

On polynomial transformations Il

b

W. NARKIEWICZ (Wrocław)

1. We say that a subset X of a field K has property (P) if and only if every polynomial P(t) with coefficients from K such that P(X) = X is linear. We say that X has property (P_H) (i.e. property (P) hereditarily) if every infinite subset of X has property (P). It has been proved in [1] that the algebraic number fields have property (P_H) and, moreover, that this property is preserved by any pure transcendental, finitely generated extension of a field having this property. In this paper we prove:

THEOREM I. If every finite algebraic extension of a number field has property (P_H) , then every field of algebraic functions in any number of variables over K has property (P_H) .

THEOREM II. If the field K has property (P_H) , then every pure transcendental extension of K has this property also.

From theorem I and from theorem I of [1] it follows that every field finitely generated over the rationals has property (P_H) .

2. Proof of theorem I.

Fundamental lemma (see [1], lemma 1). Suppose Tx is a transformation of the set X onto itself. Suppose there exist two functions f(x) and g(x) defined on X, with values in the set of natural numbers, subject to the conditions:

- (a) For every constant c the equation f(x)+g(x)=c has only a finite number of solutions.
- (b) There exists a constant C such that from $f(x) \ge C$ it follows f(Tx) > f(x).
- (c) For every M there exists a constant B(M) such that from $f(x) \leq M$ and $g(x) \geq B(M)$ follows g(Tx) > g(x).

Then X is finite.

Now let K be a number field such that every finite algebraic extension of K has property (P_H) , and let R be a field of algebraic functions over K. Without restriction in generality we can assume that R is a normal

extension of K and, moreover, that R is an algebraic functions field in one variable, since every algebraic functions field in a finite number of variables over a number field can be imbedded in the field of complex numbers, and the case when R is a field of algebraic functions in an infinite number of variables can be easily reduced to the finite case by theorem II proved below.

Let $\omega_1(x)$, ..., $\omega_m(x)$ be an integral basis of R. The conjugate bases will be denoted by $\omega_1^{(r)}(x)$, ..., $\omega_m^{(r)}(x)$ (r=1,...,m). The elements of R can be treated as functions of the complex variable, defined in a strip $S = \{\sigma + it \colon \sigma \geqslant \sigma_0, \ |t| \leqslant t_0\}$ which is chosen in such a manner that no function $\omega_k^{(r)}$ has a singularity in S and the coefficients $\gamma_j^{(k)}(x)$ in the equalities $\omega_k'(x) = \sum_{j=1}^m \gamma_j^{(k)}(x) \omega_k(x)$ have no poles in S (k=1,...,m).

Every element of R can be represented in the form:

$$\xi(x) = \frac{1}{Q(x)} \left(P_1(x) \omega_1(x) + \ldots + P_m(x) \omega_m(x) \right) ,$$

where $P_1, ..., P_m, Q$ are polynomials over K and $(P_1, ..., P_m, Q) = 1$. Let us define $f(\xi) = \text{degree of } Q, g(\xi) = \max_k \text{degree } P_k$. These functions are uniquely determined when the basis is fixed. The integral elements of R are characterized by $f(\xi) = 0$.

Let W(t) be a polynomial with coefficients from R, of degree $n \ge 2$, and let X be a subset of R such that W(X) = X. We shall write W(t) in the form

$$W(t) = \frac{1}{\Delta(x)} \sum_{j=0}^{n} A_j(x) t^j,$$

where $\Delta(x)$ is a polynomial and $f(A_j(x)) = 0$ for j = 0, ..., n.

Lemma 1. For every c the equation $f(\xi) + g(\xi) = c$ has in X at most a finite number of solutions.

