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1. Introduction. A partition of a positive integer n is a non-increasing
sequence of positive integers whose sum is n. The number of such partitions
is denoted by p(n). If Λ = λ1 ≥ . . . ≥ λs is a partition of n, then the
Ferrers–Young diagram of Λ is the s-row collection of nodes:

• • . . . • • λ1 nodes
• • . . . • λ2 nodes
...
• . . . • λs nodes

Label the nodes in the Ferrers–Young diagram of a partition as if it were
a matrix. Let λ′j denote the number of nodes in column j. Then the hook
number H(i, j) of the (i, j) node is defined by

(1) H(i, j) := λi + λ′j − j − i+ 1.

Definition 1. If t is a positive integer, then a partition of n is called
a t-core of n if none of the hook numbers of its associated Ferrers–Young
diagram are multiples of t. Moreover, let Ct(n) denote the number of t-core
partitions of n.

Example 1. Let Λ denote the partition of 9 defined by Λ = 5, 3, 1. Then
the Ferrers–Young diagram of Λ is

1 2 3 4 5
1 • • • • •
2 • • •
3 •
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The hook numbers are H(1, 1) = 7, H(1, 2) = 5, H(1, 3) = 4, H(1, 4) = 2,
H(1, 5) = 1, H(2, 1) = 4, H(2, 2) = 2, H(2, 3) = 1, and H(3, 1) = 1.
Therefore, if t 6∈ {1, 2, 4, 5, 7}, then Λ is a t-core.

These partitions arise in a number of settings. In combinatorial number
theory, Garvan, Kim, and Stanton [13] used them to obtain combinato-
rial proofs of certain special cases of the Ramanujan congruences for p(n).
Specifically, they proved that

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11), p(25n+ 24) ≡ 0 (mod 25),

by defining explicit statistics, called cranks, which divide the relevant sets
of partitions into equinumerous classes.

In representation theory, t-cores for t prime first arose in connection with
Nakayama’s conjecture [21, 33] which describes the distribution of characters
of the symmetric group into Brauer blocks (see [6, 20, 21, 33] for definitions).
Brauer blocks describe the interplay between irreducible complex characters
and the irreducible p-modular characters over finite fields with characteristic
p. More recently, Fong and Srinivasan [11] showed how these partitions arise
again in a similar context. They proved that t-cores, even when t is compos-
ite, describe the distribution of characters of finite general linear groups and
unitary groups into Brauer blocks. Of course, partitions arise in a number
of other important ways in representation theory. For an important recent
development see [2].

As a consequence, the arithmetic properties of Ct(n), the number of t-
core partitions of n has been of interest in combinatorial number theory and
representation theory. Hence Ct(n) has been the focus of recent investiga-
tion. For instance, Garvan [12] proved some “Ramanujan-type” congruences
for Cp(n) for certain special small primes p, and Hirschhorn and Sellers [18]
proved the following multiplicative formulas for C4(n):

(2)

C4

(
32λ+1n+

5 · 32λ − 5
8

)
= 3λC4(3n),

C4

(
32λ+1n+

13 · 32λ − 5
8

)
= (2 · 3λ − 1)C4(3n+ 1),

C4

(
32λ+2n+

7 · 32λ+1 − 5
8

)
=

3λ+1 − 1
2

C4(9n+ 2),

C4

(
32λ+2n+

23 · 32λ+1 − 5
8

)
=

3λ+1 − 1
2

C4(9n+ 8),

where λ is a positive integer. They also conjectured similar multiplicative
properties for C4(n) for other primes p. In this paper, we prove these con-
jectures using the index formulae for class numbers.
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The t-core conjecture has been the topic of a number of papers [10, 12,
16, 23, 24, 25, 29, 30]. This conjecture asserted that if t ≥ 4, then Ct(n) > 0
for every non-negative integer n. Recently, Granville and Ono [16, 29, 30]
have successfully completed the proof of this conjecture using the theory of
modular forms and quadratic forms, and the proof has been generalized and
simplified by Kiming [23, 24]. As a consequence of this theorem, it follows
that if p ≥ 5 is prime, then every symmetric group and every alternating
group has at least one defect zero p-block. This resolved the last case of
Brauer’s problem 19 for finite simple groups, and so if G is a finite simple
group and p ≥ 5 is prime, then G has a p-defect zero character.

In this paper we examine the arithmetic properties of C4(n) using Gauss’
theory of class numbers and the combinatorics of abaci. In representation
theory, the following important fundamental result for 4-cores follows from
the work of Fong and Srinivasan [11, 28]:

Theorem 1. Let q be the order of the finite field GF(q). If r is an
odd prime for which r | q2 + 1 and n ≥ 4, then C4(n) equals the number of
r-defect zero unipotent characters of the finite general linear group GL(n, q).

Hence every result regarding C4(n) is also a statement concerning the
set of suitable r-defect zero unipotent characters of GL(n, q).

2. Consequences of class number theorems. First we fix notation.
Let CL(N) denote the class group of discriminant N binary quadratic forms,
and let h(N) denote its order, the discriminant N class number. In this
section we show that C4(n) is related to h(−32n− 20), and then as a conse-
quence we obtain immediate corollaries which follow from well known prop-
erties of class numbers. We follow Dirichlet’s refinement in describing the
composition law:

Composition Law. Let f, g ∈ CL(N) be primitive binary quadratic
forms given by

f = a0u
2 + b0uv + c0v

2 and g = a1u
2 + b1uv + c1v

2.

If gcd(a0, a1, (b0 + b1)/2) = 1, then let B be the unique integer (mod 2a0a1)
for which

B ≡ b0 (mod 2a0), B ≡ b1 (mod 2a1), and B2 ≡ N (mod 4a0a1).

Then the composition of f and g is defined by

f · g := a0a1u
2 +Buv +

B2 −N
4a0a1

v2.

If f(u, v) and g(u, v) do not satisfy the gcd condition of the composition
law, replace them by the properly equivalent forms f(u, v) and g(−v, u)
which do satisfy the gcd condition. If N ≡ 0 (mod 4), then the form u2 +
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Nv2 represents the identity, the principal class of CL(N). Furthermore, the
classes containing au2 + buv + cv2 and au2 − buv + cv2 are inverse to each
other in CL(N).

Returning to t-cores we now recall an important fact. The generating
function for Ct(n) [13, 21, 25] is given by the following convenient infinite
product:

(3)
∞∑
n=0

Ct(n)xn =
∞∏
n=1

(1− xnt)t
1− xn .

