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On the distribution of the k-free integers
in residue classes*
by
E. CorEN and RicHARD L. RoBINSON (Tennessee)

Let k& be a fixed integer >2. Denote by Qs the set of all positive
integers n such that i = pf ... p¥, where the p; are the distinet prime
divisors of m, then e; <k, ¢ =1, ..., t. Let Iy be the set of all » for which
et >k, ¢ =1, ..., 1 The integers of @) are sometimes called %-free integers
and those of I, k-full. Evidently, the only number common to Qx
and I is 1.

T 2 > 1, and if ¢ and h are integers, » > 1, we define the function
Qx(w; a, h) to be the number of integers in @y which are < and which
lie in the residue class P, consisting of all n satisfying the congruence,
n = a (mod k). Another function, g,(n), will be defined for integral s > 1 by

(1.1) Ps(n) =n* []I 1—2"9,
pin

where the product is over the primes p dividing n. Notice that @(n)
is the Buler ¢-function (see (3.2)).

The function Q,(x; a,h) has been investigated by Landau ([8],
pp- 633-636). If @ = (a, h) and if R is the product of all distinet prime
factors of d which do not divide h/d, then Landau showed that, with
¢ (8) representing the zeta-function,

Quz; a,h) 1 ho(R)

z {(2) (W) B
provided d eQ,. Actually, Landau obtained an estimate with O-term
for Q,(w; a, k). For the case of arbitrary %, Ostmann ([11], p. 23) gives
a result corresponding to (1.2) in which £(2) is replaced by {(%), ¢u(R)
becomes gx(h) and h becomes h*~1. It will be shown in § 2 that this latter
result is incorrect. Moreover, Ostmann’s error iz carried over to his
0-estimate of Qu(x; a, h).

Section 2 of this paper is devoted to proving a uniform estimate
with remainder for Qi(z; @, h) (Theorem 1). In particular, it is shown

1.2)

a8 PL—>00,
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that the correct generalization of Landau’s formulas involves replacing
@(n) by its unitary analogue, p*(n) (see Remark 2).

In § 3 we use the formula derived for Q(xz; a, h) to show how the
distribution of @y in a residue class modulo b is influenced by the arith-
metical structure of the class. With an appropriate definition of equi-
distribution (modh) it is proved in Theorem 4 that @, is distributed
equally among the residue classes (modh) if and only if % ¢ L. In gen-
eral, therefore, equidistribution (modhr) cannot occur. For example,
the relative density of the even square-free integers is } whereas the
relative density of the odd square-free integers is § (see the Hxample
in § 3). Moreover, we determine in Theorem 5 thoge values of & for which
the relative density of the k-free integers of P, is maximal, » agsumed
fixed. Finally, we note that although equidistribution (mod h) is com-
paratively rare, the relative density function has a surprisingly regular
behavior, as Theorem 3 illustrates.

In § 4 we show how the results of § 3 can be applied to give a quite
simple and direct proof of a corollary of a theorem due to Page [12].
In particular, we obtain an agymptotic formula for the number of re-
presentations of a positive integer » as a sum of a j-free integer and
8 k-free integer (Corollary 2, Theorem 6).

One of the principal purposes of this paper is to remedy somewhat
the unsatisfactory state of the literature concerning the behavior of
Qi(w; @, ). To begin with, Landau’s results concerning Qy(w; a, k) are
never collected into a precise statement. For example, he actually ob-
taing & uniform O-estimate, but this is never pointed out. Tuarthermore,
his error term'is O(y/da), where d = (a,h), as compared with oya)
given by Corollary 1 of Theorem 1. Also, even though generalizations
of the problem of this paper appear in the literature (for example,

Oohen [3]; Wirsing in an unpublished work ([11], footnote on p. 23);.

Evelyn and Linfoot [4]; Mirsky [10]; and Katz [7]), these are concerned
neither with the question of a uniform estimate for Qi(w; @, h) nor with
that of the equidistribution of the %-free integers (modh). Apparently
the intrinsic interest of the problem has been overlooked.

The inaceuracy in Ostmann’s generalization of Landau’s estimate
was originally pointed out by the second author of the present paper

In an earlier work [18]. In fact, Theorem 1 was proved in an equivalent ‘

form in that paper ([13], Theorem 3.9).

In the way of notation, p will denote the Mohiug function, the
letter p will be reserved for primes, and the greatest common divisor
of a and b is denoted by (a, b). All summations are assumed to extend
over positive integers only, and a vacuous product has the value 1.
[#] will denote the greatest integer not exceeding .