Proof. Let $\{r_i\}$ be a sequence of numbers from $K \cap S$ satisfying the condition:

$$\Delta(r_i)A_n(r_i)\neq 0$$
 for $i=1,2,...$

Since the points r_i lie in S, they are regular points for the functions $\omega_i(x)$ (treated as functions of a complex variable) and so there exist finite limits:

$$\lim_{x\to r_i}\omega_j(x).$$

Now we prove that if $\xi(x) \in R$, then $\lim_{x \to r_i} |\xi(x)| = \infty$ or

$$\lim_{x\to\infty} \xi(x) \in K(\omega_1(r_i), \ldots, \omega_m(r_i)).$$

Indeed, suppose that in a neighbourhood of r_i the function $\xi(x)$ is bounded. If $Q(r_i) \neq 0$ then

$$\lim_{x \to r_i} \xi(x) = \frac{1}{Q(r_i)} \sum_{k=1}^m P_k(r_i) \omega_k(r_i) \in K(\omega_1(r_i), \dots, \omega_m(r_i)).$$

If $Q(r_i) = Q'(r_i) = \dots = Q^{(s-1)}(r_i) = 0$, but $Q^{(s)}(r_i) \neq 0$, then

$$\lim_{x \to r_i} \xi(x) = \frac{1}{Q^{(s)}(r_i)} \lim_{x \to r_i} \frac{d^s}{dx^s} \left[\sum_{k=1}^m P_k(x) \omega_k(x) \right].$$

From the definition of S it follows that the functions $d^s \omega_k / dx^s$ have no poles in S; consequently

$$\left. \frac{d^{s}}{dx^{s}} \left(\sum_{k=1}^{m} P_{k}(x) \ \omega_{k}(x) \right) \right|_{x=r_{i}} \in K \left(\omega_{1}(r_{i}), \dots, \omega_{m}(r_{i}) \right)$$

and

$$\lim_{x\to r_i}\xi(x)\in K(\omega_1(r_i),\ldots,\omega_m(r_i)).$$

Let us define

$$W_i(t) = \frac{1}{\Delta(r_i)} \sum_{j=0}^n A_j(r_i) t^j, \quad X_i = \left\{ \lim_{x \to r_i} \xi(x) \colon \xi \in X, \lim_{x \to r_i} |\xi(x)| \neq \infty \right\}.$$

The foregoing argument shows that $X_i \subset K\left(\omega_1(r_i), \ldots, \omega_m(r_i)\right)$. Moreover, the polynomials $W_i(t)$ have the degree $n \geq 2$, and their coefficients belong to $K\left(\omega_1(r_i), \ldots, \omega_m(r_i)\right)$. Now we prove that $W_i(X_i) = X_i$. Let $\xi \in X_i$. Hence there exists $\mathcal{E}(x) \in X$ such that $\lim_{x \to r_i} \mathcal{E}(x) = \xi$; thus, since W(X) = X, there exists $U(x) \in X$ such that $W(U(x)) = \mathcal{E}(x)$, i.e.:

$$\Xi(x) = \frac{1}{\Delta(x)} \sum_{j=0}^{n} A_j(x) U^j(x)$$

and we obtain

$$|E(x)| \geqslant \left| \frac{A_n(x)U^n(x)}{\Delta(x)} \right| - \left| \frac{1}{\Delta(x)} \sum_{j=0}^{n-1} A_j(x)U^j(x) \right|.$$

In a neighbourhood of r_i we have

$$\left|\frac{1}{\Delta\left(x\right)}\sum_{j=0}^{n-1}A_{j}(x)U^{j}(x)\right|\leqslant B\left|U\left(x\right)\right|^{n-1}$$

and, since $A_n(r_i) \neq 0$,

$$\left| \frac{1}{\Delta(x)} A_n(x) U^n(x) \right| \geqslant B_1 |U(x)|^n.$$

Now if $\lim_{x\to r_i} |U(x)| = \infty$, then

$$\left| \frac{\mathcal{Z}(x)}{U^{n-1}(x)} \right| \geqslant B_1 |u(x)| - B \to \infty$$
 as $x \to r_i$,

but this is impossible, since from $n \ge 2$ we infer that

$$\left|\frac{E(x)}{U^{n-1}(x)}\right| \leqslant \frac{B_2|\xi|}{|U(x)|^{n-1}} \to 0 \quad \text{as} \quad x \to r_i.$$

Thus there exists a finite limit $u = \lim_{x \to r_i} U(x)$, $u \in X$, and obviously $W_i(u) = \xi$, whence $X_i \subset W_i(X_i)$. On the other hand, if $U(x) \in X$, $W(U(x)) = \Xi(x)$ and $\lim_{x \to r_i} U(x) = u \neq \infty$, then $\lim_{x \to r_i} \Xi(x) = W_i(u) \neq \infty$; consequently $W_i(u) \in X_i$ and so $X_i \supset W_i(X_i)$, which together with the inclusion formerly established gives $W_i(X_i) = X_i$.

