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Negative discriminants of binary quadratic forms
with one class in each genus*

by
E. GrosswaLD (Philadelphia)

1. Introduction. Let 0 <k ¢ m? k=0 or % =3 (mod4), and de-
note by k = h(k) the number of positive, primitive classes of guadratic
forms of discriminant —% and by g = g(k) the corresponding number
of genera. If &k = A%k, with —k, a discriminant, implies 2 = 41, then
k is called a fundamental discriminant. As there is at least one class in
each genus, b > g holds trivially. Chowla showed in [2] that kli_x»n;( hlg) = oo

and this implies in particular, the finiteness of the set K = {k;}, where
—k (1=1,2,..) are those negative discriminants for which A =g,
i.e., with exactly one class in each genus.

The following conjecture is rather old (see [1] and [5], p. 611):

CoNJEOTURE. The element of K of largest absolute value is 4 -1848 = 7392.

Dickson and Townes checked this conjecture up to % = 23 000 for
odd and up to % = 400 000 for even diseriminants (see [4]). Swift [18]
extended this result and showed that k¢ K for all & < 107, except for
the 101 known values listed, e.g., in [4]. Recently, J. L. Selfridge, M. At-
kingon, and O. MacDonald computed (see [17]) the extension of Swift’s
results up to

E<2-3-5-7-11-13-44838 =1 346 485 140 X

X (logek < 21.02...; log,ok < 9.12919...) .

If —% is a fundamental diseriminant, set

z(m) = (%) (Kronecker symbol), and L(s,y) = Zx(m)m" .

m=1
Then,
(1) h(k) = =B L(1, %) ,

* Part of this paper was written while the author was supported by a National
Science Foundation postdoctoral fellowship; it was finished with the support of the
Office of Naval Research] Contract Nonr-551 (43) and the National Science Foundation
Contract NSF.G-24348.
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296 E. Grosswald

and it is clear that if one knows a lower bound for L(1, x), (1) furnishes
a lower bound for #(%); this may be taken as a starting point for the
proof of above quoted Conjecture. Although (1) applies only to funda-
mental diseriminants, one can handle also the general case, using the
fact that if ¢ = A2k, —k fundamental, then (see [9] or [11], Satz 209
and 214)

@) h(d) =z]'](1~(-’1-}“)%)‘h(7o).

A

Here and in what follows, p, with or without subscripts, stands for a ra-
tional prime number.

Simple formulae for the genus are well known; hence, in order to
prove the Conjecture it only remains to establish a lower bound for
L1, ).

This can Dbe donme if one knows that cloge 1o § (= o-it) =1
there is a sufficiently large region free of zeros of L(s, x)-functions.
The larger such a zero-free region is, the less computations will be re-
quired for the proof of the Conjecture. Actually, it is sufficient to know
that L(s, z) # 0 only over some interval s,<s <1, with }<s,<1.
It is, in fact, known that such zero-free regions (or intervals) do exist,
but the best known result (Bateman and Grosswald, unpublished; see,
however, [15]),

8o =1 —6m 1k~ {1 4 6k 1log h— 1277 (log log k-t m/2) =12}

is not sufficient for the purpose on hand.

Making the assumption that, for % > 104, L(53/b4, %) = 0, Chowla
and Briggs [3] proved that if % is fundamental and % ¢ K, then & < 104,
Actually, as they mention in passing, their method permits the extension
of the results, from fundamental to all negative discriminants ,without
difficulty, but with tedium”. In the present paper we prove this ex-
tension to non-fundamental discriminants (1). Next, we use a somewhat
stronger version of a lemma of [3], which permits to weaken the un-
proven hypothesis uged by Chowla and Briggs. In fact we shall agsume
in most of this paper the validity of

Hyrormmsis L. If —k is a fundamental discriminant and % > Ty
= 109, then

L(s,x)#0 for

Remark. Forlogk > 108, s, = 1~ 2log™1%; for logh < 108, 8, = 53/54..
For some results, the following, weaker assumption will prove sutficient:

S<8<1, where s, = Max{l—2log™ %, 53[5},

(*) See ,,Note”, p. 305.
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Hyrormesis Ly,. If —k is a fundamental discriminant, & > %y, k = 4n
and & is not divisible by any prime p = 3(mod4), then L(s, x) # 0 for
Sp< s <,

The main results will be stated in section 2. For the convenience
of reference, some needed, known theorems are quoted in section 3.
Section 4 deals with the reduction of the general case to that of a fun-
damental discriminant by proving Theorem 1. As an easy consequence
of a theorem of Hecke and Landau, a useful lemma is derived in sec-
tion 5. In section 6, this is used in the proof of Theorem 2. The 7Tth sec-
tion deals with some consequences of Theorem 2. In particular, as an
incidental result, a conjecture formulated in [7] is shown to follow
from L, and is stated as Theorem 3. Some further considerations (in-
cluding a numerical table) and conclusions form the 8th and last section.