Finally, we mention that our methods are completely elementary.

icm°®

On the distribution of the k-free integers in residue classes 285
2. Estimate for Qu(wv; a, ). For all integers n >0 we define the
core of n, denoted by w»(n), to be the largest square-free divisor
of n. Then for neQr, k>2, we call wi(n) =9¥(n)/n the k-comple-
ment of n. ‘ o
A divisor @ >0 of the positive integer » will be called a unitary
divisor if d8 =, (d, 8) = 1. To denote that d is a unitary divisor of‘ N,
we write d||n. Put (a, n) = 8 if & is the largest unitary divisor of #» which
divides a. If (a,n)y =1 we call a unitarily prime to n. The num‘be?‘ of
integers a (modn) such that (a,n). =1 defines the function ¢*(n). Since
@*(n) is multiplicative ([2], Corollary 2.2.1), we have ‘

o) =n [ [ 1—p9).

o¢l[n

(2.1)

Now let & and a be given integers with h>1 a,n.d let d = (a,.h).
Denote by on(a) the product of the distinet prime divisors of d which

do not divide h/d. Notice that ga(a) =»((a, h).). Le§

6u(a, b) = ”(14(%@)_

olen(a) *

(2.2)

Finally, we place H = (a, h), and H' = ox(H) if HeQn.
‘With the previous notation we have
LEMMA 1. If (@, h)s € Qr, then Ox(a, h) = *(H')/H'.
Proof. From (2.2) and the relation, gu(a) =»((a, h)s),

oom= [T (-2~ []0-22)

plv((@h)e) o|(@h)e

(2.3)

) Furthermore, since by hypothesis, (q , h)s 18 K-free, (2.3) becomes

(2.4) bx(a, b) =

A _,_!_)_
p.lg,,‘ (1 p") ,,],,l(l e
But pe||H if and only if p*~¢||H'. So finally we get from (2.4) and
(2.1) that o o o
oo, m = [ [ (1—1,) — g E)H .
of|| & .
Remark 1. If d=(a,h)¢Qx, then obviously Qu(z;a,h)=0 for

all . . . L
One other bit of notation will be convenient.' Let 8 (¢; a, f,y) de-
note the number of solutions <o of the congruence en = f(mody) where
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a and y are >>1. The given congruence has no solution if (a, y)+# whereas
there is a unique solution (mody/(a,y)) if (a,y)|B. Therefore we have

0 it (a, )8,

(2.5) [;_”(a,y)]+e it (a,9)8,

8(z; ay 8, 9) =[
where ¢ is a function whose value is either 0 or 1.

. We recall that
= 2 w(d),
dk|n

where gx(n) is 1 or 0 according as neQp or né @y (cf. [5], Theo-
rem 303).

The following theorem is the major result of this section. We shall
use the previous notation.

TEHEOREM 1. If d €@, then
hk 1 *(H) i y k .
el = ) ERRACE

the estimate is uniform in h and a.
Proof. By (2.6)

(2.6) qr(n)

Qx(; a, h) =

Qlw; a,B) = D @)= D D u(m)

u-s;énﬁ)dh) z-aﬁfmm mele
= D um= Yum Y 1
m’“nm-%’;:;(%%d n m<yz mhnelmoar)
= ) ulm) 3(ajm¥; mk, 0, b).
k
Sl

By (2.8) and the fact that (m¥, h)|a == (mk, h)|d, we get

(2.7 Qu(@; a,h) = Z #(m) {(@/m¥B)(m¥, B)+ O (1)}

k

i
-3 Z B Gt 1y 2 3T A0 e 3y 4 ().
| y

(m”.>hl)/[5d
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Now let
u(m)(mk, B))me it  (m*, B)|d
fom | (mt, W2,
0 otherwise .

The function f is a multiplicative function of m, and since > f(m)
1

iz an absolutely convergent series, we may express this series as an Euler
product (see [B], p. 249), obtaining

Siitm = =[Ii+i@+1e ).

But f(p?) =0 if a'>2 and furthermore f(p) = —(p¥, h)/p® if (p¥, B)|d
and f(p) =0 otherwise.

Hence
Sim = [T [] -5

=],
" whm ok

Since (p*, h) =1==p+h, we can write

= ” @-p7® »
(2%, h) (p*, W)\
2.8) f(m) = (1 ) (
9 2 o H (ﬂg 7
e [T (-2
~ (k) ge(h) ot |’
wbhla
The conditions, p|h and (p%, k)|d, are equivalent to the conditions, p|d
and pth/d.

By definition of ea(a), p|h and pthjd== p| en(a). Therefore, by virtue
of Lemma 1, (2.8) may be written as

@.9) Zf(m) ( h)) 6a(a, B) = (W%;(T)) P,
Finally,
(2.10) l Z —L@ (m#, h)} <d Z—- =0(w1_1,,,)

(w’ h‘)/|d m>;/m

The theorem results on combining (2.7), (2.9), and (2.10) and observing
that the constants involved in the O- estlma.tes are independent of %

and a.
The case k = 2 is an important special case of the above theorem.
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CoROLLARY 1 (k ). If @ €Q,, then

h H -
i (L 0073,

uniformly in h ond a, where H = (a, h),.

