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Note on a paper of A. Rotkiewicz

by
T. ESTERMANN (London)

In his paper Démonsiration arithmétique de Vewistence d’ume infimité
de nombres premiers de la forme nk+1 (Enseignement Math. 7 (1961),
Dp. 277-280), A. Rotkiewicz has given a simple elementary proof of the
particular case of Dirichlet’s prime number theorem which states that,
for every natural number %, there are infinitely many primes p = 1(mod%).
The proof can be made even simpler.

I follow Rotkiewicz in noting that it is sufficient to prove the

following

THEOREM. Let k be any integer greater than 1. Then there is a prime p
such that
(1) p =1 (mod%) .

Proof. For any positive rational number 7, let num# and denr be
the numerator and the denominator of the fraction that expresses r in
its lowest terms.

The following lemma is trivial:

Lemva 1. Let ny, 1y, ..., 1 be natural numbers, let each of the num-
bers my, Mgy ..., my be either 1 or —1, and let

1
l InT"=r.

h=1
Then numrdenr is a divisor of nyny ... M.

Now let
(@) - r=[J a1y,

alk

where u is Mobius’s function.

LemMA 2. Let p be any prime divisor of numrdenr. Then (1) holds.

Proof. Let &' be the greatest square-free divisor of k. Then, by (2),
(3) r =[] @ —1y@.
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Hence, by Lemma 1,

numrdenr‘ n kkla—1),
ayk

which implies that p divides at least one of the factors of the last prod-
uct. In other words, there is a natural number d, such that

4) ‘ do| W
and

(5) p o1,
By (3),

(6) ptk.

Hence the order of % (mod p) exists. Let us denote it by b. Then %™
=1 (mod p) if and only if b |m. Hence

M - blp—1
and, by (5), b|k/d,, which implies

(8) blk.
I shall prove that

(9) b=Fk.

Suppose this is not so. Then, by (8), k/b is an integer greater than 1.
Hence there is a prime ¢ such that

(10) g1k,

i.e.

(11) blklg.

Now we have i

(12) [] @) = [] FHd)f (ad)

for any function f for which the left- hand side of this equation exists.
Taking f(d) = (¥°~1)“®, we obtain from (3) and (12) that

T [ BH—] \W@
(13) r=| | () -
a|k'a

Dealing with (13) as we dealt with (3), we find that there is a natural
number &, such that

(14)  &Wg
and ) i

. Kkldn—q
(1) P | e 0,
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which implies p | k¥4:—1, i.e. k¥4 =1 (mod p), i.e. b|k/d,. From this
and (11) we obtain b | k/dl, klg). Now, by (14), k/(gd,) is an integer, and

(g,dy) =1 (since %' is square-free). Hence (kfdy, Xlg) = ®/(qdy)- (q, dy)
=k/(gdy). It follows that b |k/(gd,), i.e.
(16) FHaa) =1 (mod p) .
Now

Fklr—1 nki(gdy)

Trea 1 ~ Z L

n=0
‘hence, by (16),
Fekld1—1

Py = ¢(medp),

and hence, by (15), p | ¢. From this and (10) it follows that p | &, which
contradicts (6). This proves (9), and (1) follows from (9) and (7), so that
Lemma 2 is proved.

To complete the proof of the theorem, we still have to show that
there exists a prime divisor of numrdenr, i.e. that

a7) r#1.

LeMMA 3. Let ny, ns, ...
of the numbers my, ms, ..

,m be distinet natural numbers, and let each
., my be either 1 or —1. Then
1

(18) [la

h=1

2 e I

Proof. Suppose (without loss of generality) that s, is the least of
the numbers ny, ny, ..., 7;. Let 8 be the set of those natural numbers
k<1 for which my = my, and T the set of those for which m; = =My .
Then (18) is equivalent to

[Ta—w = [Ta—xm).
heS heT

Now nnzm+1 (h=2,38,..,1). Hence the two sides of (19) are re-
spectively congruent to 1—%™ and 1 (mod k™*'). This proves Lemma 3.

Let dy, dy, ..., d; be the positive divisors of &’. Let my = k/d and
my = u(dp). Then (since 7 is even) it follows from (3) that » is equal to
the left-hand side of (18), and we obtain (17) from Lemma 3.
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