Now let us remark that the field $K\left(\omega_i(r_i),\ldots,\omega_m(r_i)\right)$ is for $r_i \in K$ a finite algebraic extension of K, and so this field possesses property (P_H) ; consequently the sets X_i must be finite. Since the sequence r_i is infinite, one infers without difficulty that there can be only a finite number of elements ξ in X such that $f(\xi) + g(\xi)$ is equal to a fixed c.

We have thus proved that our set X, the polynomial W(t) and the functions $f(\xi)$, $g(\xi)$ defined as above satisfy condition (a) of our fundamental lemma. Now we are going to prove that the remaining two conditions are also satisfied.

LEMMA 2. Let L be a principal ideal domain and L' its integral closure in a finite algebraic, normal, separable extension \mathcal{K}' of the quotient field \mathcal{K} of L. Then, for every fixed b in L' and every natural number n, there can be only a finite number of a in L such that, with some c in L', a divides bc^n in L' but no non-unit divisor of a in L divides c.

The proof of this lemma in the case where L is the ring of rational integers was given in [1] (lemma 2). The proof in the general case is almost literally the same. One need only remark that L' is a Dedekind domain (see [3], p. 281) and that in L there is only a finite number of prime-ideals which ramify in L' (see [3], p. 303).

COROLLARY. Let A(x) be a fixed integral algebraic function from R, and let n be a positive integer. There exist only a finite number of polynomials U(x) with coefficients from K such that for a certain integral algebraic function V(x) from R, the quotient $A(x)V^n(x)/U(x)$ is integral in R and simultaneously for no non-constant polynomial $\Phi(x)$ over K dividing U(x) the quotient $V(x)/\Phi(x)$ is integral in R.

For the proof one should observe that the ring of polynomials over a field is a principal ideal domain.

LEMMA 3. Let A(x) be an integral algebraic function from R ($A(x) \not\equiv 0$), and let n be a positive integer. Then

$$\psi(A) = \inf_{f(\xi)=0} \{g(A\xi^n) - ng(\xi)\} \neq -\infty.$$

Proof. Let $A(x) = A_1(x) \omega_1(x) + \ldots + A_m(x) \omega_m(x)$, where A_f are polynomials over K. For every m functions $f_1(x), \ldots, f_m(x)$ defined in S the following identity holds:

$$\left(\sum_{k=1}^{m} A_k(x) \, \omega_k^{(r)}(x)\right) \left(\sum_{k=1}^{m} f_k(x) \, \omega_k^{(r)}(x)\right)^n = \sum_{k=1}^{m} T_k(f_1, \ldots, f_m) \, \omega_k^{(r)}(x) \qquad (r = 1, \ldots, m) \,,$$

where T_k are homogeneous forms of *n*-th degree of *m* variables, with coefficients which depend only on A and n and are polynomials over K. Suppose that

$$g(A\xi_j^n) - ng(\xi_j) \rightarrow -\infty, \quad \xi_j(x) = \sum_{k=1}^m P_k^{(j)}(x) \omega_k(x).$$

We can assume that $g(\xi_j) = \text{degree of } P_{k_0}^{(j)}, \ j = 1, 2, ..., \text{ and that}$

$$g(A\xi_j^n)-ng(\xi_j)\leqslant -j, \quad j=1,2,...$$

Let us define, for $x \in S$, $s(x) = \max_{k,r} |\omega_k^{(r)}(x)|$. Evidently

degree of
$$T_k(P_1^{(j)}, ..., P_m^{(j)}) \leq \text{degree } [P_{k_0}^{(j)}]^n - j$$
,

whence for |x| sufficiently large (say, for $|x| \ge x_0(i)$)

$$\left| \frac{T_k \left(P_1^{(f)}(x), \ldots, P_m^{(f)}(x) \right)}{\lceil P_{k_n}^{(f)}(x) \rceil^n} \right| \leqslant \frac{B(j)}{\lceil x \rceil^{j}}$$

and

$$\left| T_k \left| \frac{P_1^{(j)}(x)}{P_{k_0}^{(j)}(x)}, \dots, \frac{P_m^{(j)}(x)}{P_{k_0}^{(j)}(x)} \right| \leqslant \frac{B(j)}{|x|^j}.$$