2. Main results.

THEOREM 1. The nonfundamental negative discriminants —d with @ ¢ K
(i.e., with one class per genus) are exactly those of the form @ = 4k, where
k=0 (mod8), —k being a fundamental discriminant with & < K.

THREOREM 2. Hypothesis L implies that if —k is a discriminant with
one class in each genus, then either & < 7392 and —% s one of the classically
known 101 discriminants or else 1091201 < k < 4-1010 (10812919 < J; < 1010 f
—k is fundamental). i

A glight extension of Selfridge et al.’s program, or the individual
checking of a few hundred possible exceptional values of % (see section 8)
would dispose completely of these unlikely possibilities. Consequently,
we may state instead of Theorem 2, the following:

THEOREM 2'. Subject fo mentioned numerical verifications, hypothesis L
implies that if —% is a diseriminant with one class in each genus, then
k<7392 and % has one of the known 101 values.

THEOREM 3. Subject to mentioned numerical verifications, hypothesis Ly
tmplies that every natural integer N has a representation as a sum of three
positive integral squares,

(3) N =a+b+e?, abec#0,
except for N = 4°N,, with integral a > 0 and where either N, = 7 (mod8),
or else N, is an element of the set 8 = {1, 2, b, 10, 13, 25, 37, 58, 83, 130}.

CororLARY. Let N (n) be the number of integers not exceeding x and
having representations (3). Then L, implies that
N(x) = gm—@(r{—;—l—%) logw—A—127,,
with

7

=§+10—Z—4.{Zlogn——£%gl}=19.68... and 0<m<l, 0<m<l.
nes
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3. Some needed theorems. We shall need the following known results:

TaEOREM, A. Let —% be a negative discriminant, Tt > 125.

a) If ke K and % is odd, then k =3 (mod8).

b) If & is odd, set Ty =} {-+(2 1), with 1 < (25+1)2 < §/3; if
% =4n, set S; =n+ 2 (4 <44 <¥/3). Then k e K is possible only if T,
or 8 are mot divisible by any prime p, satisfying 2j+1 <p < T or
2f < p < 8§*, respectively.

o) If there ewists any prime p < (k/3)® such thal ‘(_wlc/p) =1, then
k¢ K. .

d) If & =4n > 315 and n =3 (mod4), then k¢ K.

THEOREM B. If & ¢ K and k > 315, then & is not divisible either by 64,
or by any odd square.

TamorEM C. Let —% < 0 be a disoriminant; suppose that T is not
a square and that it contains emactly v distinct prime factors. Then g (k)
=9, cwcept for k= 4n, n =3 (mod4), when g(k) =g(n) =2"" and
for & =4n, n =0 (mod8), when ¢(k) =2".

TaEOREM D.

a) 6(x) = glogp >w(1—1/(2logx)} for » > B63.

=

b) pn > n(logn+lLn—3/2) for n > 2.

Here and in what follows, the iterated logarithm log (logn) is de-
noted by ILn.

THEOREM BE. For real s,

(4) 2(K™2m) T(s)t(8)L(s, ) > f ™ exp (—2mek ) de— R (K)/3 (L —3) .

TeEEoREM F. If & =k, and L(53[b4, ) # 0, then
h(k) > (.007495)ksiee

Theorem A was presumably known to Dickson and Townes. Parts a)
and b) for % odd are proven in [4]; b) for % even, ag well as d) are proven
by Hall in [8]; a proof of c¢) may be found in [18]. It should be ob-
served that the restrictions on j are relevant, although they are occa-
sionally omitted in statements of the theorem (even in [4]). Without
said restrictions the statement fails to be true, as one may see, for in-
sbance, by considering % =147, § =14; T =247 =13.19 and also
(147/18) = (4/13) =1; yet & ¢ K.

Theorem B iy due to Hall (see [8]). Theorem O is classical (see
Gauss [6], especially Art. 228-287); except for a change in notation it
is Theorem 75 in [10], where a proof may be found.

