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1. We say that a subset X of a field K has property (P) if and only
if every polynomial P(f) with coefficients from K such that P(X) =X
is linear. We say that X has property (Pg) (i.e. property (P) hereditarily)
if every infinite subset of X has property (P). It has been proved in [1]
that the algebraic number fields have property (Pg) and, moreover,
that this property is preserved by any pure transcendental, finitely
generated extension of a field having this property. In this paper we prove:

TurOREM I. If every finite algebraic ewtemsion of a number field has
property (Pm), then every field of algebraic functions in any number of
variables over K has property (Pg).

TeEOREM II, If the field K has property (Pm), then every pure trans--
cendental extension of K has this property also.

From theorem I and from theorem I of [1] it follows that every
field finitely generated over the rationals has property (Pu).

2. Proof of theorem I

FUNDAMENTAL LEMMA (see [1], lemma 1). Suppose Tz is a trans-
formation of the set X onlo itself. Suppose there exist two functions f(x)
and g(x) defined on X, with values in the set of natural numbers, subject
to the conditions:

(a) For every constant ¢ the equation f(x)+g(x) = ¢ has only a finite
number of solutions.

(b) There ewists a constant O such that from f(z) > C it follows
1 (T'w) > f(a).

(¢) For every M there exists a constant B(M) such that from f(x) < M
and g(x) = B(M) follows g(Txz) > g(). '

Then X is finite.

Now let K be a number field such that every finite algebraic ex-
tension of K has property (Pa), and let B be a field of algebraic functions
over K. Without restriction in generality we can assume that E is a normal
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extension of K and, moreover, that B is an algebraic functions field in
one variable, since every algebraic functions field in a finite number of
variables over a number field can be imbedded in the field of complex
numbers, and the case when R is a field of algebraic functions in an in-
finite number of variables can be easily reduced to the finite case by
theorem. IT proved below.

Let wy(x), ..., om(2) be an integral basis of K. The conjugate bases
will be denoted by o{"(z), ..., oo(w) (r =1,...,m). The elements of R
can be treated as functions of the complex variable, defined in a strip

= {o+1l: ¢ > 0y, [t| <1t} which is chosen in such a manner that no
functlon wﬁ,) has a smgula.rlty in § and the coefficients »{9(@) in the

equalities wi(x 2 ¥ (@) wy() have no poles in 8 (b =1, ...,m).

Every element of R can be represented in the form:
1

Q@
where Py, ..., Py, Q are polynomials over K and (P, ..., P, Q) =1.
Let us define (&) = degree of @, g(&) = m%X degree Pj. These functions

() (Pl(w) (@) + ... + Pr() wm(ﬁ)) ’

are uniquely determined when the basis ig fixed. The integral elements
of B are characterized by f(&) =

Let W (t) be a polynomial with coefficients from R, of degree n > 2,
and let X be a subset of B such that W(X) = X. We shall write W (z)

in the form
1
W)= 575 2, Lo,
7=0

) =0for j =0,..,n
LewvmA 1. For every ¢ the equation f(£)+g(&) = ¢ has in X at most
a fimite number of solutions.

Proof. Let {r} be a sequence of numbers from K ~ § satisfying
the condition:

where 4(z) is a polynomial and f(4,(»

A(r) Ap(rs) 0  for

Since the points 7; lie in S, they are regular points for the functions

w4(x) (treated as functions of a complex variable) and so there exist
finite limits:

i=1,2,..

lim w;(z) .
o>y
Now we prove that if &(x) ¢ R, then Lim]é (#)] = oo or
| T~rry
lim £(x) € K (@,(s) 5 -vvy (7)) -
21y
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Indeed, suppose that in a neighbourhood of #; the function &(z) is bounded.
If Q(r:) == 0 then

1 m
anF ) =<—,Z
Q'(re) = ...

. 1 . @
limé (o) = o I 2 [ g Pyz)an(a)] .

From the definition of § it follows that the functions d*wi/ds® have no
poles in §; consequently

'I‘;) wk € K(wl 7‘1), . (Dm(’l‘i)) .