We use this along with the Jacobi theta function identity:
∞∏
n=1

(1− x2n)2

1− xn =
∞∑
n=0

x(n2+n)/2

to derive the following theorem for 4-cores.

Theorem 2. If 8n+ 5 is square-free, then

C4(n) = 1
2h(−32n− 20).

P r o o f. Replace x by x8 in the generating function (3), then multiply the
resulting power series by x5 to obtain the following convenient factorization
using the Jacobi theta function identity:

∞∑
n=0

C4(n)x8n+5 = x5
∞∏
n=1

(1− x32n)4

1− x8n

= x5
∞∏
n=1

(1− x16n)2

1− x8n

∞∏
n=1

(1− x32n)4

(1− x16n)2

=
∞∑

i=0

x(2i+1)2
∞∑

j=0

x2(2j+1)2
∞∑

k=0

x2(2k+1)2

=
∑

n≥0

R(8n+ 5, Q)x8n+5.

Here R(8n + 5, Q) is the number of representations of 8n + 5 by the form
Q = x2 + 2y2 + 2z2 where x, y, and z > 0 are odd. By [23, Th. 86], since
the class of the form Q is the sole member of its genus of ternary quadratic
forms,

R(8n+ 5, Q) = h(−32n− 20)2−t(d/Ω
2)%,

where t(w) is the number of odd prime factors of w, d is the determinant of
Q, % depends on the discriminant, and Ω is the gcd of the two-row minor
determinants of Q. Therefore, following Jones [22], in our case, we have
d = 4, and Ω = 2, also, % = 1

2 , since −8n− 5 ≡ −1 (mod 4). Therefore,
C4(n) = R(8n+ 5, Q) = 1

2h(−32n− 20).
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We obtain an immediate corollary which leads to an elegant formula for
those C4(n) for which 8n+ 5 is square-free. First, we recall the definition of
the Kronecker character χD. Define χD(n) for positive integers n by

χD(n) :=
∏(

D

pi

)ai

where n =
∏
paii is the prime factorization of n, and

(
D
p

)
is the Legendre

symbol when p is an odd prime and
(
D

2

)
:=
{

0 if D is even,
(−1)(D2−1)/8 if D is odd.

As a consequence of the well known formula for class numbers we obtain:

Corollary 1. If n is a non-negative integer for which 8n+5 is square-
free and D = −32n− 20, then

C4(n) = − 1
64n+ 40

32n+20∑
m=1

χD(m)m.

We immediately obtain the conjectures of Hirschhorn and Sellers.

Corollary 2. If p is a prime and N is a positive integer with ordp(N)
≤ 1, then for every positive integer k,

C4

(
Np2k − 5

8

)
=
(

1 +
pk+1 − p
p− 1

− pk − 1
p− 1

·
(−N

p

))
· C4

(
N − 5

8

)

where
(−N
p

)
is the Legendre symbol and

(−N
p

)
= 0 when p |N.

P r o o f. A representation of N by Q = x2 + 2y2 + 2z2 is called primitive
if gcd(x, y, z) = 1. If 8n + 5 is square-free, then C4(n) = R(8n + 5, Q) is
the number of positive primitive representations of 8n+ 5 by Q since there
can be no non-primitive representations. However, in the general case, let
r(n,Q) denote the number of primitive representations of n by Q. It follows
that

(4) C4(n) = R(8n+ 5, Q) =
∑

d2|8n+5

r

(
8n+ 5
d2 , Q

)
.

However, by an argument similar to the one given in Theorem 2, it follows
that

(5) r

(
8n+ 5
d2

)
=

1
2
h

(−32n− 20
d2

)
.

The multiplicative formula now follows from the following well known
property which expresses h(−Nf2) in terms of h(−N) when −N is a fun-



254 K. Ono and L. Sze

damental discriminant [8, 7.28]:

h(−Nf2) = h(−N)f
∏

p|f

(
1−

(−N
p

)

p

)
.

However, it is an easy exercise to verify that the above formula generalizes
if −N is not square-free. In particular, it follows that if ordp(N) ≤ 1, then
for every positive integer i,

(6) h(−Np2i) = h(−N)pi
(

1−
(−N
p

)

p

)
.

Therefore by (4)–(6) we find that

C4

(
Np2k − 5

8

)
= R(Np2k, Q) =

∑

0≤i≤k

∑

d2|N
r

(
Np2i

d2 , Q

)

=
1
2

∑

0≤i≤k

∑

d2|N
h

(−Np2i

d2

)

=
1
2

∑

d2|N
h

(−N
d2

)
+

1
2

∑

1≤i≤k

∑

d2|N
h

(−Np2i

d2

)

= C4

(
N − 5

8

)
+

1
2

∑

1≤i≤k

∑

d2|N
h

(−N
d2

)
pi
(

1−
(−N
p

)

p

)

= C4

(
N − 5

8

)
+ C4

(
N − 5

8

)(
1−

(−N
p

)

p

) ∑

1≤i≤k
pi.

It is easy to verify that this agrees with the asserted formula.

It is clear that one obtains many congruences for C4(n) from Corollary
2. However, by elementary genus theory, we obtain a different sort of con-
gruence.

Corollary 3. If 8n + 5 is a positive square-free integer with t prime
divisors, then

C4(n) ≡ 0 (mod 2t−1).

It turns out that it is easy to determine the exact parity of C4(n) directly.
The conjugate of a partition Λ is the partition whose parts are the column
lengths of the Ferrers–Young diagram of Λ. Since the conjugate partition
of a 4-core is also a 4-core, determining those n for which C4(n) is odd
reduces to finding all n that admit an odd number of self-conjugate 4-core
partitions. Here we compute sc4(n), the number of self conjugate 4-cores
of n. This result is also given in [19], and an analogous result is obtained by
Garvan, Kim, and Stanton for 5-cores [13, Th.7].
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Theorem 3. Let sc4(n) denote the number of self-conjugate 4-core par-
titions of n. If the factorization of 8n + 5 into distinct primes pi and qj
is

8n+ 5 =
∏

pαii q
βj
j ,

where pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4), then

sc4(n) =
{

0 if any βj ≡ 1 (mod 2),
1
2

∏
(αi + 1) otherwise.

P r o o f. We use the bijection given by Garvan, Kim, and Stanton [13]
between t-cores and solutions to particular quadratic forms. In particular,
the number of 4-core partitions of n is equal to the number of vectors
(n0, n1, n2, n3) ∈ Z4 on the hyperplane n0 + n1 + n2 + n3 = 0 which satisfy

n = 2(n2
0 + n2

1 + n2
2 + n2

3) + n1 + 2n2 + 3n3.

