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1. Introduction to G(n) and w(n). For n, y ∈ Z+, let Gn(y) denote
the subgroup of (Z/nZ)∗ generated by the elements of (Z/nZ)∗ with rep-
resentatives not exceeding y. Define G(n) to be the smallest G such that
Gn(G) = (Z/nZ)∗.

For those positive integers n which have primitive roots, an upper bound
for its first primitive root is also an upper bound for G(n). For those n
without primitive roots, the minimal number of elements needed to generate
(Z/nZ)∗ will not exceed G(n)− 1.

If n has r distinct prime factors we see from the Chinese Remainder
Theorem that (Z/nZ)∗ requires r − 1, r, or r + 1 generators depending
upon the power of 2 dividing n (i.e. r − 1 if 2 ‖n, r if 2 -n or 4 ‖n, and
r + 1 otherwise). If (Z/nZ)∗ has g generators, then G(n) must be greater
than or equal to the gth prime which does not divide n. Thus we must
have G(n) ≥ pr where pr is the rth prime. By the prime number theorem
pr ∼ r log r as r →∞ and since the normal order of the number of distinct
prime factors of n is log log n (see [HW]), for every ε > 0 we have G(n) >
(1−ε) log log n log log log n for a set of integers n with asymptotic density 1.

In 1949, Fridlender [F] and Salié [S] proved independently that for prime
p the first quadratic non-residue mod p is Ω(log p); that is, there is a positive
constant c such that the first quadratic non-residue mod p is greater than
c log p for infinitely many primes p. Since the quadratic residues mod p
cannot generate (Z/pZ)∗, G(p) must be at least as large as the first quadratic
non-residue mod p. Thus, G(p) = Ω(log p). Graham and Ringrose [GR]
improved this result by showing that the first quadratic non-residue modulo
a prime p is Ω(log p log log log p). Thus, G(p) = Ω(log p log log log p).

Granville has made the observation that from the Graham–Ringrose re-
sult one can conclude that for every ε > 0 there is a positive constant kε
and infinitely many integers x such that the number of integers n ≤ x with
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G(n) > kε log n log log log n is at least x1−ε. To see this, note that if p is a
prime dividing n, then G(p) ≤ G(n). This inequality follows from the fact
that a set of generators for (Z/nZ)∗ must also be a set of generators for
(Z/pZ)∗. Now let c be the constant from the Graham–Ringrose result and
let p be a prime such that G(p) ≥ c log p log log log p. Taking x = dp1/εe,
choosing n ≤ x such that p |n, and using the above inequality we see for x
sufficiently large that

G(n) ≥ c log p log log log p > (cε/2) log x log log log x

≥ (cε/2) log n log log log n.

Since the number of multiples of p less than or equal to x is about x/p ≥
x/xε = x1−ε, we thus get the result.

A result from Burgess [Bu1] implies that for all primes p, G(p) =
Oε(p1/4+ε). Following the work of Ankeny in [A], Montgomery showed in
[Mo] that the Generalized Riemann Hypothesis (GRH) implies that G(n) =
O(log2 n). In 1990 in [B2], Bach showed, assuming the GRH, that one could
take 3 as the implied constant and verified that G(n) ≤ 3 log2 n for all
positive integers n ≤ 106.

In 1993 Konyagin–Pomerance [KP] and Pappalardi [Pa] independently
proved that for all ε > 0 and for all primes p ≤ x, G(p) ≤ xε with at most
Oε(1) exceptions.

Bach and Huelsbergen conjecture in [BH] that

G(n) ≤ [(log 2)−1 + o(1)] log n log log n

as n → ∞ and that the constant (log 2)−1 is the best possible. They prove
(via the Pólya–Vinogradov inequality) that

G(n) = O(
√
n log n log log n).

In this paper we will prove that for all positive integers n, G(n) =
Oε(n1/(3

√
e)+ε), and for 8 -n, G(n) = Oε(n1/(4

√
e)+ε). The exponent for the

general upper bound was 3/(8
√
e) in my dissertation but as suggested by

Karl Norton one can replace it with a 1/(3
√
e) by using a more recent result

of Burgess. It should also be noted that Karl Norton has communicated to
me via a personal correspondence that he has advanced some of the ideas
in this paper and can show that G(n) = Oε(n1/(4

√
e)+ε) for all positive

integers n.
We now show a connection between G(n) and primality tests.
Let n be a positive odd number greater than 1 with n− 1 = 2st where t

is odd. For a ∈ [1, n− 1], we say that n is a strong pseudoprime to base a if

(1) either at ≡ 1 mod n or

a2it ≡ −1 mod n for some i ∈ {0, 1, . . . , s− 1}.
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If n is an odd prime then (1) holds for all a ∈ [1, n− 1]. If (1) fails for some
a ∈ [1, n− 1], then a is called a witness (to the compositeness) of n.

