼ x/2 gives us our result.
We have actually shown something slightly stronger; namely, that

∑∗
w(n) = 2C(x){1 +Oε(L(x)−7/18+ε)}

for every ε > 0. From the proof of Theorem 2.1, the 7/18 may be replaced
with a 1/2 under assumption of the GRH.

3. Similar results for G(n). We would like to establish a result sim-
ilar to Theorem 2.2 for G(n). However, we could not get a clear inequality
comparable to w(n) ≤ d2/9 and a more tedious approach was used instead.
The following lemma will play a key role in proving a comparable result for
G(n).

Let χ0 denote the principal character mod n.

Lemma 3.1. Let ψ be a primitive character mod d and let n be an integer
at least 2. Then

B(ψχ0) = O(d log2 n).

P r o o f. Let a = B(ψ) and note that (a, d) = 1. Let M denote the largest
divisor of n which is coprime to d. If (a,M) = 1, then (a, dn) = 1 so that
a = B(ψχ0) = B(ψ) < d so the result holds in this case.

Thus we can assume that (a,M) > 1. We want to find a small positive
integer k such that (a+kd,M) = 1 since this would imply that (a+kd, n) = 1
and so

ψχ0(a+ kd) = ψ(a)χ0(a+ kd) = ψ(a).

So since ψ(a) 6∈ {0, 1}, we would then have B(ψχ0) ≤ a+ kd.
For positive integers m, let g(m) denote the Jacobsthal function which

is defined as the least positive integer g such that every set of g consecutive
integers contains at least one integer relatively prime to m. We will show
that there is an integer k with 0 < k < g(M) and (a + kd,M) = 1 by
borrowing an idea used in Theorem 1 of [P1].

Suppose that (a+kd,M) > 1 for k = 0, 1, . . . , g(M)−1. Then for any j ∈
Z we must also have (a+ jM + kd,M) > 1 for k = 0, 1, . . . , g(M)− 1. Since
(M,d) = 1, the congruence Mx ≡ −a mod d has a solution x ≡ j mod d;
thus, we see that there exists an integer u such that Mj = −a + ud. Then
a+ jM + kd = ud+ kd, so that (ud+ kd,M) > 1 for k = 0, 1, . . . , g(M)− 1.
Since (d,M) = 1, this implies that (u+k,M) > 1 for k = 0, 1, . . . , g(M)−1
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which contradicts the definition of g(M). So there must be an integer k with
0 ≤ k < g(M) such that (a+ kd,M) = 1.

Thus B(ψχ0) ≤ a + (g(M) − 1)d < g(M)d since a < d. Erdős [E2] and
Hooley [H] have shown that there is a constant c such that for all m ∈ Z+

we have g(m) = O(logcm) and Iwaniec [I] has shown that we can take c = 2.
Applying Iwaniec’s result, we thus see that B(ψχ0) = O(d log2 n) and this
concludes the proof of Lemma 3.1.

We shall now prove the following theorem.

Theorem 3.2. For x ≥ 2 and z ≥ (log x)97, we have uniformly

∑

n≤x,G(n)>z

G(n) = O

(
x

z.06 (log x)7.83
)
.

P r o o f. It suffices to prove the theorem for all values of x beyond some
absolute bound. From Proposition 2.1 in [Bur] there is a character χn mod n
such that B(χn) = G(n). Thus we see that

∑

n≤x,G(n)>z

G(n) =
∑

n≤x,B(χn)>z

B(χn).

Let ψ denote the primitive character mod d that induces χn, so that
ψχ0 = χn. From Lemma 3.1 we see that there exists an absolute positive
constant c4 such that for n ≤ x, we have B(χn) < c4d log2 x. Since we are
only considering the case where G(n) = B(χn) = B(ψχ0) > z and since
z ≥ (log x)97 we see that for x sufficiently large (i.e., log x ≥ c4)

(log x)97 ≤ z < B(ψχ0) < c4d log2 x ≤ d log3 x ≤ dz3/97

and thus d ≥ z94/97. So our sum above must be bounded by

(3.1)
∑

z94/97≤d≤x

∑

ψ mod d
ψ primitive

∑

n≤x,d|n
B(ψχ0)>z

B(ψχ0).

Recall the definition of N(σ, t, χ) from Section 1.
We take δ = (1 +α)(log log x)/ log z in Montgomery’s result (1.3) where

α = .001. Let σ = 1− δ. Thus if n is such that 1/2 ≤ σ < 1− (1/ log n), and
χ is a Dirichlet character mod n, then

(3.2) N(σ, (1− σ)2 log n, χ) = 0⇒ B(χ) < (c1(1− σ) log n)1/(1−σ).