Furthermore, under that bijection, the 4-tuples (n0, n1, n2, n3) and (−n3,
−n2,−n1,−n0) correspond to conjugate 4-cores. Therefore, self-conjugate
4-cores correspond exactly to 4-tuples of the form (a, b,−b,−a). It follows
that the number of self-conjugate 4-cores of n is the number of solutions of

16n+ 10 = (8a− 3)2 + (8b− 1)2.

By congruences, these are the only ways of writing 16n + 10 as the sum of
two squares up to reorderings and sign changes. Thus, the number of 4-core
partitions of n is the number of ways to get the factorization 16n + 10 =
x2 +y2 = (x+ iy)(x− iy) up to sign changes on the x and y. This number is
well known to be 0 if ordqj (16n+10) ≡ 1 (mod 2) for any qj and is equal to
the number of positive factors of 8n+ 5 divisible only by primes congruent
to 1 (mod 4), otherwise. We divide the divisor function

∏
(αi + 1) in half

to get the actual number of usable solutions since 8n + 5 is not a perfect
square, and the number of factorizations is counted twice when counting
divisors.

R e m a r k 1. The value C4(8n+ 5) is odd if and only if there are an odd
number of self-conjugate 4-cores of n. In general, sc4(n) is odd if and only if

8n+ 5 =
∏

pαN2,

where p is a prime, gcd(p,N) = 1, α ≡ 1 (mod 4) and p ≡ 1 (mod 4).

3. Correspondence between 4-cores and binary quadratic forms.
In this section, we construct a correspondence between 4-cores and binary
quadratic forms which yields an alternative proof of Theorem 2. We use
the combinatorial theory of “abaci” as developed in [10, 21, 28] to classify
4-cores which leads to a structure theorem where the parts of any 4-core
partition are determined.
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Under this correspondence, if 8n + 5 is square-free with t prime divi-
sors, then the set of 4-cores of n is a 2t−1-fold cover of a unique genus in
CL(−32n − 20). In particular, if 8n + 5 is prime, then the set of 4-cores
of n is naturally an abelian group with odd order, namely the subgroup of
squares in CL(−32n− 20).

Let Λ = λ1 ≥ . . . ≥ λs > 0 be a partition of a positive integer n. Then
for any positive integer t ≥ 2, there exists an associated abacus consisting
of s beads on t “rods” built in the following manner. For each 1 ≤ i ≤ s,
define structure numbers

Bi = λi − i+ s.

Note that the integers Bi are strictly decreasing by construction. For each
Bi, there is a unique pair of integers (ri, ci) for which

Bi = t(ri − 1) + ci,

and 0 ≤ ci ≤ t−1. An abacus for t-cores consists of t rods numbered from 0
to t−1, and infinitely many rows numbered in increasing order. The abacus
for the partition Λ consists of one bead for each Bi placed in row ri and
column ci, a position we denote by (ri, ci).

Example 2. If Λ denotes the 4-core partition of 12 given by Λ := 7, 4, 1,
then the structure numbers are B1 = 7− 1 + 3 = 9, B2 = 4− 2 + 3 = 5, and
B3 = 1 − 3 + 3 = 1. The abacus when t = 4 consists of a single column of
beads in positions (3, 1), (2, 1), and (1, 1). Graphically, the abacus for this
partition is

0 1 2 3
1 B3

2 B2

3 B1

Theorem 4. Let A be an abacus for a partition Λ, and let ni denote the
number of beads in column i. Then Λ is a t-core partition if and only if for
every 0 ≤ i ≤ t− 1 the ni beads in column i are the beads in positions

(1, i), (2, i), . . . , (ni, i).

In other words, there are no gaps between consecutive beads in any
column, and the top bead in every non-empty column is in row 1.

Therefore, we may let t-tuples of non-negative integers A = (n0, . . . , nt−1)
denote the abaci of t-cores. As the following lemma shows, these “gapless”
abacus positions do not represent t-cores uniquely [10] when we allow for
parts of size 0 in partitions.

Lemma 1. The two abaci A1 = (n0, n1, . . . , nt−1) and A2 = (nt−1 +
1, n0, n1, . . . , nt−2) represent the same t-core partition.
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Now because of this lemma, it is clear that there are many abaci for any
given partition once we allow for abaci where the number of beads exceeds
the number of parts in a partition. In such cases, some of the beads will
correspond to parts of size zero in the partition.

Since it is our goal to use abaci as labels for all t-cores, it is important
for us to normalize them properly. Although the following exposition may
be generalized to arbitrary t-cores, it is not necessary for the development
of our main goals. Hence, we restrict our attention to the case where t = 4.

Every 4-core has a representation by a 4-tuple which in turn by re-
peated application of Lemma 1 is representable by an abacus of the form
(0, B,C,D). The bead in the upper-left corner of such an abacus corresponds
to the smallest part of the partition and clearly is one of 1, 2, or 3 since
these are the only integers representable by beads in positions (1, 1), (1, 2), or
(1, 3). Hence, it is clear that there is a unique abacus of the form (0, B, C,D)
for every 4-core, Thus, there is a one-to-one correspondence between the set
of abaci of the form (0, B,C,D) and the set of all 4-cores

(0, B,C,D)↔ {all 4-core partitions}
where B,C, and D are non-negative integers. Therefore, we shall always
assume that the first column in every abacus contains no beads.

Lemma 2. If A1 = (0, B,C,D) is a 4-core partition of n, then A2 =
(0, D + 1, B, C) is a 4-core partition of n+D + 1.

Thus, by Lemma 2, we find that 4-cores give birth to other 4-cores in a
very systematic way.

Definition 2. A 4-core partition of n is called new if it is represented
by an abacus of the form A = (0, 0, C,D).

By Lemma 2, it is easy to see that every 4-core has a unique new core
ancestor, and is one of three types. The following definition captures their
essential characteristics.

Definition 3. Let A = (0, 0, C,D) be a new 4-core partition and let g
be a non-negative integer.

I. The Type I generation g descendant of A is the 4-core whose abacus
is of the form (0, g, C + g,D + g). Denote this 4-core by I(g, C,D).

II. The Type II generation g descendant of A is the 4-core whose abacus
is of the form (0, D + g + 1, g, C + g). Denote this 4-core by II(g, C,D).

III. The Type III generation g descendant of A is the 4-core whose abacus
is of the form (0, C+g+ 1, D+g+ 1, g). Denote this 4-core by III(g, C,D).

We now state the structure theorem that determines the parts of every
4-core partition.
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Theorem 5 (Structure Theorem). Let A = (0, 0, C,D) be a new 4-core
partition and let g ≥ 0 be a non-negative integer.