In the 70s, Selfridge was able to identify composite numbers fairly quickly
using (1), which has the advantage over other similar pseudoprimality tests
in that there are no odd composites n which will satisfy (1) for all a in
[1, n − 1] that are coprime to n. It was shown independently by Monier
[M] and Rabin [R] that for each odd composite n at least three fourths of
the integers a in [1, n − 1] will be witnesses for n. This method leads to a
probabilistic algorithm that can determine the compositeness of an integer
but cannot prove primality.

To develop an algorithm which could prove primality, it would suffice
to find a finite set of “reliable witnesses” such that every odd composite n
has a witness in this set. Erdős [E] and Pomerance [P1] have shown that
any fixed integer is a witness for most odd composite n so it might seem
possible to construct such a set. However, Alford, Granville, and Pomerance
have shown in [AGP] that for any finite set of integers, there are infinitely
many odd composite integers which have no witnesses in that set.

It is then natural to ask what can be said about the least positive witness,
denoted by w(n), for an odd composite n. From the results previously stated,
w(n) will be 2 for most n, but can get arbitrarily large. Since every composite
n has a prime divisor not exceeding

√
n, a trivial upper bound for w(n) is√

n. However, the works of Ankeny, Weinberger, Oesterlé, and Bach (see
[B1]) show that if the Generalized Riemann Hypothesis (GRH) holds, then
w(n) < 2 log2 n for all odd composite n. Thus, if the GRH holds we would
have a polynomial time deterministic primality test.

In this paper, we prove that for all ε > 0, w(n) = Oε(n(6
√
e)−1+ε) for all

odd composite n.
It should also be noted that a heuristic argument of the type done by

Bach and Huelsbergen indicates that w(n) ≤ ((log 4)−1 +o(1)) log n log log n
as n→∞ through the odd composites and the constant (log 4)−1 is optimal.

Also, Alford, Granville, and Pomerance showed in [AGP] by assuming
a version of the prime k-tuplets conjecture that the maximal order of w(n)
exceeds α log n for some α > 0. They also give a heuristic argument that the
maximal order of w(n) should be c logn log log n for some constant c > 0.
They prove that w(n) > (logn)1/(3 log log log n) infinitely often.

I would like to thank Carl Pomerance for his extensive help in the writing
of this paper. I would also like to thank Karl Norton for his insights and
simplifications in regards to this paper and for providing me with several
related references.

2. Preliminaries. In this section various results concerning G(n) and
w(n) are proved, including connections with Dirichlet characters mod n.
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The following results will be especially helpful in proving our main the-
orem. For a non-principal Dirichlet character χ, let B(χ) denote the least
positive integer a such that χ(a) 6= 1 and χ(a) 6= 0. Also, χ0 will always
denote the principal character mod n. We take B(χ0) = 0.

Proposition 2.1. For all positive integers n,

G(n) = max
χmodn

{B(χ)}.

P r o o f. Let H denote the proper subgroup of (Z/nZ)∗ generated by
the positive integers that are coprime to n and strictly less than G(n). Since
every finite abelian group is a direct product of cyclic groups of prime power
order, we can write

(Z/nZ)∗/H ∼= 〈ζ1〉 × . . .× 〈ζl〉
where each ζi is a paii th root of unity. Using the series of maps

(2) (Z/nZ)∗ → (Z/nZ)∗/H ∼= 〈ζ1〉 × . . .× 〈ζl〉 → C∗

where the first mapping is the quotient map and the last is the projection
map to the first coordinate, we can define a homomorphism χn : (Z/nZ)∗ →
C∗ such that χn(h) = 1 for every h ∈ H. We can extend χn to Z/nZ by
letting χn(a) = 0 for (a, n) > 1 and thus make it a Dirichlet character mod
n. Also note that χn is non-principal as (ζ1, 1, . . . , 1) ∈ 〈ζ1〉× . . .×〈ζl〉 is not
sent to 1 by the projection map in (2). Using the surjectivity of the other
two maps, we can find an a in (Z/nZ)∗ such that χn(a) 6= 1. Now χn(b) = 1
for every b ∈ H and χn(b) = 0 for every b with 1 ≤ b < G(n) and (b, n) > 1.
Thus, B(χn) ≥ G(n), so that

G(n) ≤ max
χ mod n

{B(χ)}.

It remains to prove the reverse inequality. Let χ be a non-principal character
mod n. If B(χ) > G(n), then for all a with 1 ≤ a ≤ G(n) and (a, n) = 1
we would have χ(a) = 1. Since by definition of G(n) these a’s generate
(Z/nZ)∗, we would then have χ(b) = 1 for all b ∈ (Z/nZ)∗. This implies
that χ = χ0, which is a contradiction. Thus we must have B(χ) ≤ G(n) for
all non-principal characters χ mod n. Since B(χ0) = 0, this inequality holds
for all χ mod n and this concludes our proof.