Theorem D is due to Rosser and Schoenfeld (see [16], Theorems 3
and 4). Theorem E is due to Hecke; its proof was published by Landau

()
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(see [12], p. 289). Theorem F with a coefficient smaller by a factor
1.27151—is due to Chowla and Briggs [3]. Their proof needs only rather
trivial modifications (sharper estimates on |Z(}+if)| and |L(%-+it)],
obtained using results of [14]), in order to lead, on the basis of the pre-
sent assumptions, to (5).

4. Reduction to fundamental discriminants. Proof of Theorem 1. Let
d = 2k, —F being a fundamental discriminant containing » distinet prime
factors. For @ < 107, all 4 ¢ K are known; hence, we may, and whenever
convenient shall, assume that d > 315. If d ¢ K, then, by Theorem B,
A=1,2, or 4. If 1 =1, then —d is fundamental. If 1 — 4, then it fol-
lows by Theorem B that % must be odd, hence, % = 3 (mod4). By The-

orem C, g(d) =2" and ¢(k) = 2" Also, by (2), h(d) = 4(1——(—_2—70) %—)h(k),
50 that g% =2 (1—(510)%)%% If ¥ = 3 (mod8), then (:2—76) =—1 and
% = 3% =3. I k=7 (mod8), then h(k) =2 (by Theorem A), (:——k)

g(k) 2
= 41, and

=
L1

g% >2-% 2 =2. In either case, d ¢ K, contrary to the as-

sumption. It only remains to consider the case A =2, d =4k If & is
0dd, %= 3 (mod4); hence, g(k) = g(d) =2"", by Theorem C. Also, by (2),

—of1_(=F\1 Ma) _ oy (=F\1) B(F)
v =2 (1) g, o mat LB —2(1-(F)5) 70
. h(k) . —F .
As before, either 5—(—]6—)22 (if ¥ =17 (mod8)); or else —2> =—1 (if
k =3 (mod8)) and in either case %%; 2, so that d ¢ K. Finally, one

may have k = 4n, where either n = 1orm= 2(mod4). If n = 1(mod4),
then g(d) = g(k) =2 and (:k) =0, so that h(d) =2k (k), and h{a)

3 (@)
h(k)

= 700 =2, whence d¢ K. It follows that the only possibility for —d
to be a nonfundamental discriminant with one class in each genus and
@ > 315 is that d = 4%, with —% a fundamental discriminant of the form
k =4n, n=2 (mod4). This possibility is actually realized, as can be
seen from the numerous examples in the list in [4]. In order to finigh
the proof of Theorem 1 it only remains to show that now de K if and
only if % e XK. For that, observe that now g(d) =27, g(k) =2"" and

h(d) = 2h(k), so that, indeed, D _ FE).

—=t this ratio equals one, if and
only if & ¢ K and the proof of Theorem 1 is complete.

9(@) — gk)’
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5, LiemmA (%), Let —% be o fundamental negative discriminant, & + 1.
If L(s, z) # 0 for 1—2log7k < s <1, then
(5" h(k) > (me) 2 k2log™1 % .

Proof. Let ¥V =1-2log™ k. Then it follows from (4) that h>V (1-V) I,
with I = lfwz”‘lexp (—2mek12)dz. Because 0 <V <1, I'(V) > 1; also, for
% >0, ¢e~* < 1. Using these inequalities, one obtains

o0
I = (k2/27) f wte~*du
omjc-1/2

228

= /2 log (2m)™2 (2n)2lor1k {r (V) — f W71 g~u (Zu}
0
2nk-/4

> (2me) L k2 exp {(2log 27)log 1 k} (1 - f ur-1 du)
0

= (2me) L FH2 exp {—(2log 2=)log K} (1 — V2 (2mk12)7)
Hence replacing V by its value 1—2log™F%,

(6) h(k) > A(me) ™2 KM 21log ™tk
with
(7) = A(k) = (1—2log™ k) exp {(21log 2m)log™ &} X

X (L—2mek2(1— 2log™ by texp {— (2 log2m)log™%}) .