I. Define integers d and e by

d := min(C,D) and e := |C −D|.
If C ≥ D, then the parts of the 4-core I(g, C,D) are:

g + 2d+ 3e− 1, g + 2d+ 3e− 4, . . . , g + 2d+ 2 (e integers),

g + 2d, g + 2d, g + 2d− 2, g + 2d− 2, . . . , g + 2, g + 2 (d pairs),

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

If C < D, then the parts of the 4-core I(g, C,D) are:

g + 2d+ 3e, g + 2d+ 3e− 3, . . . , g + 2d+ 3 (e integers),

g + 2d, g + 2d, g + 2d− 2, g + 2d− 2, . . . , g + 2, g + 2 (d pairs),

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

II. Define integers d and e by

d := min(2C + 1, 2D + 1) and e := |C −D|.
If C ≥ D, then the parts of the 4-core II(g, C,D) are:

g + d+ 3e− 2, g + d+ 3e− 5, . . . , g + d+ 1 (e integers),

g + d, g + d− 1, g + d− 2, . . . , g + 1 (d consecutive integers),

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

If C < D, then the parts of the 4-core II(g, C,D) are:

g + d+ 3e, g + d+ 3e− 3, . . . , g + d+ 3 (e integers),

g + d, g + d− 1, g + d− 2, . . . , g + 1 (d consecutive integers),

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

III. Define integers d and e by

d := min(C + 1, D + 1) and e := |C −D|.
If C ≥ D, then the parts of the 4-core III(g, C,D) are:

g + 2d+ 3e− 2, g + 2d+ 3e− 5, . . . , g + 2d+ 1 (e integers),

g + 2d− 1, g + 2d− 1, g + 2d− 3, g + 2d− 3, . . . , g + 1, g + 1 (d pairs),

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

If C < D, then the parts of the 4-core III(g, C,D) are:

g + 2d+ 3e− 1, g + 2d+ 3e− 4, . . . , g + 2d+ 2 (e integers),

g + 2d− 1, g + 2d− 1, g + 2d− 3, g + 2d− 3, . . . , g + 1, g + 1 (d pairs),

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).
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P r o o f. Two key observations and an illustration are first in order.

O b s e r v a t i o n 1. The smallest part in a 4-core partition is given by
λs = Bs, the structure number of the upper-left bead in the abacus.

O b s e r v a t i o n 2. The difference between two consecutive structure
numbers Bi,

Bi−1 −Bi = (λi−1 − (i− 1) + s)− (λi − i+ s) = λi−1 − λi + 1

is one more than the difference between the sizes of two consecutive parts.
Consequently, we find that

λi−1 = (Bi−1 −Bi) + λi − 1.

All the parts are obtained iteratively from the structure numbers in the
following way. To determine λi−1 from λi, simply add Bi−1 −Bi − 1 to λi.
Fortunately, it is simple to deduce Bi−1 −Bi from the abacus.

The following illustration will be helpful. Consider the 4-core represented
by I(1, 2, 1). By Definition 3 we use the abacus A = (0, 1, 3, 2):

0 1 2 3
1 • • •
2 • •
3 •

If we replace each of the beads in this abacus by their associated structure
numbers, B1 = 10, B2 = 7, B3 = 6, B4 = 3, B5 = 2, and B6 = 1, we get the
following abacus.

0 1 2 3
1 1 2 3
2 6 7
3 10

Since the smallest part is λ6 = B6 = 1, we may now get the remaining parts
inductively: λ5 = 1, λ4 = 1, λ3 = 3, λ2 = 3, and λ1 = 5.

We now prove the case illustrated by the above example.
C a s e I (for the structure of I(g, C,D) where C ≥ D). I(g, C,D) corre-

sponds by Definition 3 to the abacus of the form A = (0, g, C + g,D + g).
This abacus consists, from the top down, of up to three distinct sections.
The first section consists of g completely filled rows except for column 0.
The second section consists of d = C rows with beads in columns 2 and 3.
Finally, the last section consists of e = C−D rows with beads only in column
2. We shall refer to these three parts as the g-block, d-block and e-block.

We begin by first examining the g-block. If g ≥ 1, the g-block consists
of beads in positions (r, s) for 1 ≤ r ≤ g and 1 ≤ s ≤ 3. The set of structure
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numbers for these beads is

{z ∈ Z+ : 1 ≤ z ≤ 4g − 1 and z 6≡ 0 (mod 4)}
= {1, 2, 3, 5, 6, 7, 9, 10, 11, . . . , 4g − 5, 4g − 3, 4g − 2, 4g − 1}.

Since the smallest structure number is 1, the smallest part size is also 1.
Now we inductively produce the remaining part sizes. By Observation 2,
the next few part sizes are given by

(2− 1) + 1− 1 = 1,

(3− 2) + 1− 1 = 1,

(5− 3) + 1− 1 = 2,

(6− 5) + 2− 1 = 2,

· ·
· ·

Since the structure number of the three consecutive beads in each row
differ by 1, the three beads represent one part size. Furthermore, since
the structure number of beads in positions (r, 3) and (r + 1, 1) differ by
2 = 4(r + 1 − 1) + 1 − (4(r − 1) + 3), consecutive rows of beads represent
parts that differ by 1. Thus, the g-block represents the following parts:

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

If g = 0, then the above formulation still holds because no parts are repre-
sented.

The analysis of the d-block, which consists of d = min(C,D) = D rows
of beads in column 2 and column 3 is similar. Since the two columns are
adjacent, the structure numbers represented by each row of beads differ by
one. Thus, each row represents a pair of parts of equal size. Since beads in
positions (r, 3) and (r+1, 2) have the property that their structure numbers
differ by 3 = 4(r+1−1)+2− (4(r−1)+3), consecutive rows of the d-block
represent part sizes that differ by 2.

Finally, we determine the size represented by the top row of this block by
noting that the difference of the structure numbers of the adjoining beads
between the d-block, (g+ 1, 2), and the g-block, (g, 3), is 3 = 4(g+ 1− 1) +
2− (4(g− 1) + 3); thus, the size represented by the first row of this block is
g + 3− 1 = g + 2. Hence, all the parts represented by the d-block are:

g + 2d, g + 2d, g + 2d− 2, g + 2d− 2, . . . , g + 2, g + 2 (d pairs).

If g = 0 and d > 0, there is no g-block, and the d-block bead (1, 2) is the
bead with the smallest structure number, 2. Thus, 2 is also the smallest
part. In this case the d-block still satisfies the above formula.