As was pointed out by Karl Norton, one can also show the existence of
a non-principal character that is the identity on H by applying his Lemma
3.1 of [N2].

For prime p and a ∈ Z+ with p - a, let la(p) denote the order of a mod p
(i.e. the smallest positive integer l such that al ≡ 1 mod p). Also for prime r,
let νr(m) denote the largest integer ν such that rν |m.

The following simple lemmas will prove useful.
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Lemma 2.2. If n is a strong pseudoprime to base a (see (1)), and p
and q are distinct primes dividing n, then ν2(la(p)) = ν2(la(q)). Thus, if
n is an odd composite divisible by primes p, q and if a ∈ [1, n − 1] with
ν2(la(p)) 6= ν2(la(q)), then a must be a witness for n.

P r o o f. If n is a strong pseudoprime to base a with n−1 = 2st where 2 - t,
then either a2it ≡ −1 mod n for some i with 0 ≤ i ≤ s− 1 or at ≡ 1 mod n.
In the former case we see that ν2(la(p)) = ν2(la(q)) = i+ 1 and in the latter
that ν2(la(p)) = ν2(la(q)) = 0. So if n is a strong pseudoprime to base a,
then we must have ν2(la(p)) = ν2(la(q)).

It should be noted that a stronger result than Lemma 2.2 holds; namely,
that an odd composite integer n is a strong pseudoprime to base a if and
only if an−1 ≡ 1 mod n and for all odd primes p, q dividing n, we have
ν2(la(p)) = ν2(la(q)) (see [PSW] or [AGP]). Lemma 2.2 will, however, suffice
for our purposes.

Lemma 2.3. If n is odd and p and q are primes dividing n with ν2(p−1) <
ν2(q − 1), and if a ∈ [1, n− 1] is such that (a/q) = −1, then a is a witness
for n. Furthermore, if ν2(p− 1) = ν2(q − 1) and b ∈ [1, n− 1] is such that
(b/(pq)) = −1, then b is a witness for n.

P r o o f. First assume that ν2(p − 1) < ν2(q − 1) and (a/q) = −1. Since
(a/q) = −1, we see by Euler’s Criterion that ν2(la(q)) = ν2(q − 1). Since
ν2(la(p)) ≤ ν2(p − 1) < ν2(q − 1) = ν2(la(q)), we must have ν2(la(p)) <
ν2(la(q)) and thus by Lemma 2.2, a is a witness for n.

Now assume that ν2(p− 1) = ν2(q− 1) and (b/(pq)) = −1. Without loss
of generality we can assume that (b/p) = 1 and (b/q) = −1. Thus by Euler’s
Criterion ν2(lb(p)) < ν2(p− 1) = ν2(q− 1) = ν2(lb(q)) and by Lemma 2.2, b
must be a witness of n.

This concludes the proof of Lemma 2.3.

Lemma 2.4. For all odd composite n, w(n) ≤ G(n).

P r o o f. Using the notation defined in Section 1 let T = Gn(w(n) − 1).
To show that w(n) ≤ G(n) it will suffice to show that T is proper subgroup
of (Z/nZ)∗.

Assume n is a prime power, say n = pa where a ≥ 2. Since none of
the integers y with 1 ≤ y ≤ w(n) − 1 are witnesses for n, for each such y,
yn−1 ≡ 1 mod n. Let g be a primitive root for n. Since φ(n) = pa−1(p− 1)
does not divide n− 1 = pa − 1, we have gn−1 6≡ 1 mod n. The set F = {1 ≤
b ≤ n : bn−1 ≡ 1 mod n} is actually a subgroup under multiplication mod n.
Since F contains the subgroup T and does not contain g, it must be that F ,
and so T , are proper subgroups of (Z/nZ)∗ and w(n) ≤ G(n) in this case.
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Now assume that n is not a prime power. We will prove this case using
an argument of Lenstra (see [Len]) which is also mentioned in [P2]. Let p, q
be two distinct primes dividing n.

Suppose that ν2(p− 1) < ν2(q − 1). Let λ be the character mod n in-
duced by (/q). If λ(b) = −1, then by Lemma 2.3, b will be a witness for n.
So for each y with 1 ≤ y ≤ w(n)− 1 we must have λ(y) = 1 and thus from
Proposition 2.1 we see that w(n) ≤ B(λ) ≤ G(n).