Suppose B(ψχ0) ≥ z. Since z ≥ (log x)97, we have σ ≥ 1− (1 +α)/97 ≥
4/5. Also, for x > ee

2
and z94/97 ≤ d, we see from the definition of σ

that σ < 1 − 2(log z)−1 ≤ 1 − (log d)−1 < 1 − (log n)−1; so for all d with
z94/97 ≤ d ≤ x, we can apply (3.2) to ψχ0. Since σ ≥ 1− (1+α)/97 we have
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for x sufficiently large,

(c1(1− σ) log n)
1

1−σ ≤
(
c1(1 + α)

97
log x

) log z
(1+α) log log x

≤ (log1+α x)
log z

(1+α) log log x = z.

Therefore by (3.2) we see that if B(ψχ0) ≥ z, then there is a zero s =
β + γi of L(s, ψχ0) with β ≥ σ and |γ| ≤ (1 − σ)2 log n. Note too that
(1 − σ)2 log n < log n ≤ log x ≤ z1/97 ≤ d so that if B(ψχ0) ≥ z, then
N(σ, d, ψχ0) > 0.

As was done in Theorem 2.2, we will have N(σ, d, ψ) = N(σ, d, ψχ0).
Using this fact, the definition of Ud from Theorem 2.2, and the above results,
we see as in (2.2) that if n ≤ x and d |n then

(3.3) ψ 6∈ Ud ⇒ B(ψχ0) < z.

So if B(ψχ0) > z, by (3.3) we must have ψ ∈ Ud. Our sum in (3.1) can thus
be rewritten as

(3.4)
∑

z94/97<d≤x

∑

ψ∈Ud

∑

n≤x,d|n
B(ψχ0).

We will now show that if ψ is a primitive character mod d, then B(ψχ0)
≤ d1/2 for most positive integers n ≤ x with d |n (i.e. with only about
O(xd−17/16) exceptions). Then we will break (3.4) into two sums, one of
which will use d1/2 as the upper bound for B(ψχ0) and the other will use
O(d log2 x) from Lemma 3.1 as an upper bound.

Assume that for some positive integer n ≤ x with d |n we have B(ψχ0) >
d1/2. So for every positive integer m with m ≤ d1/2 and (m,n) = 1, we have
ψ(m) = ψχ0(m) = 1. Also note that if (m, d) > 1, then ψ(m) = 0. Thus

∑

m≤d1/2

(m,n/d)=1

ψ(m) =
∑

m≤d1/2

ψχ0(m) =
∑

m≤d1/2

(m,n)=1

1.

Since each prime m ≤ d1/2 not dividing n contributes 1 to this last sum,
we have

(3.5)
∑

m≤d1/2

(m,n)=1

1 ≥ π(d1/2)− ν(n)

where ν(a) is the number of distinct prime factors of a. It is trivial to
show that ν(n) ≤ (logn)/(log 2) and thus ν(n) ≤ (log x)/(log 2). As before
d ≥ z94/97 ≥ log94 x so log x < d1/94. Combining these results with (3.5)
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and using the prime number theorem we see for d sufficiently large that

(3.6)
∑

m≤d1/2

(m,n/d)=1

ψ(m) > 1.5
d1/2

log d
− d1/94

log 2
>
d1/2

log d
.

This gives us a lower bound for our sum.
To get an upper bound for this sum recall the well known identity for

L ∈ Z+,
∑

g|L
µ(g) =

{
1, L = 1,
0, L 6= 1,

where µ is the Möbius function. We thus have
∣∣∣

∑

m≤d1/2

(m,n/d)=1

ψ(m)
∣∣∣ =

∣∣∣
∑

m≤d1/2

ψ(m)
∑

g|m
g|nd

µ(g)
∣∣∣ =

∣∣∣
∑

g|nd
µ(g)

∑

m≤d1/2

g|m

ψ(m)
∣∣∣

=
∣∣∣
∑

g|nd
µ(g)

∑

gh≤d1/2

ψ(gh)
∣∣∣ =

∣∣∣
∑

g|nd
µ(g)ψ(g)

∑

h≤d1/2/g

ψ(h)
∣∣∣

≤
∑

g|nd

∣∣∣
∑

h≤d1/2/g

ψ(h)
∣∣∣

with the last step coming from the triangle inequality.
From [Bu], we know that if ψ is a non-principal character mod d, r ∈ Z+,

d is cubefree or r = 2, then for every ε > 0 and every H > 0 we have
∣∣∣
∑

h≤H
ψ(h)

∣∣∣ = Oε,r(H1−1/rd(r+1)/(4r2)+ε).

Taking r = 2, we thus have
∣∣∣
∑

h≤H
ψ(h)

∣∣∣ = Oε(H1/2d3/16+ε).