Setting logk = 2/¢ and considering for a moment z as a continuous
variable,

i
7 = (2n) log /)= p(2)},
where g (2) is the monotonically increasing function

¢ (2) = 2log2n -+ 2mwez~? exp {— (slog 2m 4-1/2)}

It follows that, for 2 > 0, @A/dz vanishes exactly once, when # == 2 (~.142)
and A attains its maximal value for logh, = 2/e, (~14.1). For & <k,
A increases with %; for % >k, A decreases monotonically as %-»oco and
hm&(k)—l For logh =10, A (~1.04)>1, so that (5’) holds for

logk 10. However, if logk < 10, the second member of (5) is less than
¢(10me)™ < 2, while A (k) > 2 for log163 < logk < 5-10° (see [13]); hence,
(5) holds for k > 163. If % < 163, the second member of (8") i8 less than
one, while A{k) >1 trivially and this finighes the proof of the Lemma.

(‘) This formulation, which replaces an earlier, wesker one, is due to a remark
of Professor P. T. Bateman.
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6. Proof of Theorems 2 and 2. The statements of the two theorems
are equivalent. It is, therefore, sufficient to prove only Theorem 2'.
Hence, we may assume that if 7392 <% < k,, then k¢ K. On account
of Theorem 1, it is sufficient to prove that if —k is a fundamental
diseriminant and & > %, the k¢ K. This we proceed to show, using L,
the Lemma and Theorems A to F. We consider separately the cases of
0dd and of even discriminants.

a) k odd. —k being a fundamental discriminant, %k = p,p,... pr
= 3(mod4). Hence, by Theorem C, g = g(k) = 2"~ In order to prove
k¢ K, it is sufficlent to show that h = h(k) >2"%. On account of L,
(5') applies for logk > 108, so that it suffices to show that 3logk— 1Lk
>1+logn+(r—1)log2. Using log2 < .69315 and logw << 1.14474, this
condition holds, provided that

(8) F (k) =logk—21,k > 1.3863r +2.9032 = f(r) .
‘We observe that
(9) logk > 2 logp—log2 = 6(p,1)—log2.

DEPr1
Hence, using Theorem D(a), for any given r >102 one has
logk > pria(1—(210gP511) %) —1082 > prya(l—
>".92105 ppy1—.69315 > .92p,,;— .693 .
By Theorem D (b),
Pre1 > (r4-1)log (r+1) {14 (Iy(r +1)— 3/2) (log(r +1)) 7} .
> 102, Iy(r-+1) > 3/2; hence,
Prgr > (r+1)log(r+1) and

(210g 563)%) — .69315

For r

logk > .92 (r+1)log(r +1)—.693 .

> 8), so that

F(k) =logk—2l,k > .92 (r+1)log(r+1)—.693 —2log {.92 (r +1)log(r 1)}
=.92(r +1)log (r +1)— {2log (r +1) + 20,(r +1) +.693 4 210g (.92)} .

The curly brackets represent a function ¢(r), which, for » > 102, satisfies
the inequality ¢(r) < .14(r+1). Hence,

F(k) > (r+1)(.921og(r +1)— 14) > 4(r +1) > 1.3863r -2.9032 = f(r)

and (8) holds for » =>102. If » < 101, f(r) <143 and one easily verifies,
using (9) and the monotonicity of F(k), that

(k) =logk— 2Lk > 6(p,41)—log2— 210g {0 (pr41) —log2} > 146

for all » > 39, so that (8) holds also in this case. If, however, r < 38,
then f(r) <55 5826 and (8) holds for all k¥ such that loghk >108.

The function F (%) increases with % (for %
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For logk < 108, we have to use (5), rather than (5'). The inequality
of b > g will now hold, provided that (.007495)%™" = 2, or, setting
p(r) =1.49720r 4 9.07282, if
(10)

As now < 38, p(r) <66 and (10) holds, unless logh < 66. Using (9),
it now follows that r < 20. Consequently, (10) holds for logl > y(20)
= 39.01682. For logh < 39.01682, however, (9) shows that » < 13." Now
(13) = 28.53642; hence, (10) holds unless logk < 28.53642; this is possible
only for r <10, with p(10) = 24.04482, so that (10) still holds if logh
> 24.04482. Tf logh < 24.04482 then r <9 (observe that for 7 210,
logk > Kpé’mlogp >25), and for <9, p(r) <22.54762. However, for
k >k, logk > 23.03 > 22.54762 = y(r) and (10) holds.

b) k even. If k iz even, then & = 4n; if, furthermore, —% is & fun-
damental discriminant with & > 315 and % e K it follows from Theorem

A(d) that n is squarefree and » =1 or 2(mod4). We consider these sub-
cases separately.

b)) n=1(mod4). If » is the number of odd primes dividing », it
follows from Theorem O that g = 2" and, using (5'), the condition > g
becomes

F(n) =logn—1Im > 1.38637 +2.9032 +2log {1 log4log™n}
=1(r)+2log {1+ (log4)log™n} .