Thus, we may assume that ν2(p− 1) = ν2(q − 1). Let λ be the character
mod n induced by (/p) · (/q). If λ(b) = −1, then by Lemma 2.3, b will be a
witness of n. So for each y with 1 ≤ y ≤ w(n)− 1 we must have λ(y) = 1 so
w(n) ≤ B(λ) ≤ G(n) by Proposition 2.1.

This concludes our proof.

Lemma 2.5. For composite n let χn be a non-principal character mod n
with G(n) = B(χn) (see Proposition 2.1), and let ψ mod d be the primitive
character which induces it. Then w(n) ≤ B(ψ).

P r o o f. Let a = B(ψ). If χn(a) = 1 then (a, n) = 1 and ψ(a) = χn(a) =
1, which contradicts the definition of a. Also χn(a) = 0 implies that (a, n) >
1 and thus a is a witness for n and thus w(n) ≤ a. Lastly, if χn(a) 6∈ {0, 1},
then a ≥ B(χn) = G(n) ≥ w(n) by Proposition 2.1 and Lemma 2.4. So in
each case we have w(n) ≤ B(ψ).

3. Upper bounds for G(n). In this section, we prove theorems that
give new upper bounds for G(n). The following lemmas will be useful in the
proof of these theorems.

Let φ(H,n) denote the number of integers x with 1 ≤ x ≤ H that
are coprime to n. Also let ψ(H, y) denote the number of integers x with
1 ≤ x ≤ H that are y-smooth (i.e. have no prime factors exceeding y) and
let ψn(H, y) denote the number of integers x with 1 ≤ x ≤ H such that
(x, n) = 1 and x is y-smooth.

Lemma 3.1. For n ∈ Z+ and H > 0,

φ(H,n) =
φ(n)
n

H +O(d(n))

where d(n) is the number of positive divisors of n.

P r o o f. It is straightforward using the inclusion-exclusion principle to
show that

φ(H,n) =
∑

d|n
µ(d)bH/dc

where µ(d) is the Möbius function. Since
∑
d|n µ(d)/d = φ(n)/n, the result

holds.
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Approximations for ψn(H, y) will be vital in proving our next theorem.
Vinogradov [Vi] derived an asymptotic formula for ψn(H, y) and stated sev-
eral inequalities for it which later turned out to be incorrect. Norton uses
an asymptotic formula for %(α) (Dickman’s function) due to de Bruijn to
give a correct version of one of Vinogradov’s inequalities. He shows that for
x ≥ n, x > ee, and e ≤ α ≤ (log log x)/(log log log x), there are absolute
constants k1 and k2 such that

ψn(x, x1/α) < k1
φ(n)
n

%(α)x

< k2
φ(n)
n

x exp{−α(logα+ log logα− 1− 1/ logα)}.

Norton also gives (see Theorems 5.21 and 5.48 in [N1]) more complex
estimates for ψn(H, y) which are explicitly dependent upon Dickman’s func-
tion. Fouvry and Tenenbaum showed in [FT] that for every ε > 0, if
exp{(log logH)5/3+ε} ≤ y ≤ H, H ≥ H0(ε), and

log log(n+ 2) ≤
(

logH
log(u+ 1)

)1−ε

where u = (logH)/(log y), then

ψn(H, y) = ψ(H, y)
φ(n)
n

(
1 +O

(
log log(ny) log logH

logH

))
.

For our purposes it will suffice to use the following weaker lemma (see [Bur]).

Lemma 3.2. For n, y ∈ Z+ and n1/10 ≤ H ≤ n, H1/2 ≤ y ≤ H, and
H ≥ 20,

ψn(H, y) =
φ(n)
n

H

(
1− log

logH
log y

+O

(
log log log n

log log n

))
.

The following lemmas will give a more general result in Theorem 3.6.
Carl Pomerance contributed proofs for Lemmas 3.3 and 3.4 which are used
in proving Lemma 3.5 which was suggested by the referee.

For positive integers n, we will say that n is almost cube-free if n is cube-
free or twice a cube-free number. Recalling the definition of νr(n) preceding
Lemma 2.2, n being almost cube-free is also equivalent to having νr(n) ≤ 2
for every odd prime r and ν2(n) ≤ 3.

Lemma 3.3. Let m be a positive integer. Let p be an odd prime such that
p2 divides m. If S is a set of positive integers which generates (Z/mZ)∗,
then S also generates (Z/pmZ)∗.

P r o o f. Let q be a prime such that qb ‖m. Let Gq be the subgroup
of (Z/mZ)∗ consisting of those residues that are 1 modulo m/qb. Then



318 R. J. Burthe Jr.

Gq ∼= (Z/qbZ)∗. Since S generates (Z/mZ)∗ it will also generate Gq and
one may write generators of Gq as words on the elements of S.