By multiplication by $\omega_k^{(r)}(x)$ and addition, we obtain

$$\left| \sum_{k=1}^m T_k \left(\frac{P_1^{(f)}(x)}{P_{k_0}^{(f)}(x)}, \dots, \frac{P_m^{(f)}(x)}{P_{k_0}^{(f)}(x)} \right) \omega_k^{(r)}(x) \right| \leqslant B(j) \frac{s(x)}{|x|^{j}} \quad (r = 1, \dots, m),$$

whence

$$\left| \left(\sum_{k=1}^m B_k(x) \, \omega_k^{(r)}(x) \right) \left(\sum_{k=1}^m \frac{P_k^{(j)}(x)}{P_{k_0}^{(j)}(x)} \, \omega_k^{(r)}(x) \right)^n \right| \leqslant B(j) \, \frac{s(x)}{|x|^j} \, ,$$

which gives

$$\left| \sum_{k=1}^m \frac{P_k^{(j)}(x)}{P_{k0}^{(j)}(x)} \omega_k^{(r)}(x) \right| = O\left(\frac{s^{1/n}(x)}{x^{j/n}}\right) \quad (j = 1, 2, ...; \ r = 1, ..., m) \,.$$

(Here and below the constents in O depend on j but not on x.)

The function s(x) cannot tend to infinity more rapidly than every polynomial. Suppose thus that $s(x)=o(x^\mu)$ when $x\in S$ and x tends to infinity. Let

$$H_r^{(j)}(x) = \sum_{k=1}^m \frac{P_k^{(j)}(x)}{P_{k_0}^{(j)}(x)} \omega_k^{(r)}(x) .$$

Then

$$H_r^{(j)}(x) = o(x^{(\mu-j)/n});$$

but $P_{k_0}/P_{k_0}=1$, whence, if we denote by d(x) the discriminant of the field R,

$$1 = rac{1}{\sqrt{d\left(x
ight)}} \left| egin{array}{c} \omega_{1}^{(1)}\left(x
ight), \ldots, H_{1}^{(j)}(x), \ldots, \omega_{m}^{(1)}\left(x
ight) \\ \ldots & \ldots & \ldots \\ \omega_{1}^{(m)}(x), \ldots, H_{m}^{(j)}(x), \ldots, \omega_{m}^{(m)}(x) \end{array}
ight| = O\Big(\sum |H_{r}^{(j)}(x)| \, s^{m-1}(x)\Big) \, ,$$

and consequently

$$1 = o(x^{\mu(m-1)+(\mu-j)/n}),$$

which is impossible for j sufficiently large. The contradiction obtained proves the lemma.

LEMMA 4. There exists a constant C such that from $f(\xi) \ge C$ follows $f(W(\xi)) > f(\xi)$ for ξ in X.

The proof of this lemma is analogous to the proof of lemma 4 in [1] but for completeness we give it in full.

Let

$$\xi(x) = rac{1}{q(x)} \sum_{k=1}^m p_k(x) \, \omega_k(x) \,, \quad \ \left(p_1(x) \,, \, \ldots , \, p_m(x) \,, \, q(x)
ight) = 1 \;,$$

$$\overline{\xi}(x) = q(x)\,\xi(x)\,,$$

$$W(\xi(x)) = \frac{1}{Q(x)} \sum_{k=1}^{m} P_k(x) \, \omega_k(x) = \frac{1}{\Delta(x) \, q^n(x)} \sum_{k=1}^{m} \overline{P}_k(x) \, \omega_k(x) ,$$