If Q(ri) = = Q" (r;) = 0, but Q¥(r;) + 0, then

(Z Pufo) anla),__ e K (wy(r), e, wnlrs)
=1
and
Umé (@) € K (oyfrs)y oy om(r) «
Let us define y

Wit) =z,—%7i) 2 Ay,

The foregoing argument shows that X;C K (%(Ti), owvy W(73)). Moreover,
the polynomials W;(¢) have the degree n > 2, and their coefficients belong
t0 X (wy(rs)y oy 0m(rs)). Now we prove that Wi(X;) = X;. Let £eX.
Hence there exists &(2) e X such that limE(x) = &; thus, since W(X)

T—>r

=X, there exists U(x)e X such that W(U(w)) = H(x), i.e.:
1\ ;
50) = 775 O, 40) (o)
=0

-A-'n.(

X; = {limé (2): £ e X, Hm [¢(0)] # oo} .

and we obtain

|E(@)] =

IA w)ZA (@) U()| .

In a neighbourhood of »; we have

7 n—1
lA(w)ZA’ =) Te)| < BTl
and, since A4, (r;) # 0, _
‘-A—’(‘;U—)A.xm) U"0)|> BT (@)
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Now if hm[U )| = oo, then
E_( ) I>B1[u | —B-—>co as a1y,
U (@)
but this is impossible, since from # > 2 we infer that
E( B,|&|
" 0) < [U(;l)i”“l a8 x->1y.

Thus there exists a finite limit w =lmU(z), <X, and obviously

z—ry
Wiu) = & whence X; C Wi(X;). On the other hand, if U(s) e X, W(U(a))
= H(z) and ]ij(w) =4 # oo, then lim..( ) = Wy(u) # oo; consequently

Wilu) e X; a,nd so X; D Wi{X;), which toge’ﬁher with the inclusion formerly
established gives Wi(X;) = X,.

Now let us remark that the field K (wyr:), ..., wm(r)) is for ¢ K
a finite algebraic extension of K, and so this field possesses property
{Px); consequently the sets X; must be finite. Since the sequence 7; i
infinite, one infers without difficulty that there can be only a finite number
of elements & in X such that f(£)+¢(&) is equal to a fixed c.

We have thus proved that our set X, the polynomial W (?) and the
functions (&), g(&) defined as above satisfy condition (a) of our fun-
damental lemma Now we are going to prove that the remaining_ two
conditions are also satisfied.

Lemma 2. Let L be a principal ideal domain and L' its integral closure
in ‘a finite algebraic, normal, separable extension K' of the quotient field
XK of L. Then, for every fived b in L' and every natural number n, there can
be only a finite number of a in L such that, with some ¢ in L', a divides
bor in L' but mo mon-unit divisor of a in L divides c.

The proof of this lemma in the case where L is the ring of rational
integers was given in [1] (lemma 2). The proof in the general case is
almost literally the same. One need only remark that I’ is a Dedekind
domain (see [3], p. 281) and that in L there is only a finite number of
" prime-ideals which ramify in L’ (see [3], p. 303).

CorOLLARY. Let A(x) be a fimed integral algebraic function from R,
and let n be a positive integer. There eaist only o finite number of polynomials

U(x) with coefficients from K such that for a certam integral algebraic
function V(w) from R, the quotient A (x)V™(x)[U(z) is integral in R and
simuliancously for mo non-constant polynomial @ (x ) over K d'i'u/idmg U(a)
the quotient V (2)/®(z) is integral in k.

For the proof one should observe that the ring of polynommls over
a field is a principal ideal domain.
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LuMMA 3. Let A(w) be an integral algebraic function from B (A(z) =~ 0),
and let n be a positive integer. Then
v(4) = Inf {g(4E")—ng(&)} # —oo.