Now assume that pa ‖m where a ≥ 2. In this case Gp will be cyclic and
thus can be generated by a single word on the elements of S. This word
corresponds to a primitive root mod pa. Since primitive roots mod pa are
also primitive roots mod pa+1 for a ≥ 2, this word in fact corresponds to a
primitive root mod pa+1. By the Chinese Remainder Theorem (Z/pmZ)∗ is
the direct sum of the various subgroups Gq, so S must generate the subgroup
Gp for (Z/pmZ)∗ as well as the subgroups Gq for (Z/pmZ)∗ for q 6= p. Thus
S must generate (Z/pmZ)∗.

Lemma 3.4. Let m be a positive integer such that 8 |m. If S is a set of
integers which generate (Z/mZ)∗, then S will also generate (Z/2mZ)∗.

P r o o f. The proof is similar to the previous proof. Although (Z/2aZ)∗ is
not cyclic for a ≥ 3, it is generated by a pair of elements {u, v} in (Z/2aZ)∗

where none of u, v, uv is 1 mod 8. So in this case if 2a ‖m and a ≥ 3, the
subgroup G2 of (Z/2aZ)∗ will be generated by two words on the elements of
S, and the subgroup G2 of (Z/2mZ)∗ is generated by the same two words.
The rest of the proof follows as before.

Lemma 3.5. Let d be the largest almost cube-free divisor of a positive
integer n. Then G(d) = G(n).

P r o o f. If n is almost cube-free then we are done. So assume that n is
not almost cube-free.

Let S be the set of primes less than or equal to G(d) which are coprime
to d. So S generates (Z/dZ)∗. Since n is not almost cube-free, then either
νr(n) ≥ 3 for some odd prime r dividing n or ν2(n) ≥ 4. So either νr(d) =
2 or ν2(d) = 3. In either case, one can apply Lemma 3.3 or Lemma 3.4
by letting m = d. By repeated applications of these lemmas, one sees by
induction that S must generate (Z/nZ)∗. Thus G(d) ≥ G(n). Since a set of
generators for (Z/nZ)∗ will also generate (Z/dZ)∗, we also haveG(d) ≤ G(n)
and thus G(d) = G(n).

Theorem 3.6. If χ is a character mod n, then for every ε > 0, we have

B(χ) = Oε(n1/(3
√
e)+ε).

In addition, if 8 -n, then for all ε > 0,

B(χ) = Oε(n1/(4
√
e)+ε).

P r o o f. From [Bu2] and [Bu3], we know that if χ is a non-principal
Dirichlet character mod n, r ∈ Z+, n is cube-free or r = 3, then for every
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ε > 0 and for every pair of integers N,H (H > 0), we have
∣∣∣
N+H∑

m=N+1

χ(m)
∣∣∣�ε,r H

1−1/rn(r+1)/(4r2)+ε.

Taking N = 0 we see by Burgess’ results that

(3)
∣∣∣
H∑
m=1

χ(m)
∣∣∣ �ε,r H

1−1/rn(r+1)/(4r2)+ε

for n cube-free or r = 3. We shall take H as a positive integer with n1/10 ≤
H ≤ n and will specify it more accurately later.

Now define Σ1 and Σ2 by

Σ1 =
H∑
m=1

χ(m)=1

1, Σ2 =
H∑
m=1

χ(m)6∈{0,1}

1.

Letting Cε,r denote the constant implicit in (3) and applying the triangle
inequality, we see that

Cε,rH
1−1/rn(r+1)/(4r2)+ε/2 ≥

∣∣∣
H∑
m=1

χ(m)
∣∣∣ =

∣∣∣
H∑
m=1

χ(m)=1

1 +
H∑
m=1

χ(m) 6=1

χ(m)
∣∣∣

≥
H∑
m=1

χ(m)=1

1−
∣∣∣

H∑
m=1

χ(m)6=1

χ(m)
∣∣∣

≥
H∑
m=1

χ(m)=1

1−
H∑
m=1

χ(m)6∈{0,1}

1 = Σ1 −Σ2.

So we have

(4) Σ1 −Σ2 ≤ Cε,rH1−1/rn(r+1)/(4r2)+ε.

By definition of Σ1, Σ2, and φ(H,n) (which was defined at the beginning
of this section) we also see that

(5) Σ1 +Σ2 = φ(H,n).

Let J be a positive number to be identified later. Assume that J < B(χ).
Suppose m is a positive integer counted by ψn(H, J); that is, m ≤ H,
(m,n) = 1, and m is J-smooth. If p is a prime factor of m, then since
(m,n) = 1, we must also have (p, n) = 1 and thus χ(p) 6= 0. And since m is
J-smooth, we have p ≤ J . Thus we must have χ(p) = 1 and thus χ(m) = 1.
It follows that

Σ1 ≥ ψn(H,J).
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Applying this inequality and using (4) and (5) we thus see that

Cε,rH
1−1/rn(r+1)/(4r2)+ε ≥ Σ1 −Σ2 = 2Σ1 − (Σ1 +Σ2)(6)

≥ 2ψn(H,J)− φ(H,n).