$$(P_1(x), \dots, P_m(x), Q(x)) = 1 .$$

(A(x)) and $A_n(x)$ used below have the same meaning as in lemma 1). Evidently Q(x) divides $A(x)q^n(x)$. Let us put $\mu(x) = A(x)q^n(x)Q^{-1}(x)$ and $\nu(x) = (\mu(x), q(x))$. Observe now that

$$\sum_{k=1}^{m} P_k(x) \, \omega_k(x) = A_n(x) \, \overline{\xi}^n(x) + R(x) \, q(x) \,,$$

where R(x) is an integral algebraic function from K.

If $f(\overline{W}(\xi)) \leq f(\xi)$ then evidently the degree of q is at least equal to degree of Δ +degree of $q^n(x)$ -degree of $\mu(x)$ and so the degree of q(x) is at most equal to nB/(n-1), which proves the lemma.

LEMMA 5. For every constant M there exists a constant B(M) such that from $f(\xi) \leqslant M$ and $g(\xi) \geqslant B(M)$ follows $g(W(\xi)) > g(\xi)$, for $\xi \in X$.

Proof. The following inequalities result directly from the definitions of the functions $f(\xi)$ and $g(\xi)$:

$$\begin{split} f(a+b) \leqslant & f(a) + f(b) \;, \quad f(ab) \leqslant f(a) + f(b) \;, \\ g(a+b) \leqslant & \max\{f(a), f(b)\} + \max\{g(a), g(b)\} \;, \\ g(ab) \leqslant & B' + g(a) + g(b) \quad \text{with a suitable } B'. \end{split}$$

If Q is a polynomial, then

$$g(a)$$
-degree $Q \leqslant g(a/Q) \leqslant g(a)$.

Suppose $f(\xi) \leq M$. Then

$$(1) \qquad g\left(\frac{1}{\Delta(x)}\sum_{j=0}^{n-1}A_{j}(x)\,\xi^{j}(x)\right)\leqslant g\left(\sum_{j=0}^{n-1}A_{j}(x)\,\xi^{j}(x)\right)\leqslant (n-1)\,g\left(\xi\right)+M_{1}$$

with a suitable $M_1(M)$. Let $\xi = \overline{\xi}/Q$, where $\deg Q = f(\xi)$, and $f(\overline{\xi}) = 0$. Then

$$\begin{split} g\left(\frac{1}{\varDelta}A_n\xi^n\right) &\geqslant g(A_n\xi^n) - \deg\varDelta = g(A_n\overline{\xi}^n/Q^n) - \deg\varDelta \\ &\geqslant g(A_n\overline{\xi}^n) - nf(\xi) - \deg\varDelta \geqslant g(A_n\overline{\xi}^n) = nM - \deg\varDelta \\ &\geqslant ng(\overline{\xi}) + \Psi(B,n) - nM - \deg\varDelta \geqslant ng(\xi) + \Psi(B,n) - nM - \deg\varDelta \,. \end{split}$$

If for a sequence $\{\xi_i\}$, with $f(\xi_i) \leq M$,

(2)
$$\lim_{i\to\infty} \left[g(W(\xi_i)) - ng(\xi_i)\right] = -\infty,$$

then (since in view of lemma 1, $g(\xi_i)$ tends to infinity) we have

$$\begin{split} \mathcal{Y}(B,\,n) &\leqslant g\left(\frac{1}{\varDelta}\,A_n\,\xi_i^n\right) - ng\left(\xi_i\right) + nM + \deg\varDelta \\ &= \deg\varDelta + nM + g\left(W\left(\xi_i\right) - \sum_{j=0}^{n-1}\frac{A_j}{\varDelta}\,\xi_i^j\right) - ng\left(\xi_i\right) \\ &\leqslant \deg\varDelta + nM + M_2 + \max\left(g\left(W\left(\xi_i\right)\right),\,g\left(\sum_{j=0}^{n-1}\frac{A_j}{\varDelta}\,\xi_i^j\right)\right] - ng\left(\xi_i\right) \to -\infty \end{split}$$

in view of (1) and (2), which is incompatible with lemma 3. Thus

$$g(W(\xi_i)) \geqslant ng(\xi_i) - M_3$$

with some M_3 , whence the inequality $g(W(\xi_i)) \leq g(\xi_i)$ cannot be true for sufficiently large $g(\xi_i)$. The lemma is thus proved.