As before, we are interested only in values % > ko, 80 that

logn > logm, = log (%,/4) > 21.6395 .

logh > w(r).

Hence,
2log {1+ (log4)log™n} < 2log {1+ (log4)log™iny} = .1241
and, if we set fy(r) = f(r)-+.1241 = 1.3863r 4 3.0273, we now obtain as
a sufficient condition for h > g, that
(8" F(n) > fir) .

The procedure is exactly as before and we conclude that % > g, provided
that logk > 108. 2]i‘or logh < 108, we use (B) instead of (') and obtain
h > (.007495) (4n)™™ > 9" =g, provided that

(10
with

logn > wy(r) ,

yu(r) = 1.497207 --9.18373 .

The method of descent is used exactly as before and is successinl down
to r =10, when y,(10) = 24.15573 and, for » > 10, logn > 25, as already
soen. Bor 7 = 9, y,(9) = 22.65853. There are 21 odd, squarefree integers,
containing nine distinet primes, with logn, <logn < 9,(9). Of these, 9 sat-
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isty n = 1(mod4); they are considered in section 8 and the correspond-
ing values of k¥ = 4n are eliminated as possible elements of K by Theo-
rem A. If r < 8, yy(r) < 21.16133 < 21.6395 < logn, < logn; hence, (10°)
holds also for r < 8.

b,) n = 2m = 2p, ... pr. As before, g = 2""". The procedure is iden-
tical to that of previous cage and does not have to be repeated in detail.
For loghk = log8-logm > 108, one uses (5’). Then (8) is being replaced by

(8" F(m) >1(r), folr) = 1.3863r -+2.4007

a8 a sufficient condition for h > g. (8'"') is verified to hold for logk > 108.
If loglk < 108, one uses (5); for h > g one obtains as sufficient condi-
tion on m:
(10”)

log m > py(7r),  wy(r) =1.497207 4 8.49059 .

We have to check (10") for values of m satisfying
20.94635 < logm, =log(%,/8) < logm.

As before, (10") is verified for » > 10. For r =9, p,(9) = 21.96539 and
there are exactly two integers,

my=238-5-7-11-13-17-19-23-29 and m, =3-5-7-11-13-17-19-23-31,

products of nine distinet odd primes and with logm, < logm < 1,(9).
We eliminate the two corresponding diseriminants

—ly (=—4n, =—8m;) and —k (=—4n, = ”87"’3)

as possible elements of K, by using Theorem A. Indeed, we observe that
Ny = 2m, = 46 (mod61) and that n, = 2m, = 36 (mod41); hence,

)~ -(a)- (-

k) (1) _ () (2)
(32) - () - @)-@--
and, &, ¢ K, k¢ K, by Theorem A(c).

PFinally, for 7 <8, yr) < 20.46819 < logm, <logm 50 that (10)
holds for all m 3> m,. This finishes the proof of Theorem 2’ (hence, of
Theorem 2) for fundamental discriminants and, on account of Theorem 1,

for all digeriminants.

and

7. Proof of Theorem 3. In [7] it has been shown that for every in-
teger N,
N =a+ b4,
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has integral solutions with abe # 0, unless N = 4°N; (a >0, integral)
and either N, = 7(mod8) (in which case a classical result states that
N is the sum of no less than four non-vanishing squares); or N, = 25;

furthermore, is such that

1) 2 N1, 4) =27,
where
—4N. o
2 =(Z2), D, 0 = ) mym=
w1

and 7 is the number of odd prime factors of N,. Clearly, (11) is equi-
valent to %(4N,) = g(4W,) and the conditions on N; insure that —4X,
is a fundamental discriminant. If we assume hypothesis L, of section I,
instead of L, the proof of Theorem 2’ leads to the following, slightly
weaker result:

THEOREM 2. L, implies that there are mo even fundamental discri-
minants —k < 0, with ks 0(modp) for all p = 3(mod4), and h(k) = g(k),
besides the classical ones, exocept, possibly finitely many, all in the interval
109.12919 < k < 1010_

Suppressing from the list of 34 even, fundamental discriminants
those 25 that contain prime factors p = 3(mod4), we remain with a set
of nine integers N of the form 4¥,. If we adjoin to this set also N, = 25
(see first sentence of the present section), we obtain precisely the set §
of Theorem 3 and this finishes the proof of that theorem. As for the
COorollary, it follows (by a method of Landau) directly from Theorem 3,
a8 shown in [7].

