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On oscillations of certain means formed from
the Mobius series 1
by
8. KNAPOWSKI (Poznan)

1. Let u(n) denote the Mdbius function; write
(11) M(@) = D uln).
n<e

My earlier papers [1], [2], [4], [5] were concerned with the problem of
estimating from below the expressions

(1.2) max [ M ()|
) 1<e<T
and
T
(1.3) : [ M=),
x(T) @

for T sufficiently large. In the present investigation we shall be interested
in oscillatory properties of M (x) and of some related functions. It is
eagy to show—by the well-known theorem of Landau, by the formula

1 \um

£(s) ne

Ne=l

(1.4) s=otit, o>1,

(or rather by the one equivalent to (1.4)

o0
1 M(w) ,
fo 2 e dy smoit, o>1)
and by the fact that
. L #£0,

—that the function (1.1) changes sign infinitely often as #—oo, In the
present paper the latter result will be put in a more definite form, sup-
21%
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posing however the Riemann hypothesis. It will be shown, namely, that
under this hypothesis

(1.5) max M (z) > TH®
1<esT

and

(1.6) win M (z) < — T
i<e<T

for T'+oco (Corollary from Theorem 1). Denoting by osc M () the oseil-

[a,b:
lation of M(x) on the interval [a,d], i.e. the difference Iﬁafb M (2)—
[ 2]
~min M(x), it follows from (1.5), (1.6) that on Riemann’s conjecture
a<<a<h

T—oco.

@ ose M (w) > T+,
0,1

In the second paper of this work I will improve (1.7) by making the

concerned interval [1, T essentially shorter. Finally, in the third paper,

I will deal with the oscillatory properties of the Abel-mean

(1.8) D umyar,

n=l
a8 # tends to 1 from the left.

I wish to stress that unlike in the previous papers [1], [2], [4], [6]
I can presently dispense altogether with the assumption of the {-zeros
being simple.

This investigation is based on the method of P. Turén. We shall
use the following two lemmas. Before formulating the first of them (which
is a modification of P. Turén’s one-sided theorem [8] and whose proof
can be found in [6]) I will give some introductory explanations. Let m
be an arbitrary non-negative integer and

l=le| >t > .. = o] 5
suppose, further, that with a 0 <» < =/2
(1.9) x<large|<wm, §=1,2,..,n
holds and let the index % be such that

4n
m~+n (8 4 w/fx)

and fixed. Further, let A and the index hy be introduced by

(1.10) |2n| >

(1.11) A = min Re '3

h<E<y j<t
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if there is an h, with
2n
112 —_——
(1:12) ol <ol =
and

A= minRe > b
h<t<n 1';51

otherwise. Then we have the
LeMMA 1. If A >0 then there are integers v, and v, with

(1.13) m+1<r, p<m+n(d+n/x)
such that

n

” A Izhl MmAn(8+mfx) n 2n

114)  Re D byefp>-—o (22 —
(1.14) g; 7 2n—|-1<2 ) {24(m+’n(3+7r/x))}
and

" , A Izhl m+n(8+1/x) n on
118) Re > byt <——o (120l . "
(1.15) e; 1S 2n+1( 2) {24(m+n(3+7r/n))}

The other lemma is the following (for its proof see [3])

]
LeEMMA 2. Let o = 0g,+, run through the non-trivial r-zeros. For
T > ¢, there ewists a y, with (1)

(1.16) Trloge T <<yy < o5 log, T
such that
ite:
(1.17) T < au‘ge—yl 2—56”—~——
4 [t[*log[ 2]
for all g’s.

Now we formulate

THEEOREM 1. Suppose all the {-zeros in the rectangle 0 < o < 1, < o,
to lie on the line o =%. Then we have for

(1.18) < T<e®
the inequalities
(1.19) max M (@) > Tie, (—.15 log T’ o T)
1<e<T log, 7
and
log T

i — T —

(1.20) 12:;121'1[[(95) <-T 261( lﬁlonglog,,T)

(¢ can be numerically evaluated).