The e-block consists of the e = C −D beads in column 2 at the abacus
bottom. Because the structure numbers of consecutive beads in a column
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differ by 4, the e-block represents consecutive parts whose sizes differ by 3.
The bead with the smallest structure number in this block is (g+d+1, 2). If
g+d > 0, then the bead with the largest structure number not in the e-block
is (g + d, 3). In this case, the difference between the structure numbers of
these two beads is 3 = (4(g + d + 1 − 1) + 2) − (4(g + d − 1) + 3). Thus,
the first e-block part is 2 more than the largest non-e-block part, g + 2d.
Therefore, the e-block represents the following parts:

g + 2d+ 3e− 1, g + 2d+ 3e− 4, . . . , g + 2d+ 5, g + 2d+ 2 (e integers).

If g = d = 0 and e > 0, then the e-block bead (1, 2) is the bead with the
smallest structure number, 2. Thus, the above formulation for the e-block
parts with d = 0 and g = 0 still holds. If d = e = g = 0, then there are no
beads and no parts.

The other cases follow in exactly the same way.

Similar structure theorems for t-cores when t 6= 4 are derived in exactly
the same way. The following elementary proposition is the critical link re-
quired for defining the correspondence between 4-cores and binary quadratic
forms.

Proposition 1. Let A = (0, 0, C,D) be a new 4-core partition and let
g be a non-negative integer.

I. I(g, C,D) is a partition of n where

8n+ 5 = (2C − 2D + 2g)2 + (2C + 2D + 2g + 2)2 + (2C − 2D − 2g − 1)2.

II. II(g, C,D) is a partition of n where

8n+ 5 = (2C − 2D + 2g)2 + (2C + 2D + 2g + 3)2 + (2C − 2D − 2g − 2)2.

III. III(g, C,D) is a partition of n where

8n+ 5 = (2C − 2D+ 2g+ 1)2 + (2C + 2D+ 2g+ 4)2 + (2C − 2D− 2g− 2)2.

P r o o f. We only prove the case where C ≥ D since the remaining proofs
are similar.

By the Structure Theorem, we can determine the size of the partition
I(g, C,D) by simply adding up the parts given by the Structure Theorem.

8n+ 5 = 8
(

3
g∑

i=1

i+ 2
D∑

i=1

(g + 2i) +
C−D∑

i=1

(g + 2D + 3i− 1)
)

+ 5

= 8
(

3
2g(g + 1) + (2gD + 2D2 + 2D)

+
(
g(C −D) + 2D(C −D) + 1

2 (C −D) + 3
2 (C −D)2

))
+ 5

= 5 + 12g + 12D + 8gD + 12g2 + 4C + 8gC − 8DC + 12C2 + 12D2.

This is exactly the expansion of (2C−2D+2g)2+(2C+2D+2g+2)2+(2C−
2D− 2g − 1)2. The remaining 5 cases follow in exactly the same manner.
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R e m a r k 2. Proposition 1 follows easily from the work of Erdmann and
Michler in [10]. Proposition 1 shows that to each 4-core partition of n there
is a representation of 8n + 5 = x2 + y2 + z2 as a sum of three squares.
By congruence conditions, x, y, and z belong to some permutation of the
residue classes 1 (mod 2), 2 (mod 4), and 0 (mod 4). Let

J(8n+ 5) = {(x, y, z) ∈ Z3 : 8n+ 5 = x2 + y2 + z2,

(x, y, z) ≡ (±1, 2, 0) (mod 4)}.
Now fix a map ψ : {4-cores} → J(8n+ 5) defined by:

(7)

I(g, C,D)→ (2C − 2D − 2g − 1, 2C − 2D + 2g, 2C + 2D + 2g + 2),

II(g, C,D)→ (2C + 2D + 2g + 3, 2C − 2D + 2g, 2C − 2D − 2g − 2),

III(g, C,D)→
(2C − 2D + 2g + 1, 2C + 2D + 2g + 4, 2C − 2D − 2g − 2),

where the triples are reordered if necessary so that they belong to J(8n+5).
Let

K(8n+ 5) = J(8n+ 5)/∼,
where (x, y, z) ∼ (x′, y′, z′) if they differ by 2 sign changes. For example,
(1, 2, 4) ∼ (1,−2,−4).

Proposition 2. The map ψ is a bijection between {4-cores of n} and
K(8n+ 5).

P r o o f. We restrict ourselves to establishing the correspondence between
type II(g, C,D) and (x, y, z) ∈ K(8n+5) where |x| = max(|x|, |y|, |z|). Such
triples can only be the image of a II(g, C,D) because it is the only type
where the largest entry, in absolute value, in the triple (x, y, z) is odd.

So we simply need to show that all such classes with representative
(x, y, z) ∈ K(8n+5) are images of a unique II(g, C,D) partition. So suppose
that x = 2C + 2D + 2g + 3. Then either{

y = 2C − 2D + 2g,
z + 2 = 2C − 2D − 2g,

or {
z = 2C − 2D + 2g,
y + 2 = 2C − 2D − 2g.

The choice is forced by whether y ≡ x + 1 (mod 4) or z ≡ x + 1 (mod 4).
Without loss of generality suppose that y ≡ x+ 1 (mod 4) and 2C − 2D −
2g = z + 2. Then solving for C,D, and g yields

D =
x− y − 3

4
, g =

y − z − 2
4

and C =
x+ z − 1

4
.

By construction, these are all integers, and we simply need to show that
precisely one of the elements in the class of (x, y, z) in K(8n + 5) has the
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property that g, C, and D determined in this manner are non-negative in-
tegers. It is easy to see that x must be positive. Let (x, y, z) be one of the
elements in the class with this property. The only two possible elements
are (x, y, z) and (x,−y,−z). Furthermore, D,C ≥ 0 since x is maximal.
Precisely one of these triples has the desired property that g ≥ 0 also.

The second case is slightly messier, and in a similar way we obtain a
bijection between the set of type I’s and III’s and the remaining classes of
K(8n+ 5).

By Gauss [14, Art. 278], for each representation of 8n + 5 as a sum of
three squares, there corresponds a binary quadratic form of discriminant
−32n − 20. This correspondence is invariant under a pair of simultaneous
sign changes on a solution to the representation of 8n+ 5 as a sum of three
squares.

