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1. Introduction. In [2] we considered the integral representations of
Galois group by the ring of integers in an algebraic number field.
There the following theorem was foundamental.

THEOREM 1. Let & be an algebraic number field of finite degree and
let K be a normal extension of k. Then the relative traces of all integers of K
1o k constitute am integral ideal o of k and the ideal a is characterized as the
mazimal divisor of & dividing the relative different D

Now, let Ox and Oy, be the rings of integers in K and % respectively,
and let G = G(K/k) be the Galois group of K over k. Then this founda-
mental theorem means in the cohomology theory that the 0-dimensional
Galois cohomology group HY@, Og) of Ok is isomorphic to the residue
class group of Oxmod™ a.

Further, we knew there the following result (Corollary 2.):

Under the same asswmptions as in Theorem 1, if we assume moreover
that the 0-dimensional Galois cohomology group of Ox with respect to K[k
is irivial, then the Galois cohomology group of Ox with respect to K[Q is
trivial for every dimension and for any intermediate field Q of K/k.

In the present paper, we shall consider furthérmore the 1-dimen-
sional Galois cohomology group H(@, Og) of Ox, and then, by consider-
ing HY(G, Og), H{G, O) in the case where K and k are normal over the.
rational number field Q@ and the relative degree of K/k is prime p, we shall
show that all dimensional Galois cohomology groups are isomorphic to
each other and that they are determined by ramification numbers.

2. H{@, Og). In this article, we shall consider the 1-dimensional
Galois cohomology group of Ox.

Thus, let % be, as before, a finite algebraic number field, let K/%k
be a finite normal extension over %, and let G = G(K/[k) be the Galois
group of K/k. Here we define the symbol Z(4, a) in the following way.
We say that the symbol Z(4, a) is well defined for 4 in Ox and for a
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in O if and only if there exists a {&o}oew, &5 € Ox such that 4 — A% = q.¢,
for every o in G. If the symbol Z (4, a) is well defined, then {&},eq is
uniquely determined and {£,}.c¢ defines clearly a 1-dimensional Galoig
cocycle, and hence we may write also Z(d,a) = &

Prorosirion 1. The symbol Z(A, a) is well defined if and only if
A = A°mod(a)x for every o in G.

Proof. Evident from the definition of Z(4, a).

Prorosition 2. The symbol Z(A, a) defines a 1-dimensional Galois

Proof. If Z(A,a) defines a 1-dimensional Galois coboundary, then
there exists a B in Og such that A4— A° = a(B— B°), namely (4 —aB)’
(A—aB) for every ¢ in @ Hence, there exists a b in Oy such that
A—aB = b. Therefore, we have 4 = b mod{a)g.

Conversely, if there exists a b in Oy such that A = b--aB, then
A—A4°=a(B—B°) and so Z(A,a) defines a 1-dimensional Galois co-
boundary.

PRrOPOSITION 3. Let a be an arbitrarily fiwed non-zero number in
SgirOx. Then for any 1-dimensional Galois cocycle, there exists a number A
in Og such that Z(4,a) = &.

Proof. If we take an element B e S;—}ka and put 4 = ) BTE,, then
r€}

this number 4 belongs to Ok clearly, and for every ¢ in @ we have A — A°

=a-&. For -
A—a°= Y BE— D B
€@ el
= D B~ ) B
ore ore@@
= ) Bt~ &)= ) B,
are o€

= (8gpB)& =a-&,.

PROPOSITION 4. Let a be an arbitrarily fived non-zero number in SgpOx -
Then the 1-dimensional Galos cohomology group HYG, Ox) of O 8 is0mor-
Pphic to the factor group of the G-invariant residue class group of Oxg mod (a)x
by the residue class subgroup mod (a)x containing some number in Og.

Proof. Evident from the above Propositions 1,2,3.