(*) We use the following notation: e(x) = e, 0,4,(®) = e, (@), log,z = logz,
log,, v = log,(log,x); ¢y, ¢,, ... denote positive numerical constants.
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COROLLARY. On Riemamn’s conjecture (1.19), (1.20) hold for all T

sufficiently large.

Remark. It may be noted that in the similar theorem concerning
the order of growth of the funetions (1.2), (1.3) I conjectured addition-
ally [5] the simplicity of {-zeros. A new idea in the proof malkes the latter
conjecture redundant. I will state it explicitly in the second paper of

this work.
Let v(T) denote the number of sign changes of the funection M (x)
for 1 <o < T. It is easy to deduce from Theorem 1 the following

TaroREM 2. Suppose all the [-zeros in the rectangle
0<o<l, [Hi<o
to lie on the line o =%. Then, for

< T < emln
we have
(1.21)

7(T) = o5log, T .

Proof. Owing to the trivial inequality
M@ <o

we can reduce the interval [1,7] in (1.19) and (1.20) to [ZI%%, I, so
that M(z) must at least once change sign in [T, 1. Hence (1.21).

It is worth while noticing that the methods used in this paper and
its continuation apply not only to a study of functions (1.5), (1.6), (1.7),
(1.8) but also to a number of other means for the series Z u(n).

2. Proof of Theorem 1. Let
2.1) g =4%+¢-14.13 ..

be the Z-zero with minimal positive imaginary part (as we know, g, is
a simple zero). I assert that there exists such an integer 7, 0 < » < 4 that

(2.2)

e— =04 >0
&'(20) 00

In faet, writing

1
= | | ¥ = P
il | COR lel
we have obviously n/4 < ¢ < =/2. Therefore it is evident that out of the
numbers. ¢, p—@; y— 2¢, y— 3¢, p— 4pmod 2r one at least must lie be-
tween —=/2 and #/2, which clearly gives (2.2).
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We shall need in the proof the followin result (
Theorem 9.7) £ (see [7], p. 185,

for every T =2 there exisis a t — HT), T <t< T+1 such that

1
2.3 e <17
(2.3) IC(G+4Jt)l<t , —-1<o<2.
Let us consider the integral
1 iz i
(@4) Li=-1 f o
2m4/a-iz sFH7 ()

where y, is that given by Lemma 2, » that from (2.2), further
Z = t((log Ty —1)

and integer % subject to the inequalities

logT (log T < & <logT )
Y Y

(2.5)

We obtain from (2.4)

I = 1 (Gylk)’ ds

R IORRL L
Ini L (s) ’

whence by
k
Z% 2 {(log T01—1}* = 01(ﬁ log, T'+ klog (1— log"’-lT)) > e (Iog T—(log _’Z')°-9)

1 (ew’ﬂ ds
2.6 -1
(2:6) e =g ) ot T O

Using the well-known formula
1 £
2ni ) g+
(4/8)
and (1.4) we get from (2.6)

B w&@ 8"1’”/'”/)3
Iy = Zﬂi(li!; e ds+ 0 (10%)

£>1,

1
"‘T!].Og'f,
0, 0<é<l

ds =

Nl

= D um

n<w1k

ktr—1{ gthk
Tttt o

logk+r=1(enk/n)

U=

il

' logh+r=1( guik
R R——
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i ktr—1 (ﬂlf)} <
dw{log Pl 0

for 1 <z < e¥*, whence

Tt is easy to see that

Togh+r=1(guik)

—_ — 0.4
o) T =Rl < max M (@) pp gy T4
) . logh+r—1(gvik)
= .- AV, 2SN QU TOA.
Te=Fele> oo MO Gy %

Finally we note that owing to (2.5) and (1.16)

10gk+r—1(eilxk) log T
D S a\Mieg, 708 T) -

3, Using Cauchy’s theorem of residues we have

(2.8)

(3.1) »
. -1
evisk evisk 1 eve dg g
I Res es 5 f —re O (TP 27T
k= E T (s )slc+r+ e c(g)sm-r“'zm Ly T C(8)+ ( )

As eagy to see

18k 8k
O = an | s = 0() = 0 (o (14257 1o, 7))

a=-0 g( )sk-l-r 2Wi|s|=1/1/18k+r Z(s) Too. T 0g, T'
further
—1+iZ ik P ‘k dt
evis ds e~
_l_fiz FE) "(_i e e ) ~ O
and
O(Tile—k-H!v) — 0(1'04) ,
whence, putting
. 18k
(3.2) ), et Ry —

we obtain by (3.1)
(3.3) I, =8+ O(1°9) .