Proof. Let A(#) = 4,(®)0y(#) + ... + A(@) o( ), where 4; are poly-

nomials over K. For every m functions f,( ()5 ooy fm(®) defined in § the
following identity holds:
(ZAk )(Zfl ol ) ZT,C]‘“ oy Fu) 0 (r=1,..,m),

where 1% are homogeneous forms of #-th degree of m variables, with
coefficients which depend only on 4 and n and are polynomials over K.

Suppose that
Z PPz

9(AE) —ng (&) »—oo,
= degree of P{), j =1,2,..

9(A&)—ng(&) i=1,2,..
Let us define, for v ¢ 8, s(z) =

We can assume that g(&;) , and that

g"‘.’/"

max |of(2)|. Bvidently

degree of TP, ... P‘”) < degree [PYT"—j,

whence for |#| sufficiently large (say, for ]w] 24(4))
Ty{P(@), ..., PR(@) | _BGY
[P " af
and ) ’
’ (F@)  PR@)|_ BG)
T BT 20| S Tl -
N \'Plﬂo ($) Pko (99') le

By multiplication by o{’(z) and addition, we obtain

m i”?ﬁ@) PU)(M)) ) < B _8(_{6) .=1
gj (P”’(w3 Pl @ SBD7 =Ly m),
whence
O I’k() " )n - s(a)
(é Brl(w) wr'( )(k‘1 .Pm( )w () !g]g(g) o’
which gives
m T 1/n
D) Bt =0 [ =y, ),
=1

(Here and below the constents in O depend on j but not on #.)
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The function s(#) cannot tend to infinity more rapidly than every
polynomial. Suppose thus that s(z) = o(z*) when z ¢ 8 and » tends to
infinity. Let

mP'( )w(”(

(7) —
H;' (w) 1)(7)( ) e

x).
k=1

Then
H,(f)(w) - o(w(ﬂ"f)/n) ;

but Py/Py, =1, whence, if we denote by d(x) the discriminant of the
field R,

1 wgl) (@) oy HY)(w), 9 wgrlb) (@)

Vi@ oy, .., EY(a), .

and consequently
1 = o (aum—1)+ (u=1)in)

which is impossible for § sufficiently large. The contradiction obtained
proves the lemma.

Leyvwa 4. There ewists o constant O such that from f(&)
(W) >1(&) for & in X.

The proof of this lemma is analogous to the proof of lemma 4 in
[1] but for completeness we give it in full.

Let
1 m
)= ,,2 pr(z) ox(2)

E(@) = g(a)&(a)

1 m
= Q_(m—) ng(w) (@

= O follows

(pl(“')f oy Pl q(m): ) .

1 m
) = T gﬁk(w) o) ,

(Pya), ..., Pu(@), Q@) =1,

(4(z) and An(z) used below have the same meamng a§ in lemma 1).
Ewdently Q(w) divides A (x)g™(s). Let us put u(z) = 4(z)g"(x)Q~ () and
= (u(), ¢(®)). Observe now that

D) Pala) ()

k=1

where E(x) is an integral algebraic function from K.

= An(0) E%@) + R (2) g (a),
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From. »(: |M m)]Pk(w follows #»( w)| Z Pr(x) wp(#), and thus we have

()| Anf ‘E(®). The application of the corollary to lemma 2 shows
s that the degree of the polynomial »(z) is bounded by a constant B
depending only on A,(x) and n. Now since u (@) = dy(z)»(2), ¢(2) = ay(x) v {2)
(dy, d, relatively prime), di(w) divides 4 (x)»-Y(z) and consequently the
degree of ,u( @) is bounded by nB + degree of 4.

If /(W(£) <7(£) then evidently the degree of g is at least equal
to degree of A+degree of g*(w)— degree of u(x) and so the degree of q(z)
is at most equal to nB[(n—1), which proves the lemma.

LuMyma 5. For every consiant M there exists a constant B(M) such
that from f(£) < M and g(&) > B(M) follows 9(W(&) > g(&), for e X.
Proof. The following inequalities result directly from the definitions

of the functions f(£) and ¢(&):
fla+b) <f(a)+£(b),
g(a+d) < max{f(a),
g(ab) < B'+g(a)+g(b)

If @ is a polynomial, then
g(a)—degree @ < g(a/Q) < g(a).