Explicitly, his correspondence is as follows: for (x, y, z) ∈ J(8n + 5) let
(m0,m1,m2, n0, n1, n2) be an integral solution to

(8) x = m1n2 −m2n1, y = m2n0 −m0n2, z = m0n1 −m1n0

(a solution is guaranteed by [14, Art. 279]). Then

(9) (m0u+ n0v)2 + (m1u+ n1v)2 + (m2u+ n2v)2

is a form in CL(−32n− 20). Moreover, this map is independent of (m0,m1,
m2, n0, n1, n2). Therefore, there is a map φ : {4-cores of n} → CL(−32n −
20), when 8n + 5 is square-free, formed by composing ψ, (8), and (9). It is
given by

φ : Λ→ A→ (x, y, z)→ (m0,m1,m2, n0, n1, n2)→ binary quadratic form.

R e m a r k 3. Here are some important observations which will be used
in the sequel.

(i) Changing the sign on one element of (x, y, z) ∈ J(8n + 5) to say,
(−x, y, z) changes the solution for (8) to (m0,−m1,−m2,−n0, n1, n2) and
the corresponding binary quadratic form (9) becomes

(m0u− n0v)2 + (−m1u+ n1v)2 + (−m2u+ n2v)2.

This is the inverse to the quadratic form (9) associated with (x, y, z). Thus,
Gauss’ map remains invariant over pairs of sign changes, and is thus well
defined on K(8n+ 5).

(ii) If one of x, y, or z is zero, the associated binary quadratic form is
the principal form. For instance suppose that z = 0. Then a solution to (8)
is m0 = 0, n0 = −y,m1 = x, n1 = 0,m2 = 0, and n2 = 1. Substituting into
(9), we get

(−yu)2 + (xu)2 + v2 = (x2 + y2)u2 + v2 = (8n+ 5)u2 + v2,

which is a representative for the principal class.



264 K. Ono and L. Sze

Before proceeding, we prove the following conjugation identities which
are useful in the sequel. We shall let A1 ∼ A2 signify that A1 and A2 are
conjugate partitions.

Proposition 3. The following pairs of partitions are conjugate 4-core
partitions.

(i) If D ≥ C, then

I(g, C,D) ∼ I(D − C,C,C + g),

II(g, C,D) ∼ II(D − C,C,C + g).

(ii) If D < C, then

II(g, C,D) ∼ II(C −D − 1, D + g + 1, D),

III(g, C,D) ∼ III(C −D − 1, D + g + 1, D).

(iii) If D < C, then

I(g, C,D) ∼ III(C −D − 1, D,D + g).

(iv) If D ≥ C, then

III(g, C,D) ∼ I(D − C, g + C + 1, C).

P r o o f. Here we prove the case where I(g, C,D) ∼ I(D − C,C,C + g)
and D ≥ C. By Theorem 3, the partition associated with I(g, C,D) is

g + 3D − C, g + 3D − C − 3, . . . , g + 2C + 3 (D − C integers),

g + 2C, g + 2C, g + 2C − 2, g + 2C − 2, . . . , g + 2, g + 2 (C pairs),

g, g, g, g − 1, g − 1, g − 1, . . . , 1, 1, 1 (g triples).

Conjugation of a Ferrers–Young diagram switches rows and columns, so it
will be enough to show that the column sizes of the above partition corre-
spond to the row sizes given by the Structure Theorem for I(D−C,C,C+g).

We examine the columns of the Ferrers–Young diagram for I(g, C,D)
from right to left. The part of the top D − C rows in the original partition
that sticks out over the bottom two blocks of rows will have column sizes 1
through D−C in groups of three’s. The middle 2C rows of doubles increasing
by 2’s give 2C columns whose part sizes come in pairs starting at D−C+ 2
and ending at D+C. Finally, the last 3g rows of triples give rise to the final
g columns. These columns differ by 3’s and start in size at 3 greater than the
previous column, and give the column sizes D +C + 3, D +C + 6, . . . , D +
C + 3g. These are exactly the parts given by the Structure Theorem for
I(D − C,C,C + g). The other cases follow in a similar fashion.

Note that conjugating a partition of n amounts to changing the sign of
one element of the associated representation of 8n + 5 by a sum of three



4-core partitions and class numbers 265

squares. For example, in the first conjugation identity I(g, C,D) ∼ I(D −
C,C,C + g), the associated triples, before reordering, are

(2C − 2D − 2g − 1, 2C − 2D + 2g, 2C + 2D + 2g + 2)

and

(2C − 2D − 2g − 1,−2C + 2D − 2g, 2C + 2D + 2g + 2).

Thus, self-conjugate 4-core partitions of n are exactly those whose associated
triples have a 0. Therefore, the number of self-conjugate 4-core partitions of
n is exactly the number of ways to write 8n + 5 as the sum of the squares
of two positive integers, disregarding order. This gives a second proof of
Theorem 3.

R e m a r k 4. By Remark 3(i), conjugate 4-cores correspond to inverse
classes of quadratic forms, and by Remark 3(ii), self conjugate 4-cores map
to the class containing the principal form. The reader should be aware that
not all order 2 elements have to be images of self-conjugate partitions (see
Example 4).

With these preliminaries, we prove:

Theorem 6. If 8n + 5 is a positive square-free integer with t prime
divisors, then the image of φ is a unique genus of binary quadratic forms
with discriminant −32n − 20, and every equivalence class of forms in this
genus is the image of 2t−1 many different 4-cores of n.

P r o o f. It is well known that |CL(−32n − 20)| = 2tk where k is the
number of classes per genus, and 2t is the number of genera in CL(−32n−
20). Fix f1, . . . , fk to be representatives for the k classes in the unique genus
of CL(−32n − 20) that φ maps onto. We will say that (x, y, z) and fi are
represented by (m0,m1,m2, n0, n1, n2) if

x = m1n2 −m2n1, y = m2n0 −m0n2, z = m0n1 −m1n0,

and

(m0u+ n0v)2 + (m1u+ n1v)2 + (m2u+ n2v)2 = fi.

Let M denote the set of all such tuples that represent some pair (x, y, z) and
fi. By Gauss [14, Art. 291], |M| = 3 · 2t+3k, and each fi is representable by
3 · 2t+3 members of M.

However, for each fi, there are 2t+2 elements in M for which (x, y, z) is
in J(8n + 5). Moreover, elements of the form (m0, n0,m1, n1,m2, n2) and
(−m0,−n0,−m1,−n1,−m2,−n2) map to the same form. Since there are no
other such relations, we find that there are 2t+1 elements in M mapping to
each fi for which the triple (x, y, z) is in J(8n+5). Since 8n+5 is square-free,
each class in K(8n+ 5) corresponds to four distinct triples. Therefore each
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element in K(8n + 5) has 2t−1 preimages. Consequently, the set of 4-cores
of n forms a 2t−1-fold cover of this genus of forms.