PrOPORITION B. For any integral ideal o in O, we denote by Hgpla)
the factor growp of the G -invariant residue dass group of Ox mod ax by the
residue class subgroup containing some nuwmber in Oyp. Then, for the prime
decomposition « = IT;p¥ of ideal o in k, Hgpla) 8 isomorphic to the direct
sum of groups Hep(p?) and the order of the factor group Hgn(pd) is a power
of -prime p; contained in p;. :
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Proof. We prove
Hgp(ab) 2 Hypa) @ Hgpo(b)

for two ideals a,b in O, such that (a, b) = 1. Now, we may take a ea,
b e b such that (a,b) = 1. Since there exists an ideal m in Oy such that
(a, m) =1 and bm = (b) is principal in Oy, there exists an ideal n in Oy
such that (b, n) = 1 and an = (a) is prineipal in 0;. Here we put y = af+
+ba. Then, if «, f run over a complete system of residues modag, modbx
in Ox respectively, ¥ also runs over a complete system of residues mod (ab)x
in Og, and y is G-invariant mod (ab)x if and only if ¢, 8 are G-invariant
mod ag, mod bx respectively.

Further, if « = ¢, modax and f = b, modbx for some a, € Oz, b, € Oy
then y = aby+ bay € O mod.(ab)x.

Conversely, if we assume y = 7, mod(ab)x for some 7, Oy, then
since (a,d) =1, we may write 7, = a(ryz)+b(ry) with some number
xz, ¥ in Op such that ax-+ by = 1. Therefore we have

af+ba =y =1, = a(r@) +b(ry) mod (ab)x ,
whence

a =7y € Oy modag ,
ﬂ =Tl € O;.-, mode .

On the other hand, since the order of the factor group O,/pf¥ is a power
of p;, the order of the subgroup H x(pi) of Ofpf is also a power of
prime p;.

This completes the proof of our assertion.

4
THEOREM 2. For the ideal SgpOx = a = [] p§, we have
i=1

1) HK/k pn) =0 70’)'

any integer n =0 and for any prime p # p;
(t=1,2,..,9), :

{7
2) H(@, Og) = dil“Z; Hygplp?)-

Proof. We may take an integral ideal m in Oy such that (ap”, m) =1
and that ap*m = (a) is principal in O; and an integral ideal n in O such
that (a,n) =1 and that an = (a’) is principal in Oy. Then, since

Hgpl(a) =2 Hrpl(a')) 22 BYG, Ox)
by Proposition 4, we have

Hgp(a) @ Hen(p™) @ Hip(m) s Hepla) @ Hepwl(n) == HY(G, Ox)

from. Proposition 5.

Here, becanse of (p,an) =1, we have Hgp(p®) =1 from Proposi-
tion 5. Similarly we have Hzp(m) =1, and hence Hgpla) = H{@, Ox)-
This implies our assertion by Proposition 5.
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3. Main theorem. In this article, we consider the Galois cohomo-
logy groups in a special case as follows.

Tet K be a normal extension over the rational number field @, and
let % be a subfield of K such that K/k is cyclic of prime degree p and
that %/Q is normal of degree n.

PROPOSITION 6. Let v be the common ramification nwmber with respect
to K[k of all the prime divisors B; of p in K, and let ¢ be the common ramifi-
cation order with respect to k/Q of all the prime divisors py of p in k. Put
§ = v—[v/p] = 0, where [x] means the Gaussian symbol, i.e. the maximal
integer which is not greater than w. Then the 0-dimensional Galois coho-
mology group HYG, Ox) of Ox 4s isomorphic to the nsfe-ple direct sum of
a cyclic group of order p:

néle

e ——
HY(G, Og) = {p,D, .-, P}

Remark. In this paper, we understand by the ramification number
of § with respect to Kk an integer v such that % 15 the maximal
common P - component of 4°— 4 for every integer 4 in Ox and for every
Galois automorphism o of K/k.

Hence, according as P is unramified, tamely ramified or highly
ramified in K/k, we have v = —1, v =0, v > 1, and then s = 0, § =0,
§ > 1 respectively.

Tn the former paper [2], we understood by the ramification nwmber
of P with respect to XK/k the v-1 in this paper.