Let oj =% +4y;,§ =0,1,...,1, run through the set of {-zeros in 0 < ¢ < 1,
0 < 1< Z (%) so that 0 < y, <y, < ... < y1< Z, the possible multiple zeros
being, however, counted only once. Suppose ¢ > 0 to satisfy the inequalities

(8.4) &< min —
KM_I(WH Y1)y

by (L18).

£<Z-’yl.

() Regy =
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If the order of multiplicity of o; is », say, we define » ‘“shifted zeros’
corresponding to g;:

(3.5)

9571) =Qj = %4"’:3/1', 9(12) = %+i(77+§>7 seey (V) ‘%‘f‘"’(?y‘l‘ —_— 8)
We do it for each j <1 and also proceed symmetrically for the o-zeros
in the rectangle 0 < ¢ <1, —Z <t < 0. We get on this way a set B, of
“ghifted zeros”, so that to each o with |Jp| < Z there corresponds an
8s(0) € B,. This definition implies in particular that

(3.6) le—sdo)| <&
and
(3'7) su(Qo) = Qo) 33(90 = 0
Now we introduce
o — 8,
(3.8) OO I =2y
[Sel<z

it is easy to see by (3.4) and (3.5) that {(s) has only simple zeros
(namely those at s,(e)’s) in the rectangle 0 < o < 1, [t| < Z. Writing

69 s Y Res o= Y o fy:sd0) )

Sel<z 5% Luls)sF+r lsﬁz C;(S‘.(Q))' EX () L

)

we agsert that

(3.10) lim Sk(a) =8 .
&0

In fact, we have
evisk

S =5 f ROl

(3.11)

ek

Sile) = 2mf O

where the contour of integration ¢ congists of 0 < 0<2,t = +Z; 0 =2,
t<Z; 6=0, §<}t|<Z; ?+8 =14, [f| <%. Making & small enough
we find a number ¢ >0 such that

(3.12) )] =8, lals)>8 for se0
and
(8.13) distance (o, 0) > 8, distance (s(g), C) =8

for all ¢’s with |Jp| < Z.
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We have then for s e (f

s _ { -1 +§“‘fl[(£)*1'

&) 012

- ‘207-1-21%191-1— EXE

7+l

?

s{e)—o :
— ) Owing to (3.6) and

(3.13) #;’s do not exceed absolutely ¢/, whence

where #'s run through the set of numbers

£0) 1' (+1)n—1<c(n)'§

20
Hence, using also (3.12), we get for seC
~.1._. P 4 _1 .
Ls) T L(s)’

this and (3.11) yield (3.10).

4. We fix our &> 0, make it however so small that in addition
0 (3.12), (3.13) we have

. 81(?/15}(0))
arg ss(0)

(this being a corollary from (1.17)).
Next we define

(4.1)

E]
A%

I > (log I')™**

91(?/1(35( 0)— %))

(4.2) 2i(e) = i=1,2,..
= ollar =B
where g, iy given by (2.1) and numbers 2;(c) are arranged 80 a8 to have
1 =2(e)] > |2e)] > ... > |en(e)] .
Similarly we define
1
(4.3) bils) = —— j=1,2 n
&ifsi o)) i (e) ’ B
Let ug put h =2. Thus
(eo—3) V1@ )
(4.4) ale) = T e) = anfe) = &
b Qn/|@o[ ” a(e) e) 90/[901

(whence |2(e)] = |2y(s)| = 1)
Putting next h, =3 we have

'zfﬁ(s)[ = '{fﬁ s

icm
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where
=3+4-21.02 ...
go that
(4.5) len(e)| < 3% =

The number » of {-zeros in the considered domain is obviously
(4.6) <log** T- (log, T')*;

thus we can apply Lemma 1 to the sum

(4.7) Li‘:nk be (e)25(e)
putting

det E)_g_T____ 0.8
(4.8) mw[ m (logT) ]
and (see (4.1))
(4.9) % = (log T)~%3.