Now let J = H1/
√
e+δ where δ is a fixed positive constant such that

(
√
e)−1 + δ < 1. Since H > J > H1/2 we see from Lemma 3.2 that there

exists a positive constant c such that for n sufficiently large

ψn(H, J) ≥ φ(n)
n

H

(
1 + log

(
1√
e

+ δ

)
− c log log log n

log log n

)
.

Substituting this inequality into (6) and applying Lemma 3.1 we see that

(7)
φ(n)
n

H

(
1 + 2 log

(
1√
e

+ δ

)
− 2c

log log log n
log log n

)

= Oε,r(H1−1/rn(r+1)/(4r2)+ε) +O(d(n)).

By Theorem 328 in [HW] we have n/φ(n) = O(log log n) and from Theorem
315 in [HW] we can take d(n) = Oε(nε). Thus, from (7) we have

(8) 1 + 2 log
(

1√
e

+ δ

)

≤ 2c
log log log n

log log n
+Oε,r(H−1/rn(r+1)/(4r2)+2ε) +Oε(n−ε).

Note that (8) holds for all r ∈ Z+ if n is cube-free and for r = 3 for all
positive integers n, under the assumption that J < B(χ).

Now assume that n is cube-free and let H = bn1/4+1/rc where r ∈ Z+.
Thus H ∼ n1/4+1/r as n→∞ and we see that for ε = 1/(8r2),

H−
1
r n

r+1
4r2

+2ε ∼ n− 1
4r− 1

r2
+ 1

4r+ 1
4r2

+ 1
4r2 = n−

1
2r2 .

Since the exponent is negative, this term goes to 0 as n → ∞. Thus, the
right hand side of (8) goes to 0 as n → ∞, which contradicts the fact that
1 + 2 log((

√
e)−1 + δ) > 0. We conclude that for n sufficiently large

B(χ) ≤ J ≤ n( 1
4 + 1

r )( 1√
e

+δ)
.

Thus, for all ε > 0 and n cube-free,

B(χ) = Oε(n1/(4
√
e)+ε).

Now assume that 8 -n and let d be the largest almost cube-free divisor
of n. Since 8 -n, d will actually be cube-free and by the result just proved
and Proposition 2.1, we see that for all ε > 0,

G(d) = Oε(d1/(4
√
e)+ε).

From Proposition 2.1 we also see that B(χ) ≤ G(n) and by Lemma 3.5 we
have G(n) = G(d). Thus we can conclude that for all ε > 0 and positive
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integers n with 8 -n,

B(χ) = Oε(n1/(4
√
e)+ε).

We have actually proved a stronger result; namely, the above equation with
n replaced by the largest cube-free divisor of n.

For general n, we take r = 3 in (8) and choose H = bn1/3+9εc. Then
H ∼ n1/3+9ε as n→∞, so we see that

H−1/3n1/9+2ε ∼ n−1/9−3ε+1/9+2ε = n−ε.

Since the exponent is negative we can follow the same argument as before
to see that

B(χ) ≤ J ≤ n(1/3+9ε)(1/
√
e+δ).

Thus, for every ε > 0, we have

B(χ) = Oε(n1/(3
√
e)+ε).

This concludes the proof of Theorem 3.6.

It should be mentioned that the upper bound for B(χ) for the case where
8 -n is not entirely new. Karl Norton has pointed out that one could obtain
the same result for cube-free n from a lemma of Kolesnik and Straus (see
Lemma 4.8 in [KS]). However, the result for general n appears new.

It should be remarked that Fujii [Fu] proved a result similar to (3) for
primitive characters. However, his result includes an involved constant which
depends upon the factorization of n and does not in general give an upper
bound as small or as clear as Burgess’.

Corollary 3.7. For every ε > 0, we have

G(n) = Oε(n1/(3
√
e)+ε).

Furthermore if 8 -n, then for all ε > 0,

G(n) = Oε(n1/(4
√
e)+ε).

P r o o f. The proof follows directly from Proposition 2.1 and Theorem
3.6.

4. Upper bounds for w(n). The following lemma was proved by
H. W. Lenstra, Jr. in [Len] but is proved here using a special case of an
inequality for ψ(x, y) due to Konyagin–Pomerance (see [KP]). (The [KP]
inequality was also proved by Lenstra in [Len] for the special case needed
for the lemma, but only for p > 3 · 109.)

Lemma 4.1. Let p be an odd prime. Then there exists a prime a < 4 log2 p
with ap−1 6≡ 1 mod p2.