< M. Then

n—1
) (A(M)Zm @ m))<g(2A
with a suitable M,(M). Let & = /@, where degQ = f(£&
0[5 4087) > 0140 8%) — dogd = (4,707~ dog 4
= g(AnE)—nf(£)—degd > g(AnE") =nM—degA
> ng(8) + P(B, n)—nM— degA > ng(&)+ V(B, n)—nM—deg4.
If for a sequence {£;}, with f(&) <
) 11m [g( (&) }—ng (&)] =—

then (since in view of lemma 1, g(&) tends to infinity) we have

j(ad) < f(a)+1 (D),
(b)} +max {g(a), g(b)},
with a suitable B’.

Suppose f(&
#(o) <(r-1)g(8)+11;

), and f(£) = 0. Then

¥ (B, n) < g(z An£7)~ ng (&) +ndl + degd
n—1
N 4y,
= deg 4 +')@M+g(W(§¢)—-Z i Ei)-’ng(fi)

=0
n—1

A4
< degd-+nM +M,+max g(W &), g(z ’5:)] ng (&) >— oo
=0
Acta Arithmetica VIII 2
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in view of (1) and (2), which is incompatible with lemma 3. Thus
g(W (&) = ng (&) — M,

with some M,, whence the inequality ¢(W(&)) < g(&) cannot be true
for sufficiently large ¢(&;). The lemma iy thus proved.

To prove the theorem it suffices now to observe that, in view of
lemmas 4 and B, conditions (b) and (c) of the fundamental lemma are
satisfied, and lemma 1 ensures condition (a), whence the application
of this lemma shows us that the set X is finite, which is what was to
be proved.

3. Proof of theorem IL

TEMMA 6 (see [2), p. 188). Let .L = K (®) be a simple transcendental
extension of a field K. Let us define for & = A(0)/B(®)eL, ((A (t), B(#))
= 1],F(E) = max (degree 4, degree B). If P(i) is a polynomial of degree m
with coefficients from K, then F(P(£)) = mF(§).

Now let K = R({f)eca) be a pure transcendental extension of
a field B which possesses property (Pg). Let @ be a polynomial with
coefficients from K, of degree n > 2, and let X be a subset of K for which
Q(X) = X. Since (see theorem II in [1]) every pure transcendental ex-
tengion of R obtained by adjoining a finite set of elements hag property
(Pg), we can assume that the coefficients of the polynomial @ belong
to R, for otherwise we could obtain this by adjoining to R all the in-
determinates which occur in the coefficients of @.

Let us now remark that, if £ is a simple transcendental extension
of a field &K, then, from X C L, X\K being non-void, and @(X) = X,
where @ is a polynomial over &, it follows that @ is linear. Indeed, let
ae X\K be such that En}]{i&ﬁ"(&) = F(a) # 0, and let §(f) = a¢. Then

€

from lemma 6 follows nF (8) = F(a), whence F(f) # 0, i.e. B ¢ X\K and

50 F(B) = F(a) = nF(p), which can occur only if n = 1.
Now, if X C R, then the set is finite by the assumption. If there
exigts £ e X\ R which, for example, has the form

Ay oy Ba)

= e

B(B4,, ooy O4,) '

then let K = K (9;,) where K = R({Pu}aecu,ani). Since X\K is non-void,
then from the preceding remark we infer that » =1, contrary to our
assumption. The theorem is thus proved.

It i§ worth remarking that, if a field K has property (Py) and X
is a subset of K such that with a suitable non-linear polynomial P(#),
P(X)D X, then X must be finite. Indeed, let ¥ be the smallest seb
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containing X and closed under the mapping #->P(z). If X is infinite,
then the coefficients of P(t) belong to K, and so Y is contained in K.
Moreover P(Y) =Y, and so Y is finite, which is imposgible.
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