Qul@; @y ) =

Proof. If & = 2, then H = H'. Furthermore, since H is square- free,‘

p*(H) = ¢(H). The corollary results on replacing ¢(2) by n2/6.
Remark 2. The proof of this corollary brings into evidence the very
special nature of the case k = 2. In general, H s H' and ¢*(H') 7aéqa(H’)
Corollary 1 has been given in an equivalent form by W. Schwarz
([14], Lemma 8).

COROLLARY 2 (h =1, a = 0). Let Qu(a; 0, 1) be denoted by Qu(w). Then

Qi(w) = )-l- o(ya).
From this corollary it follows that
: Qk(w) 1
2. =
.11) o T

COorollary 2 is a classical result due to Gegenbauer.

3. Relative density and equidistribution (mod%). A residue a(modh)
Will be called k-admissible (modh), or simply admissible (modh) if
+h) €Qx. A residue class (modh) will be called admissible (modh)
1f 1t iy defined by an admissible residue (mod%). The density of the k-free
integers in the residue class Poy is denoted by éx(a, h) and is defined by

(@, h) =wlig ~—~——Q"(w;’:’ 1.

Theorem 1 guarantees the existence of this limit. The relative density
of the %-free integers in P,s, denoted by 6} (@, B), is defined to be

* Qk(m; a, k)
O, B) =lim =m0

so that by (2.11)

(3.1) 8(a,h) = ‘”‘ﬁj f,“§ ¢ (k) u(a, ).

The symbol Oy(h) will denote the number of regidues a(mod k) such
that (a,h) € Q. The number of %-admissible residue clagses (modh) is
therefore Py(h). The function Px(h) has the evaluation ([91, (1]

(3.2) ) =h [ [ (1—p-¥);
PR

note that dy(h) = By(h*).
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The relationship in (3.1) together with Theorem 1 yields the follow-
ing result.

THEOREM 2.
hk-—l

Wt oXH')
on(h)

I
0 if

(@ h) € Qx,
(@, 1) ¢ Qx.

CoroLLARY 1. The relative density of the k-free integers in an ad-
missible residue olass (modh) i8 positive.

CoROLLARY 2. If & residue class (modh) s admzsszble, it contains
infinitely many k-free imtegers.

Two other corollaries follow immediately.

COROLLARY 3. The number of residue classes (modh) containing in-
finitely many T-free integers is Dy(h), determined by (3.2).

COROLLARY 4. If a residue class (modh) contains at leasi one k-free
integer, it contains infinitely many.

Remark 3. Corollary 3 was stated by Wilkins in an abstract of an
unpublished paper [15] (also cf. McCarthy [9]). In the case %k =2, Co-
rollary 3 becomes a theorem of Haviland [6].

The relative density 6&%(a, ) is a periodic function of a
with period h, by definition. Moreover, &% is further restricted in its
values by the following theorem, which is an easy consequence of The-
orem 2.

THEOREM 3. For fized h, the relative density 6i(a, h) i an even func-
tion of a(modh), that is, &% depends only on the value of (a, h). Moreover,
for oll pairs {a, b}, b > 0, for which a is admissible (modh), (gr(h)/H*~2) x
X O3, h) s a function of (@, h)y. In particular, for each k-free value of
B, 8i(a, k) is a unitary function of a(modk), that is, 6 depends only on
the value of (@, h)y.

Remark 4. Using the notation and terminology of § 2, one infers
from the definition of H that H =1, or equivalently H' =1, if and
only if ¢ is unitarily prime to &.

We shall now apply the concept of relative density to a diseussion
of equidistribution (modh) of the %-free integers.

DrFINTTION. The %-free integers are said to be equidisiributed (modh)
it the relative density of the k-iree mtegers is the same for each ad-
misgible residue class (modh).

Remark b. The set @y is equidistributed (modd) if and only if in
every admigsible residue class Qr has velative density 1/®x(h).

A gimple necessary and sufficient condition for equidistribution is
contained in the following theorem.

{3.3) S (ay h) =
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THEOREM 4. The k-free integers are equidistributed (modh) if and
only of helg.