Proof to Proposition 6. We put v = pm+1, 0 <t<pandy = p—
—(#+1) (0 <7 < p). Then the P;-component of the relative ditferent
of K/k may be written as Di($Ps) = BE~ = pip] because of pj = PBY".
However, K/k is normal by the assumption, and hence from Theorem 1
we obtain SgxOx = [l] pi, where the product runs over all the prime divi-

»p

sors p; of p in %, and the index of SxpOx in Oy is equal to

[Ox: S Okl = Nmonp? =™
Pilp
On the other hand, the order of any element of the group HYG, Ok)
divides p. Now our assertion is immediate.
PROPOSITION 7. Under the same notations as in Proposition 6, we
have & > s. In particular, in case v == 0(p), we have ¢ = s.

namely ¢ > s. .
On the other hand, from Theorem 1, we have

P8 1

=1y 1 , e
(p-D+1) <p(+1), vemey o< Eoig.
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Since v is integer and p > 2, we have v < ps/(p—1), and hence » < ps/(p—1)
< pef/(p—1). In case » = 0(p), we have v = pe/(p—1), whence
o= PS5 __ D¢
p—1" p—1’

ie. e=s.

This is our assertion.

Now, let IT beAa, number in P; but not in B3 (P,//11), let = be a number
in p; but not in pi (py/n), and let B be a fixed representative in 0 of
a basis for the residue class field Oyfp; containing the number 0,1. Then
in case v > 0, B is also the representative of a basis for Ox/P;.

PROPOSITION 8. Inm case 8 >1, for any i=1,2,...,p—1, we have

P I, e (ITV—IT'= (PP, but 0 (PIHY,

where o is o generator of the Galois group G(K/E).
Proof. To prove this Proposition, we set
I = IT+ g (IN) IT"* mod p7° ,
‘where

—y—2

GUT) = 6o+ oIl 4 ... +Cpg_ps

with uniquely determined ¢, # 0, s, ..., Cps—v—1 € B. Since

k
()" = (T +gI™* e = Y0,y 1+
77‘;‘ .
= D0y I+ mod p*
=0
for every k=1, ...,p—1, we have
i1
(Y I = (I°—10) > Ty
k=0
i-1 k .
=(r—1) ) D WOgm
k=0 J=0
i-1 k
= (I’ =T D) Y 036 T modsp?* .
k=0 §=0
On the other hand, we have *//(II°—I1)II"™ from the definition
of v, and, since (¢,p) =1 for ¢=1,2,..,p—1, we have
i-1 & -1
=0

k
2 Zkoygiﬂw“’ (kGo +2k019111w)
7 i=1

k=0 fm=0
i-1 %
it 3 D0 0 modg,
k=1 §=1
whence follows our asgsertion.
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—1
PROPOSITION 9. Let A = i},’ Folm) IT7 (PPY be the residue dlass mod B
containing o number A in 01:-:0wlz37‘e
§—-1
fi(m) = %‘a/iﬁ-m’”jy tipi e (0L <p, 05§ <),
=
Then A is G-invariant mod P} if and only if condition (x) is satisfied;
in case r =0,

O = Ghjtp = «oo = Qitp(s~m—2) =0 for every i =1,2,..,p-1,
(*) in case r >0,
= Qgpp—m-1 =0 for every 4 =1,2,..,r,
=741, ..,p-1.

U = Qjp-p = «un
G = Giip = o = Qippe-m—2) = 0 for every

Proof. In case s = 0, this Proposition is trivial and hence we con-
gider case s > 1 only.
. Now we pfn*st assume that 4 is G-invariant mod $?*, namely
A° = A mod$P;°. Then, since

Pp-1 p~1
A= A = Y fla) (T = 1T = D)) (UT)' — 11'Y
=0 wa
we have -
p-1
(%) Do) {UT°Y — 1Ty == 0 modp7* .
i=1
On the other hand, because of ps = (v+1)+p(s—m—1)+47r, we

first consider (x) modPit’, ..., Pi*? respectively. Then we have f,(z)

=0, .., fp-1 (x) = 0 m0d%P;, whence we obtain a; = 0, ..., 4,4 = 0 re-
spectively.

We next consider (sxx) mod$p{"™*? .. PP and similarly we
have fy(e0) = 0, ..., fp-a(m) = 0 mod Pi ™%, whence @iy = 0, v, Ggpegypp = 0
respectively. We repeat this argument and finally obtain

At ps-m—2) = 0 vy Bty pla—m—z = 0 .