8. Final computations and conclusions. In section 6 we postponed
consideration of 21 integers #, products of exactly nine distinet, odd pri-
mes, satisfying

(logmy ) 21.6895 <logn < 22.65853 (=yp,(9)).

In order to show that for the corresponding discriminants —7% = —dn
one has k¢ K, we use Theorem A. First, by A(d) we eliminate all
7 = 3(mod4); we are then left with nine integers m = 1(mod 4). By A(e)
we know that k¢ K, if there exists a prime p < (%/3)12 = (dn/3)v, such

that (——;) (:1;3'> = -+1. Equivalently, by A(b), k¢ K if 8 ==nj* ==

0(modp) for some prime p, 2j < p < 8} In the following tabulation,
each of the nine integers to be investigated is followed by a symbol Syp),
indicating the test prime p (the same in A(b) and A(c)) and also the
value of §, by which %k = 4n is eliminated ag a possible element of XK.
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Tabulation
3:-5-7-11-13-17-19. 23- 31 81:(37)
3:5-7-11-18-17-19- 23- 43 816(37)
3-5-7-11-18-17-19- 23- 47 S15(31)
8:5-7-11-13-17-19. 23- 59 S, (29)
8-5-7-11+13-17-19- 29- 37 8y (47)
3:5-7-11-13-17-19- 29- 41 Sy(31)
3-5-7-11-18-17-23- 29- 87 81 (31)
3:5-7-11-13-19-23- 29- 81 84 (87)
3-5-7-11-13-17-19- 31- 48 8, (29)

By this method, and using only Swift’s results [18], one may prove
that hypothesis L implies that K consigts exactly of the known 101
integers. Bub in that case, the number of integers & that have to be
checked individually increases considerably.

Note (added November 16, 1962). The content of Theorem 1, con-
cerning non-fundamental discriminants, was obtained already in 1874
by F. Grube. The author is greatly indebted to Dr. A. Schinzel, for
bringing Grube’s paper (Zeitschrift fir Mathematik und Physik, V. 19
(1874), pp. 492-519) to his attention. This happened after the present
paper was finished, but before it was submitted for publication. From
Grube’s paper one is led to-conclude that the result must have been
known already to Euler (who may not have had a valid proof). In view
of the fact that Grube’s proof is rather different, much longer, and that
actually the result (as formulated in the present Theorem 1) is only
implicitly contained in a string of lemmata, it seems justified to keep
the statement and proof of Theorem 1 in the present paper.
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Uber die Ausnahmenullstelle der Heckeschen
Z-Funktionen

B. FoceLs (Riga)

Fiir die Dirichletschen L-Funktionen

La(s) = 200' (%)n—a

n=1

(@ — Digkriminante) bewies Siegel [8] im Jahre 1935 den beriihmten Satz

® logLs(1) =o(log|d])  (|@]|-—c0)
und vermutete den Analogon
2) log (hR) ~1logy/[d]

fiir jeden algebraischen Korper % festen Grades n (n>2; h, B und d
bezeichnen die Klassenzahl, den Regulator und die Digkriminante des
Korpers). Walfisz [9] folgerte von (1), dal fiir jede Dirichletsche Funk-
tion L(s, x) mit den Charakter ymodg:

(3) Lis, ) #0 in s>oc(e)g™

(e beliebig klein >0). Die Vermutung (2) wurde von R. Brauer [1] im
Jahre 1947 bewiesen. Den Analogon von (3) fiir Heckesche L-Funktio-
nen findet man nirgends publiziert, obwohl es eine bedeutende Rolle in
der analytischen Theorie der Ideale spielt. Es ist der Zweck dieses Arti-
kels zu zeigen, daB dieses Analogon eine einfache Folge der (von R. Brauer
bewiesenen) Residuenabschitzung

(4) Resy(s) = |aP®  (|d@]->o0)

der Dedekindschen Zetafunktion des Korpers % ist.

Tiir die Heckesche L-Funktionen [5] mit Charakteren modf des
Korpers % wird fortan die Landausche [7] Bezeichnung (s, x) benutzt.
Wir setzen D = |d|Nf, wo Nf die Norm des Idealen bezeichnet. Hs ist
bekannt (siehe [2]) daB fiir passende ¢, =6, (n) >0 im Gebiete

o >1—0,/logD(2+]t])
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