To prove the theorem it suffices now to observe that, in view of lemmas 4 and 5, conditions (b) and (c) of the fundamental lemma are satisfied, and lemma 1 ensures condition (a), whence the application of this lemma shows us that the set X is finite, which is what was to be proved.

3. Proof of theorem II.

LEMMA 6 (see [2], p. 188). Let $\mathcal{L} = \mathcal{K}(\vartheta)$ be a simple transcendental extension of a field \mathcal{K} . Let us define for $\xi = A(\vartheta)/B(\vartheta) \in \mathcal{L}$, (A(t), B(t)) = 1, $F(\xi) = \max(\text{degree } A, \text{degree } B)$. If P(t) is a polynomial of degree M with coefficients from \mathcal{K} , then $F(P(\xi)) = mF(\xi)$.

Now let $K = R(\{\vartheta_a\}_{a\in A})$ be a pure transcendental extension of a field R which possesses property (P_H) . Let Q be a polynomial with coefficients from K, of degree $n \geq 2$, and let X be a subset of K for which Q(X) = X. Since (see theorem II in [1]) every pure transcendental extension of R obtained by adjoining a finite set of elements has property (P_H) , we can assume that the coefficients of the polynomial Q belong to R, for otherwise we could obtain this by adjoining to R all the indeterminates which occur in the coefficients of Q.

Let us now remark that, if \mathcal{L} is a simple transcendental extension of a field \mathcal{K} , then, from $X \subset \mathcal{L}$, $X \setminus \mathcal{K}$ being non-void, and $\overline{Q}(X) = X$, where \overline{Q} is a polynomial over \mathcal{K} , it follows that \overline{Q} is linear. Indeed, let $\alpha \in X \setminus \mathcal{K}$ be such that $\min_{\xi \in X \setminus \mathcal{K}} F(\xi) = F(\alpha) \neq 0$, and let $\overline{Q}(\beta) = \alpha$. Then from lemma 6 follows $nF(\beta) = F(\alpha)$, whence $F(\beta) \neq 0$, i.e. $\beta \in X \setminus \mathcal{K}$ and so $F(\beta) \geqslant F(\alpha) = nF(\beta)$, which can occur only if n = 1.

Now, if $X \subset R$, then the set is finite by the assumption. If there exists $\xi \in X \setminus R$ which, for example, has the form

$$\xi = \frac{A(\vartheta_{i_1}, \dots, \vartheta_{i_8})}{B(\vartheta_{i_1}, \dots, \vartheta_{i_8})},$$

then let $K = \mathcal{K}(\vartheta_{i_1})$ where $\mathcal{K} = R(\{\vartheta_a\}_{a\in A, a\neq i_1})$. Since $X \setminus \mathcal{K}$ is non-void, then from the preceding remark we infer that n=1, contrary to our assumption. The theorem is thus proved.

It is worth remarking that, if a field K has property (P_H) and X is a subset of K such that with a suitable non-linear polynomial P(t), $P(X) \supset X$, then X must be finite. Indeed, let Y be the smallest set

containing X and closed under the mapping $x \to P(x)$. If X is infinite, then the coefficients of P(t) belong to K, and so Y is contained in K. Moreover P(Y) = Y, and so Y is finite, which is impossible.

References

- [1] W. Narkiewicz, On polynomial transformations, Acta Arithmetica 7 (1962), pp. 241-249.
- [2] E. Steinitz, Algebraische Theorie der Körper, Journal f. d. reine u. angew. Mathematik 137 (1910), pp. 167-309.
 - [3] O. Zariski and P. Samuel, Commutative algebra, Vol. I, Princeton 1959.

KATEDRA MATEMATYKI POLITECHNIKI WROCŁAWSKIEJ DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY OF WROCŁAW

Reçu par la Rédaction le 6. 3. 1962