Recall that conjugate partitions have associated triples that differ by
a sign on one element. By Remark 4, these triples are mapped to binary
quadratic forms that are inverse to each other in CL(−32n − 20). Fur-
thermore, self-conjugate 4-cores of n correspond to the identity element in
CL(−32n− 20). As an immediate corollary we obtain:

Corollary 4. If 8n + 5 is a positive square-free integer with t prime
divisors all congruent to 1 (mod 4), then the set of 4-cores of n is a 2t−1-
fold cover of CL2(−32n − 20). In particular , if 8n + 5 is prime, then the
set of 4-core partitions of n forms an abelian group with odd order that is
isomorphic to CL2(−32n− 20).

P r o o f. By Theorem 6, the 4-cores of n form a 2t−1-fold cover of one
genus in CL(−32n − 20). By Theorem 3, this set has exactly 2t−1 self-
conjugate partitions. Since these partitions map to the class of the principal
form, it follows that 4-cores of n map to the principal genus. By Gauss [8,
Theorem 3.15], this genus is the subgroup of squares CL2(−32n− 20).

In the case where 8n+ 5 is prime, this map is a bijection between 4-core
partitions of n and the subgroup CL2(−32n − 20). These 4-cores inherit a
group structure where the unique self-conjugate partition is the identity, and
conjugate partitions correspond to inverses in the class group. Furthermore,
since h(−32n−20) = 2 ·C4(n) = twice an odd by Theorems 2 and 3, the set
of 4-cores of n corresponds to the odd part of the class group CL(−32n−20)
which is CL2(−32n− 20).

Example 3. Consider n = 22. In this case 8n + 5 = 181 is prime,
h(−4 · 181) = 10, and CL(−4 · 181) ∼= Z/10Z. By Corollary 4 the set of
4-core partitions of 22 is isomorphic to CL2(−724) ∼= Z/5Z. The complete
correspondence here is:

Partition Type Binary quadratic form Element

8, 5, 2, 2, 2, 1, 1, 1 I(2, 0, 2) u2 + 181v2 identity
8, 5, 3, 3, 1, 1, 1 I(1, 3, 1) 5u2 + 4uv + 37v2 γ

7, 4, 4, 2, 2, 1, 1, 1 III(1, 1, 2) 5u2 − 4uv + 37v2 γ4

10, 7, 4, 1 II(0, 0, 3) 13u2 + 2uv + 14v2 γ3

4, 3, 3, 3, 2, 2, 2, 1, 1, 1 II(3, 0, 0) 13u2 − 2uv + 14v2 γ2

The correspondence between partitions and the abacus positions is given
by Theorem 5. For instance, the partition 8, 5, 2, 2, 2, 1, 1, 1 contains the
segment 2, 2, 2, 1, 1, 1 from which we deduce that the generation number is
g = 2. Since the remaining parts contain no pairs or consecutive parts, it
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follows that d = 0. Since there are e parts with consecutive differences of 3,
it follows that e = |C −D| = 2 and that this partition is a type I partition
where C < D. Since in this case d = min(C,D) = 0, it follows that this
partition is a type I(2, 0, 2) partition.

By (7), I(2, 0, 2) maps to the 3-tuple (−9, 10, 0) which satisfies

(−9)2 + 102 + 02 = 181.

As a solution to (8)

−9 = m1n2 −m2n1, 10 = m2n0 −m0n2, 0 = m0n1 −m1n0,

we find

m0 = 10, n0 = 0, m1 = 9, n1 = 0, m2 = 0, n2 = −1.

By substituting this into (9), we obtain

(10u)2 + (9u)2 + (−v)2 = 181u2 + v2,

the principal form.
The second partition 8, 5, 3, 3, 1, 1, 1 corresponds to the abacus I(1, 3, 1).

By map (7), this abacus corresponds to the triple (1, 6, 12), and Gauss’
method gives the quadratic form 5u2 + 4uv + 37v2. Call the class of this
form γ.

The conjugate to the second partition, 7, 4, 4, 2, 2, 1, 1, 1 maps first to the
triple (1,−6, 12) which by Remark 3(i) corresponds to the inverse binary
quadratic form 5u2 − 4uv + 37v2. Since the order of CL2(−32n − 20) is 5,
we find that 5u2 − 4uv+ 37v2 = γ4. Similarly the fourth partition 10, 7, 4, 1
corresponds to the binary quadratic form 13u2 + 2uv + 14v2, and the last
partition, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1 corresponds to the form 13u2 − 2uv + 14v2.

To obtain γ2, apply the composition law to (5u2 + 4uv + 37v2) · (5u2 +
4uv + 37v2). First use the proper transform (u, v) → (−v, u) on one of the
γ’s so that the gcd condition in the Composition Law holds. We find that
the unique integer B (mod 2 · 5 · 37) satisfying the congruence conditions of
the Composition Law is B = 144, and so the composite form is

37 · 5 · u2 + 144uv +
1442 + 724

4 · 37 · 5 v2 = 185u2 + 144uv + 29v2.

This forms reduces to 13u2−2uv+ 14v2. Thus γ2 is equivalent to the image
of the partition 4, 3, 3, 3, 2, 2, 2, 1, 1, 1.

Example 4. Here consider the case where n = 20 and 8n + 5 = 165 =
3 ·5 ·11. Then by Corollary 4 the set of 4-core partitions will give a 23−1 = 4-
fold cover of a single genus. In this case the genus contains the single class
whose representative can be taken to be 6u2 + 6uv + 29v2. The complete
correspondence here is:
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Partition Type Binary quadratic form

8, 5, 2, 2, 1, 1, 1 III(1, 0, 2) 6u2 + 6uv + 29v2

7, 4, 2, 2, 2, 1, 1, 1 I(2, 2, 0) 6u2 + 6uv + 29v2

9, 6, 3, 1, 1 III(0, 3, 0) 6u2 + 6uv + 29v2

5, 3, 3, 2, 2, 2, 1, 1, 1 III(2, 1, 0) 6u2 + 6uv + 29v2

Note that the form 6u2 + 6uv + 29v2 has order 2 in CL(−660) which is
consistent with the fact that conjugate partitions correspond to inverses in
the group.

4. Concluding remarks. By Theorem 6, it is easy to see that there is
an obvious notion of equivalence which can be applied to 4-core partitions
and also to the r-defect zero unipotent characters of suitable GL(n, q) that
they label.

Definition 4. Two 4-core partitions of n are equivalent if they corre-
spond to equivalent binary quadratic forms.

With this definition, we obtain the following trivial corollary to Theo-
rem 4.