I& e 1 >1)0, we further comsider (xx) mod i+t ee=m=2_
oy P , and obtain similarly
A pplg—mn—-1) = 0y vory Bpppigmm—1 == 0,
Conversely, we assume condition (x). Since condition () means thatb
film) = Girpemmyr’™ ™+ oo - Gpppa-nyr’ " == 0 modpi™"
: for di=1,..,7,
Ii(n) == azﬁ-{-p(s»m—l)ﬂs_m_l + e a/‘:,,.”(a_uﬂs—l == () modp?“"""1

for i=#¢41,..,p—1,
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it follows by Proposition 8 that

Fil) (T — IT'} = 0 mod BT~ ™" for
filw) [T — IT') = 0 mod PP~ D" for

t1=1,2,..,7,
t=r+1, ..
On the other hand, we have

p(8—m)+0v+1i=pst+t+i>ps

becanse of ¢ =1, and in case ¢ = 7-+1 we have
p—m—1)+v+iZpE—1)+t-+r+1=7ps.

Therefore, in both cases we have

Pl
AT— A = D fi{m) (IT) — IT'} = 0 mod B¥* ,
o1
which completes our proof.
ProPosITION 10. The 1-dimensional Galois cohomology group HYG, Oxy
of Ox with respeet to K[l is isomorphic to the nsfe-ple direct sum of eyclic
group of order p:

nale

prmemmsnam —
HYG, Og) = {p, Py s D} -

Proof. From Theorem 2 and Proposition 9, it follows immediately
that the order of the 1-dimensional Galois cohomology group HY&, Ox)
of Ok is equal to pnse. On the other hand, the order of any element of
the gronp HY(@, Og) divides p. Now follows our Proposition.

TuporeM 3. Let K be o normal extension over the rational number
field Q, and let & be a subfield of K such that K[k is eyelic of prime degree p
and that %/Q is normal of degree n. Then, for every dimension m, the Galois
cohomology group H™(G, Og) of Ox with respect to K[k is isomorphic to
the nsje-ple direst sum of & cyclic group of order p:

nsfe

H™@, Og) 2 {P, s - P} -

Proof. From Proposition 6 and Proposition 10 it follows that the
0-dimensional Galois cohomology group HYG, Og) of Ox With respect:
to K[k is isomorphic to the 1-dimensional Galois cohomology group
HYG, Og) of Ok with respect to Kfk. Since G (K/k) is cyclic, by the well-
known theorem (cf. [1]) of cohomology groups we obtain our Theorem.

Added in proofs: In the meantime the writer was obtained a somewhat sim-
pler second proof to the main result in the present paper by considering 1-dimen-
sional Galois cohomology groups in place of 1-dimensional ones. See H. Yokoi, On an
isomorphism of Galois cohomology groups H™&, Ox) of integers in an algebraic number
field, Proc. Japan Acad. 38 (1962), pp. 499-501.
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On primitive prime factors of Lehmer numbers II

by
A. ScHNzZEL (Warszawa)

The present paper is devoted to the investigation of Lehmer numbers
with more than two primitive prime factors. We retain the notation
of [3] with small changes that will be clear from the sequel.

In particular,

n odd,

7 even,

_ [,
l a———ﬂ

where @ and 8 ave roots of the trinomial 22— I*?2+ M, and L and M are
rational integers, K = L—4M 0. Further, Z denotes the complex
conjugate of any given z and ke(n) denotes a positive integer n divided
by the greatest e¢th power dividing it. The main result of the paper runs
as follows.

TreorEM. Let (L, M) =1, ¢ = 3, 4 or 6. If I** is rational, K'* is
an irrational integer of the field K (C.), K is divisible by the cube of the
diseriminant of this field, =, = k(M) is squarefree,

2
He = 1

and wjnes is an integer relatively prime to e, then for n > neL, M), Pn has
at least e primitive prime factors, and n(L, M) can be effectively computed.

Lemuma 1. Let e, m, n be positive integers, min, and let 3 be a character
modm such that x°+1 =y and that for all ¢5%0 (mode) characters 27 are
primitive. Further, lot

if e=6, M =3 (mod4),
otherwise ,

=t(tm) = D, £,

s
(rm)=1

let y, be a character modn induced by yx, and let x(=1)Ye be any fized
e-th root of y(—1).
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