Owing to (4.4) and (4.5) the conditions (1.10) and (1.12) are obviously
satisfied. Also

1
A = A (e) = Re(by(e) + by(e)) = 2Re — =
(&) ( 1(€) o )) e o
Since
(o) > {'(@);, &0,
we get (see (2.2)) )
limA4 (6) = 2%@'7——’1: = 266 ;
0 ' (@o)o
80 that for &> 0 sufficiently small
(4.10) Afe) >0, (>0).
Hence by (1.14) we have an integer k, with
(4.11) m+l <k <m+n(84w/x)
such that )
A(E Izh- ‘ m+n(3+ix) n | 2n
(4.12) megb, %> = +1( ; ) {2~———————4(m+ﬂ(3+n/”))}
The right-hand side of (4.12) is owi‘.ng to (4.4), (4.6), (4.8), (4.9) and (4.10)
1 gT)
> e‘( log T

80 that by (4.7)

e}y b ‘_’ iﬂé_
(4.13) Sk(e)—-‘ﬁeﬂk()> {90113 ”1< 1310g,;")'
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It follows that there exists an integer & with
m+l <k <m+n(3+n/x)

(consequently satisfying (2.5)) and a sequence ¢—0 for which %, = k.
For this sequence we get by (4.13) and by the estimation

o (4 k) IR @1(_‘ (log T)O‘B)
- [Qo Ik 1p18log Tflogs T

e ( 10 logT)
S W Ty

the inequality

log T

(4.14) 8i(e) > Ti2e ("'5310g“'gff) ,
which yields on letting ¢ tend to zero

logT'
(4.15) §i. > e, (-~5310 ggg T) .
(4.15) and (3.3) give for T' sufficiently large

logT

e, (—

(4.16) Iy > T”el( 5310g2 T) .

This and the first inequality (2.7) together with (2.8) prove (1.19),
(1.20) follows on an analogous way (one has to use (1.18) at (4.12) and
then properly.change the relations (4.13)-(4.16)).
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Uber die Irreduzibilitit gewisser Polynome
von

I. Serms (Budapest)

In der Literatur begegnen wir uns oft mit der Irreduzibilitéit alge-
braischer Polynome von der Form

S(z) = F(R(w)) .

wobei F'(2) ein irreduzibles Polynom  mit ganzen rationalen Koeffizienten
und # = E(«) ein Polynom mit ebenfalls ganzen rationalen Koeffizienten
bedeutet.

Der Verfasser hat sich schon in seinen fritheren Arbeiten [8], [9]
mit der Irreduzibilitit von Polynomen eines gewissen Typs beschiftigt;
aly irreduzibles Polynom F(z) nahm er ein beliebiges n-tes Kreisteilungs-
polynom Fyu(2), in welches er das Polynom

mn
(1) ¢ =R(@) = [ [ @0—aQ(0) = P(2)Q ()
f=1
substituierte, wo @, < @, < .. < am ganze rationale Zahlen bedeuteten
und die Koeffizienten des Polynoms

Q@) =z#+bos14... 4+ b,

ganze rationale Zahlen waren; der Grad von Q(z) war kleiner als m.

Der Beweis der Irreduzibilitét von Polynomen dieses Typs ergab
die TLésung einer Verallgemeinerung eines Problems von I. Schur, [6], [3].
Fir n =2 und @(x) =1 ergab sich die Irreduzibilitit des Polynoms

m
8,(@) = Spd@) = [ [ (0—ag)™ +1.
k=1
Es waren dabei nur einige Ausnahmen. ‘
Im Falle M =0 ist das Polynom 8,(z) fir spezielle gegebene
{0y, 0y, ag, as} reduzibel iiber dem Kérper K, (W. Fliigel [3]).
Irreduzibilitit ohne Ausnahme ergab- sich in den Fillen M > 1.
(W. Fliugel [4]). Fiix M =1, M =2 kann der Beweis in dem Buche von
G. Pélya und G. Szegd [5] gefunden werden.
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