Corollary 5. If 8n + 5 is a positive square-free integer with t prime
divisors, then there are k equivalence classes of 4-core partitions, each con-
taining 2t−1 4-cores of n, where k is the number of equivalence classes per
genus in CL(−32n− 20).

It will be interesting to see if this notion of equivalence is meaningful
combinatorially or representation theoretically. For instance, the congru-
ences in Corollary 3 are easily seen to follow from Corollary 5. However, is
there a natural combinatorial crank that divides the set of 4-cores of n into
equinumerous classes of size 2t−1? If so, then what features, if any, does it
share with the ranks and cranks investigated by Andrews, Atkin, Dyson,
Garvan, Kim, Stanton, and Swinnerton-Dyer?

In the other direction, can one use these ideas to prove non-trivial the-
orems about class numbers? It is certainly of interest to see whether one
can prove non-trivial theorems about class numbers using the combinatorial
properties of 4-core partitions and representation theory.

At this point, it is true that some elementary observations yield inter-
esting, although trivial, tidbits about class numbers. Although the works of
Goldfeld, Gross, Oesterlé, and Zagier solve Gauss’ class number problem for
negative discriminants, it is still of interest to obtain lower bounds for class
numbers by other means. For instance, consider the class number 2 problem.
By genus theory, it is clear that the only positive square-free integers 8n+ 5
for which h(−32n−20) = 2 are primes. By Theorem 5, it is clear that 3 is a
very special integer which defines many symmetric properties of 4-cores. In
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particular, there should be some nice properties that 4-core partitions satisfy
under the 3 permutations of the parameters g, C, and D when two of them
are equal. These are the 4-cores of the form I(x, y, y), I(y, x, y), I(y, y, x),
II(x, y, y), II(y, x, y), II(y, y, x), III(x, y, y), III(y, x, y), and III(y, y, x)
where x and y are non-negative integers.

In particular, consider the following two cases. By Proposition 1, we find
that there is a III(y, x, y) partition of n if and only if

8n+ 5 = 3(2x+ 1)2 + 2(4y + 1)2,

and that there is a I(y, y, x) partition of n if and only if

8n+ 5 = 3(2x+ 1)2 + 2(4y + 1)2.

It is well known that every prime p ≡ 5 (mod 24) is represented by precisely
one of the above two forms. However, by Proposition 2 the only self conjugate
4-core partition of the form I(y, y, x) or III(y, x, y) is I(0, 0, 0), which is a
partition of 0. Hence, if n is a positive integer for which 8n+5 ≡ 5 (mod 24)
is prime, then, by Theorem 2, C4(n) ≥ 3. Consequently, by Theorem 1, if 5 <
p ≡ 5 (mod 24) is prime, then h(−4p) ≥ 6. In particular, we find that p = 5
is the only prime p ≡ 5 (mod 24) for which h(−4p) = 2. Unfortunately, the
same type of elementary arguments fail for primes p ≡ 13 (mod 24).

Along similar lines, one can find multitudes of elementary identities
which force class numbers to be large. For instance, it is easy to verify
by Proposition 1 that I(g, 6, 6), I(0, 6, 6 + g), I(g + 1, 7, 2), III(4, 2, g +
3), II(g, 7, 4), II(2, g+5, 4), I(g+2, 0, 6), and I(6, 0, g+2) are all 4-core par-
titions of N(g) = 3

2g
2 + 27

2 g+ 84. Moreover, by Proposition 2, if g ≥ 4, then
these are all distinct partitions. Therefore, if g ≥ 4 and N(g) is square-free,
then by Theorem 1 we find that h(−32N(g)− 20) ≥ 16.

It will also be of interest to see if these combinatorial interepretations of
class numbers will shed light on the Cohen–Lenstra heuristics [7] describing
the typical structure of class groups. For instance, will these observations
lead to results regarding the probability that an odd prime p divides the
class number h(−32n− 20)?
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Appendix. The connection between 4-core partitions and class numbers
is fairly intriguing from the point of view of special values of L-functions,
weight 3

2 modular forms, and elliptic curves. Since it is only our intent to
draw some analogies, we will be fairly brief and refer to the standard texts
and papers for more details.
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If D = −32n − 20 is a negative fundamental discriminant, then define
LD(s) by

LD(s) :=
∞∑
n=1

χD(n)n−s.

Then Dirichlet’s class number formula [8] and Theorem 1 imply that

(10) LD(1) =
4πC4(n)

ω(D)
√
|D|

where ω(D) is the number of roots of unity in Q(
√
D). If η(z) :=

x1/24∏∞
n=1(1− xn) is Dedekind’s eta-function when x := e2πiz, then

∞∑
n=0

C4(n)x8n+5 =
η4(32z)
η(8z)

is a weight 3
2 modular form [34] whose Fourier coefficients are C4(n). Hence

Theorem 1 implies that these Fourier coefficients count the number of r-
defect zero unipotent characters of suitable finite general linear groups, a
“local-global” type statistic.

Consider a similar situation for elliptic curves. If E given by

E : y2 = x3 +Ax+B

is an elliptic curve over Q, then let L(E, s) denote its Hasse–Weil L-function.
If D is a square-free integer, then the D-quadratic twist of E, denoted

by E(D), is the curve given by

E(D) : y2 = x3 +AD2x+BD3.

Let ∆(D) be the discriminant of E(D) and let Etor(D) denote the torsion
subgroup of E(D). Furthermore, let X(D) denote the Tate–Shafarevich
group of E(D); this group measures the obstruction of the “local-global”
principle for elliptic curves. It relates the behavior of E over Q to the struc-
ture of E over the p-adic fields where the theory is simpler. In the special case
where E(D) has rank zero, the conjectures of Birch and Swinnerton-Dyer
imply that

(11) L(E(D), 1) =
|X(D)|
|Etor(D)|π∞

∏
πp,

where the product is over primes of bad reduction. For complete definitions
see [35].

What is interesting is that one component of the special values of the
Dirichlet and Hasse–Weil L-functions at s = 1 in (10) and (11) measures
“local-global” statistics. The analogy is even a little stronger in the sense
that for many elliptic curves E there exists a weight 3

2 modular form [36]
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f(z) =
∑∞
n=1A(n)xn, by Shimura–Waldspurger theory, for many square-

free integers D, assuming the conjectures of Birch and Swinnerton-Dyer
have the property that A(D) = ±

√
|X(D)|. These ideas connecting parti-

tions to X(D) have already led to examples of rank zero elliptic curves [31,
32]. Therefore, in both settings there are modular forms of weight 3

2 whose
Fourier coefficients contain the relevant “local-global” data.
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