P r o o f. Suppose that every prime a < 4 log2 p satisfies ap−1 ≡ 1 mod p2.
If b is an integer which can be written as the product of primes less than
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or equal to 4 log2 p, with 0 < b ≤ p2, then bp−1 ≡ 1 mod p2. Recall-
ing the definition of ψ(x, y) from Section 3, the number of such b is at
least ψ(p2, 4 log2 p). Since p ≥ 3, we have p2 > 4 and 4 log2 p > 2. The-
orem 2.1 from [KP] states that for x ≥ 4, 2 ≤ y ≤ x we have ψ(x, y) >
x1−((log log x)/ log y). Thus we see that

ψ(p2, 4 log2 p) > (p2)
1− log log(p2)

log(4 log2 p) = (p2)1−1/2 = p.

Since p2 has a primitive root it is easy to see that the number of integers
b with 1 ≤ b ≤ p2 and bp−1 ≡ 1 mod p2 is p − 1. This is a contradiction
to the above result. So there must be some prime a < 4 log2 p such that
ap−1 6≡ 1 mod p2.

It should be remarked that better results than Lemma 4.1 are known. In
particular, Granville proved in [Gr] that for prime p ≥ 5, the least pth power
non-residue mod p2 is less than log2 p. So there must be some a < log2 p
with ap−1 6≡ 1 mod p2.

The following lemma is a slight variation of a theorem in [Len].

Lemma 4.2. If n is an odd composite number that is not square-free then

w(n) < log2 n.

P r o o f. Assume that n is odd and that p2 |n for some prime p. Suppose
that n is a strong pseudoprime to base a for all positive integers a less than
log2 n. Then for all positive integers a with a < log2 n, we have an−1 ≡
1 mod n, which implies that an−1 ≡ 1 mod p2. If we let v be the order of
a mod p2, by Euler’s Theorem we have v | p(p−1). Since v also divides n−1,
we see that (v, p) = 1 and thus v | (p− 1). So for every prime a < 4 log2 p ≤
log2 n we must have ap−1 ≡ 1 mod p2, which is a contradiction to Lemma
4.1. This concludes the proof of this lemma.

Corollary 4.3. For every ε > 0 and each odd composite n,

w(n) = Oε(n(4
√
e)−1+ε).

P r o o f. If n is an odd composite that is not square-free then Lemma 4.2
handles this case. Now consider the case where n is an odd composite which
is square-free and thus 8 -n. From Lemma 2.4, we see that w(n) ≤ G(n).
Applying Corollary 3.7 then gives us our result. This concludes our proof.

As we have seen, Corollary 4.3 follows immediately from our previous
results. With more work we will obtain even better upper bounds by con-
sidering the number of distinct prime factors of n. Recall the notation ν2

defined before Lemma 2.2.

Lemma 4.4. For every ε > 0, there is some number Cε with the following
property : if p and q are primes that divide an odd number n and ν2(p−1) <
ν2(q − 1), then w(n) ≤ Cεq1/(4

√
e)+ε.
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P r o o f. Taking χ(b) = (b/q) and n = q in Theorem 3.6 we see that there
exists an a < Cεq

1/(4
√
e)+ε such that (a/q) = −1. So by Lemma 2.3,

w(n) ≤ a < Cεq
1/(4
√
e)+ε

and we are done.

The earliest form of the following lemma appears to have been given by
Vinogradov in 1927 in [V] and later Buchstab (see [Buc]) proved similar
results. A good summary of the early literature for first kth power non-
residues mod n can be found in Chapter 1 of [N1].

Lemma 4.5. For any ε > 0, there exists a constant Mε such that for
every odd prime p and for every q ∈ Z+ with q | p− 1 and q > Mε, there is
a qth power non-residue of p less than pε.

We are now ready to prove our first general upper bound result. It should
be mentioned that many of the ideas used in the proof of this theorem
are from Adleman and Leighton in [AL] where they give a deterministic
primality test that runs in time Oε(n(1+6

√
e)−1+ε).

Theorem 4.6. If n is an odd composite integer and if n is not the
product of three distinct primes, then for every ε > 0,

w(n) = Oε(n1/(8
√
e)+ε).

P r o o f. By Lemma 4.2, we can assume that n is square-free. We will first
prove the result for the case where n has 4 or more distinct prime factors.

Let p, q be the two smallest prime factors of n. Thus we must have
pq ≤ n1/2. Two cases will be considered.

(i) ν2(p−1) = ν2(q−1). Letting χ(x) = (x/(pq)) we see by Theorem 3.6
that there is an a < Cε(pq)1/(4

√
e)+ε such that (a/(pq)) = −1. So by Lemma

2.3,
w(n) ≤ a < Cε(pq)1/(4

√
e)+ε = Oε(n1/(8

√
e)+ε).

