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ACTA ARITHMETICA
VIII (1963)

Another note on Hardy-Littlewood’s theorem
by

S. KNAPOWSKI and W. STAS (Poznan)

1. In this paper we return to the subject of [3], i.e. to the investiga-
tion of the bebaviour of

(L.1) Bly) =D {Am)—1}e™, y>0,

N=
as ¥ —~0-+. Unlike in [3] we shall be interested here in oscillatory prop-
erties of the function (1.1). Hardy and Littlewood showed [1] that on
the Riemann hypothesis there is a constant K such that each of the ine-
qualities

Py > 2

(1.2) 7

F(y) <— ot
is satistied for an infinity of values of y tending to zero. In connection
with this result we shall supply here inequalities similar, though somewhat
weaker, to (1.2) holding however in an explicit form and without any
hypothesis. In the proof we shall use the method of Turan (see [5]), partic-
ularly its development to the study of oscillatory questions in prime
number theory (see [4]). Our result reads as follows:

THEOREM. For 0 < 8 <6 (1) we have

10g(1/5)10g10g10g(1/6))
-1 -
{1.3) é,}:ﬁnf'(y) > 672 exp( 14 Toglog (1/3)
and
5 - log (1/5)logloglog(1/3)
| Iy Y —14
(14) in Fly) <=9 ”“P( = oglog (19) )

COROLLARY. Replacing the exponent % in (1.2) by §—s, &> 0 and
arbitrary, the inequalities are satisfied (without any hypothesis 1) for an
infinity of values of y tending to zero.

() ¢; and further c,,¢;,... denote positive, numerically calculable constants.
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2. Here are some lemmas which will be used in the following.
LeMma 1. For 0 < 0 < ¢, there is a y, with

1

1 1 1
2 —_— — _ -
(2.1) i3 logloga LYy < lologlog 3
such that for all non-trivial zeros ¢ = f-+1y of {(s) we have
et Cy
2.2 = |arg— | 2 .
(22) T & ~ lyFlog|y|

For the proof see [2].
Before formulating the next lemma we give some preliminary ex-
planations. Let m be a positive integer and

(2.3) 1=[a]= |2l = ... > |2)]
and with a 0 < » < «n/2
(2.4) % < large;| < =
Let the index % be such that
4in
2. _—
(2.5) ‘h|>’m+’n (3 +m/x)

and fixed. Further‘

(2.6) B %! min re yb,
h<é<n j:

Then we have
Leyma 2. If B > 0 then there are integers v, and v, with

(2.7) m4+1 < v, vy < M0 (34 w/x)
such that )
re 2 byt > ( ” (]t
~ 21 +1\24 (m +n (3 + m/x)) 2 )

and

re > b " )2”. ]| rtnermid
2 S +1(24(m+'n B+n/x) \2

This lemma is a special case of Theorem 4.1 of [4], part IIT.

Finally we shall need

Levma 3. For @ > 0 (laking the real value of logm) and positive in-
teger v we have

1 (T
2 8
(2)

B 1 o?log”‘l(r/w) 1 T
8 . -— L v—1g-— g
438 = o 1)!5! . e~'dr = 0 1)!‘1 Yooy |

For the proof see [4], part VIILI.
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3. We turn to the proof. Using the value ¥, given in lemma 1 we
consider the integral

(3.1) LUE——-CﬂFm(wfmwu

274

where v is restricted at the moment only by the inequality

L. oL 1 ogl
(3.2) Elogg——log" 6<v<y110g6.

Developing %(s)—!—é‘(s) in Dirichlet series and using lemma 3 we:

get with @ = ne—n,

Iy(v) = Zv—l—l)'; (/1(11)~—1)! yr—le~nd gy |

Changing the order of summation and integraticn in the above
formula (which can be easily justified) we come to

= G:l‘f;‘y f?/"_l (S (A(n)—1) e"ﬂe”‘””l) dy .