Proof. By Theorem 2 and Remark 5, equidistribution (modh) oceuvs
if and only if

W M)
eulh)  H'

== ﬁ, o admiggiblo
k

From (1.1) and (3.2), the above equation reduces to

(3.4) ﬂ%ilz’-) = 17 (1—p~%), a admissible.
7

plh
oEF R

If a =1, then (a, h) = 1 ¢ Q. Furthermore, in this case, H' =1 go that
¢*(H')/H' = 1. Hence, equidistribution (modh) must imply that

[[a—p =1,

P
and this relation implies that h € Ly. Conversely, if % e Ly, then H' =1
by Remark 4, and (3.4) iz satisfied. Q. B. D.

From Theorem 2 we see that for fixed h, 8f(a, h) is maximal if and
only if p*(H')/H' is maximal. But by definition of ¢*, ¢*(n) < n with
equality only when n = 1. Therefore, it follows that &j(a, ) is maximal
if and only if H' =1, so that by Remark 4, (1.1) and (3.8), the following
extension of Theorem 4 results:

TerOREM 5. For fived h, a necessary and suffioient condition for the
relative density of the k-free integers in an admissible residue class Poy to
be mawimal is that & be unitarily prime to h; moreover this mamimal value is

(n []a—p=n)",

»lh

5t(a, B) Jk—1

a S m———

T )
EXAMPLE. AS a simple example of a case in which equidistribution

does not occur, we consider the case in which  is an arbitrary prime, p.
In this case we have

Joml

3ia, p) =&

-1

la-—1,___1

if pra,

4. A special case and its application to an additive problem. An im-
portant special case of Theorem 1 is
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THEOREM 6. If (a, h), =1, and in particular if heLy, then

hl—1

Qula; o, 1) =

(g(“—”,;))w("V?v), (@, 1) € @,

uniformly in a and h.

For the purposes of this section it will be convenient to have Theo-
rem 1 in a slightly different form. Let Q%(x; @, h) denote the number
of k-free integers sirictly less than « which are congruent to a(modh);
Theorem 1 remains valid with Qu(w; a, h) replaced by Qi(z; a, k). In par-
ticular, we can state the following special case of Theorem 6.

CoROLLARY 1. If 2 <k <j and if (m, a) eQy, then

k—1 & —
Qh(w; a, m!) = (%(—”;Lma)w+ o),
wniformly in m and a. )

Proof. Thig result follows by Theorem 6, in connection with the
above remarks and the fact that gu(m?) = mi—Vkg,(m) (see (1.1)).

Let T';u(n) denote the number of representations of the integer n
ag the sum of a j-free and a k-free integer, 2 <% < j. We shall use
Corollary 1 above to obtain the following estimate for T';u(n), proved
by Page in a somewhat more precise form in [12].

CoROLLARY 2. T'jx(n)~nHyu(n) a8 n—oo, where

Hypm) =n(1—-p“k——_p—i) ”(1+

» Phin

1
pi__pi—k._l *

Proof. Let g denote the characteristic function of the %-free integers
(see § 2); then

Ty = Y gl@ya® = > WZi;u(m))qk(b)

atbm=n atb=n

= D ulm)gd) = Z’u(m) Y«
mirsben s bren o m)

= D w(m)Q@kn; nymf).

m<ni/!

Now let ¢ denote an arbitrary number such that 0 < s <1/j. Then, con-
sidering separately those values of m < n'/~ and those >nti-e, we get

Tyum) = 5 wlm)@i0n; mym)+0 Y Qilns n, mb).

m<nii-e ni-e<m
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By definition of @f we have Q%(n; @, h) = O(n/h) uniformly in a. Hence

by Corollary 1

=_" T pm) Uk41/j—s) _ ( \7 ..1)
Tn) =505 D) oy~ O 40w DT mei).

mniii—e m>nMli—e
(m3,m)eQx

Since 1/k+1/j < 1, the first O-term is o(n). Moreover, the gecond O-term
is O(mt7+«i—1) and i§ therefore also o(n). Dividing by »n we get

L Tan o
lim 2 = i_ k ,
no N mi gy M)

(m!,n)sok

the series being absolutely convergent because

melll p~k>~1<2m fj[ (L—p4) =L ().

We therefore have

mk'"
— P Prlm)

Tin) 1\
4.1 1 L = e
1 nl-lg n Lk "2
where
1 m .
g(m) = W“"'tzaim; £y ) e,
0 otherwise .

4

The function. ¢ is & multiplicative function of m, and by an HEuler factor-

ization we get ;’g(m) = g(1+g(p)+g(p”)-l—...)‘ But if a > 2, ¢(p?) = 0;
moreover if p¥tn, ¢(p) =—1/p?(1— p~*). Therefore

Zg(m)zl;](lww(lip"‘)) -1<1 — >

m==1 P T u—
p/(1—p=*)

pk|n

It follows eagily that (1/Z (%)) ; g(m) = nHju(n), and the corollary regults
by (4.1) and the fact that Hjy(n) > 0.
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