Applying this result to our last inner sum we see that

∣∣∣
∑

m≤d1/2

(m,n/d)=1

ψ(m)
∣∣∣ = Oε

(∑

g|nd

(
d1/2

g

)1/2

d3/16+ε
)

(3.7)

= Oε

(
d7/16+ε

∑

g|nd
g−1/2

)
.

Combining (3.6) and (3.7) and letting Cε be the Oε constant in (3.7), we
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see, for d sufficiently large, that

d1/2

log d
< Cεd

7/16+ε
∑

g|nd
g−1/2.

Since Cε log d < dε for d sufficiently large we thus get

(3.8) d1/16−2ε <
∑

g|nd
g−1/2.

Now if
∑
g|(n/d) g

−1/2 < d1/16−β where β = .0001, then by choosing d

sufficiently large and ε sufficiently small we get a contradiction in (3.8). This
contradiction comes from the assumption made before (3.5) that B(ψχ0) >
d1/2. Thus we must have B(ψχ0) ≤ d1/2. To see that this is what usually
occurs, consider the function f(N) :=

∑
g|N g

−1/2 where N ∈ Z+. For y ≥ 1,
we have

∑

N≤y
f(N) =

∑

N≤y

∑

g|N
g−1/2 =

∑

g≤y

∑

N≤y
g|N

g−1/2 ≤
∑

g≤y

y

g
g−1/2

= y
∑

g≤y
g−3/2 ≤ y

(
1 +

y\
1

t−3/2 dt
)

= y(1− 2y−1/2 + 2) ≤ 3y.

Let D be the number of positive integers N ≤ y such that f(N) ≥ d1/16−β .
From above we see that Dd1/16−β ≤ 3y and thus D ≤ 3yd−(1/16−β). Taking
y = x/d we thus see that there are at most 3xd−(17/16−β) integers N ≤ x/d
with f(N) ≥ d1/16−β . Equivalently f(N) < d1/16−β for all but at most
3xd−(17/16−β) integers N ≤ x/d. So B(ψχ0) ≤ d1/2 for all but at most
3xd−(17/16−β) integers n ≤ x with d |n.

Our sum in (3.4) can be written as
∑

z94/97≤d≤x

∑

ψ∈Ud

( ∑

n≤x,d|n
B(ψχ0)≤d1/2

B(ψχ0) +
∑

n≤x,d|n
B(ψχ0)>d1/2

B(ψχ0)
)
.

Using the above results and letting c4 be the implied constant from Lemma
3.1, we see that the sum above is in fact bounded by

(3.9)
∑

z94/97≤d≤x

∑

ψ∈Ud

(
x

d
d1/2 + 3c4

x

d17/16−β d log2 x

)

= x
∑

z94/97≤d≤x
#Ud(d−1/2 + 3c4d−1/16+β log2 x).
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Since σ ≥ 4/5, we can apply (2.4) and recalling that bd = #Ud we see
that

(3.10)
∑

d≤t
bd = Oε(t(6+ε)(1−σ)).

Also from (3.9) we have

(3.11)
∑

n≤x,G(n)>z

G(n) ≤ x
∑

z94/97≤d≤x
bd(d−1/2 + 3c4d−1/16+β log2 x).

By applying (3.10) (with ε = .01) and (3.11), and using partial summation,
a computation gives

∑

n≤x,G(n)>z

G(n) = O

(
x

z
94
97 ( 1

16−β)
(log x)2+(6+ε) 94

97 (1+α)
)

= O

(
x

z.06 (log x)7.83
)
.

This concludes the proof of Theorem 3.2.
It should be noted that the exponents here are not optimal and can be

improved somewhat. In particular, if z ≥ (log x)96+δ for δ > 0, one could
show by taking α, β, and ε sufficiently small that for x ≥ 2 we have uniformly

∑

n≤x,G(n)>z

G(n) = Oδ

(
x

z
47

48·16− δ
48

(log x)7.875
)
.

This is a slightly better result than that given in Theorem 3.2.

Corollary 3.3. For all x ≥ 2,
∑

n≤x
G(n) = O(x log97 x).

P r o o f. Let z = (log x)97. First we see that
∑

n≤x
G(n) =

∑

n≤x,G(n)>z

G(n) +
∑

n≤x,G(n)≤z
G(n).

From Theorem 3.2 we see that
∑

n≤x,G(n)>z

G(n) = O

(
x

z.06 (log x)7.83
)

= O(x(log x)97).

Also we have ∑

n≤x,G(n)≤z
G(n) ≤ xz = x(log x)97.
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Combining these results we see that∑

n≤x
G(n) = O(x log97 x).

This concludes the proof of our corollary.

It should be remembered that the GRH implies that G(n) = O(log2 n)
and thus that the average G(n) (taken over positive integers n ≤ x) would
be O(log2 x). Dividing our result in Corollary 3.3 by x gives us that the
average G(n), with n ≤ x, is O((log x)97) without use of the GRH.
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