(ii) ν2(p−1) 6= ν2(q−1). Without loss of generality, we can assume that
ν2(q − 1) > ν2(p− 1). Then by Lemma 4.4,

w(n) < Cεq
1/(4
√
e)+ε = Oε(n1/(12

√
e)+ε)

since q ≤ n1/3.
This concludes the case where there are at least 4 distinct prime factors.

Now consider the case where n has exactly 2 distinct prime factors, say p
and q, with p < q. The proof for this case was suggested by Carl Pomerance.
We will consider two cases.

1) p−1 - q−1. There must exist a prime r such that rb ‖ p−1 but rb - q−1.
Since n = pq ≡ q 6≡ 1 mod rb, rb -n− 1. If g is a primitive root mod p and ζ
is a primitive rth root of unity, we can define an rth power residue character
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χ mod p by setting χ(g) = ζ. So by Theorem 3.6, we see that there exists an
rth power non-residue of p, say a, with a < Cεp

1/(4
√
e)+ε < Cεn

1/(8
√
e)+ε.

Now let v(a) be the smallest positive integer with a ≡ gv(a) mod p. Since a
is an rth power non-residue of p, r - v(a). Also

1 ≡ ala(p) ≡ (gv(a))la(p) mod p

so p − 1 | v(a)la(p) and thus rb | la(p). Since rb -n − 1, an−1 6≡ 1 mod p and
thus an−1 6≡ 1 mod n. So a is a witness for n and w(n) ≤ a = Oε(n1/(8

√
e)+ε).

2) p−1 | q−1. First for every ε > 0, let Mε be the constant from Lemma
4.5 such that for all odd primes p and for all positive integersm withm ≥Mε

and m | p− 1, there is an mth power non-residue of p less than pε. Also let
m = (q − 1)/(p− 1). Once again, two cases will be considered.

(i) m < Mε. Let r be a prime factor of m and say that rb ‖ q − 1. Then
rb - p − 1. As above there exists an rth power non-residue of q, say a, with
a < Cεq

1/(4
√
e)+ε. As above rb -n − 1 but rb | la(q) so an−1 6≡ 1 mod q and

thus an−1 6≡ 1 mod n and a is a witness for n. Since q < mp = (mn)/q, we
have q <

√
mn <

√
Mε
√
n. Therefore

w(n) ≤ a < Cε(
√
Mεn)1/(4

√
e)+ε = Oε(n1/(8

√
e)+ε)

and the proof for this case is complete.

(ii) m ≥ Mε. Since m | q − 1, by Lemma 4.5 there is an mth power
non-residue mod q, say a, with a < qε. So there must be some prime r with
rb ‖m and b ≥ 1 such that a is not an rbth power mod q. Suppose that
rk ‖ q − 1. Thus, k ≥ b and rk−b ‖ p− 1. Note that

n ≡ pq ≡ p 6≡ 1 mod rk−b+1.

Let g be a primitive root mod q and as before let v(a) be the smallest
positive integer such that a ≡ gv(a) mod q. Since a is not an rbth power
mod q, we have rb - v(a) so νr(v(a), q− 1) ≤ νr(v(a)) ≤ b− 1. Also we know
that la(q) = (q−1)/(v(a), q−1). So νr(la(q)) = νr(q−1)−νr((v(a), q−1)) ≥
k−b+1. Since rk−b+1 -n−1, an−1 6≡ 1 mod q and so an−1 6≡ 1 mod n. Thus
w(n) ≤ a ≤ qε < nε and this concludes the proof of Theorem 4.6.

For those n with exactly 3 distinct prime factors we can only prove the
following.

Theorem 4.7. If n is an odd composite number with exactly 3 distinct
prime factors, then for all ε > 0,

w(n) = Oε(n1/(6
√
e)+ε).

P r o o f. From Lemma 4.2 we can assume that n = pqr where p, q, and
r are distinct odd primes with p < r and q < r. Without loss of generality,
two cases can be considered.
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(i) ν2(p− 1) < ν2(q − 1). By Lemma 4.4, for all ε > 0,

w(n) < Cεq
1/(4
√
e)+ε = Oε(n1/(8

√
e)+ε)

with the last step coming from the fact that q < n1/2.

(ii) ν2(p− 1) = ν2(q − 1). From Theorem 3.6 by letting χ(d) = (d/(pq))
we know that we can find an a ∈ Z+ such that

a < Kε(pq)1/(4
√
e)+ε and (a/(pq)) = −1.

So from Lemma 2.3 using the fact that pq ≤ n2/3 we must have

w(n) ≤ a < Kε(pq)1/(4
√
e)+ε = Oε(n1/(6

√
e)+ε)

and this completes the proof of Theorem 4.7.
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