Using the notation introduced by (1.1) and writing r = y—ry; we
put (3.3) as follows

(3.3) Iy(»)

o0

(3.4) 1) = e L) = ;=57 _11)! f -t E ()

—*U1

We have obviously

80 that

o oo

1 ) " v—1 ” Cy —e —1
F:WJ“+%’FWM<TTRJGW+%’W

o0

_.5 — G —7/2pp~—1
26 . 108‘(1/5_)_)
= (v_ﬂ;)!l‘(v) =6;-2" < exp (1210g10g(1/6) .
Hence and from (3.4)
U1
_ log(1/9)
v—1
e L) < 5y ax F(e) J e iartaesp (1210g10g(1l<3))'

=1
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In view of
1 M 1
Gy | T = ey < ey
—¥ih
log(1/9)
< exp (13 Toglog (1/9) logloglog(l/é))

“we can state the inequality

(3.5) eIy

< max F(e")- exp
12—y

12 ogtts
loglog(1/6)

which holds with » = »;, whenever

logloglog(]./a))+gﬁexp(12 log(1/9) )

loglog (1/8)

. e log(1/8)
(3.6) re Is(v,)— e exp (lologlog_i/é > > 0.

All in all (3.6) would imply
{3.7) max F(e")

v

= exp (~ 13 108(1/9) ) 1oglog]0g(1/6)) {re Iy(vy) — cgexp (12

loglog(1/6
Similarly the relation

log(l@l__)}
loglog(1/8)]1°

{3.8) re I5(vy) — cgexp (12 I(T]g?Tgr(;(/f%) <0
would imply
{3.9) min F (e
2wl
_1a log(1js) i log (1/8)
< exp ( 13 loglog(1/5) logloglog(1/8 )) {1e16(v2) — GgeXp (12 loglog(lm)} .

4. It is easy to see that there exists an infinite connected broken
line V, with segments parallel to the real resp. imaginary axis, all lying
in the strip % < o < } and such that

{4.1) %(s) < ¢ log(2+t]) along V.

Using now Cauchy’s theorem of residues in the domain limited by V'
and straight line o = 2 we obtain the following formula for Iy»)

w1 = X1 (- 5 [ (5 re e co)as

L‘>V e

icm®
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Using (41)

0o |5 [ (G 0 oo <ameao<o.

;

Further, owing to the fact that the number of {-zeros in r <t <r-+1
does not exceed
elog(2+1rl),

we have

(4.4) ' Z —TI'(e) (6—2—2)

>V
{Se|=1og0-1(1/2)

Choosing that zero in |t| < log(1/8), @, = oy+iy, say, ab which
|evefg] is maximal, and using (4.3) and (4.4), we get from (4.2)

etha\v evile—o
T AR
251 v
[Sol<log1(t/8)
5. In order to estimate rels(v) we shall make use of lemma 2. For
this sake we choose as z;'s the numbers
evile—on)

< oy exp (log (1] 8)) -

2 led) +00.

(4.5) Ig('l’

(8.1) e

and as the corresponding b;’s the numbers
(5.2) ~I(0)-
The number 7 of z7s is evidently

(5.3) < loghtz (loglog )
further, let m be defined by

log (1/9) ol
(5.4) m = [T—-log‘“ 51

Lemma 1 gives

with

> larges] > »

1
(5.5) %= log‘ms
Writiog o= }+i-1418..
(i-e. o, is tﬁs ¢-zero which has the minimal positive imaginary part)
we define integer k by

eViles—a1) eVl(Q! o)

ol -

ferly 2=

(5.6) 1 =

14
Acta Arithmetica VIIL
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The condition (2.5) is easily verified as follows: first

_ 4n
m+n(3+m/x) <

on the other hand

4 - 1
%< 210g—2/35 ,

-4 \ —1/20
e 1

(5.7 ol >l > (log3)
As to the quantity (2.6) we note that

B>—2rel(}+i-1413..)— D |I'(g)|.

lto]>21

(5.8)

Using the inequality (see [3], p. 165)

247° Cargl'(3+14-14.13...) < 262°
we have

—2rel'(}+14-1413...) = 2|rel'({+4-14.13...)| > 0.278 |I"(§ +14-14.13...)]

and, after the well-known formula
. o
[T} +it)| = Ve—nr_pg—_;“

—9rel(3-+i-14.13..) > % .

—oco < t< oo,

come to

(5.9)
By the inequality (see [3], (4.5))

Nirg < V2

27

[te]>21
and by (5.8), (5.9) we obtain finally
na 5 VE

624

e

(5.10) Seu .

Now we can return to the formula (4.5). Lemma 2 ensures that there
exists a », satisfying

1 1 1 1 1
(5,11) —log =102 <Ly < — ol
. g3 og® 3 \wl\ylloga

and such that

- (enesf]o,|)" B
5.12 Iy(v) =
< ) xeLlv) = 2n+1

+ 0[5

n B ) LR ICER ]

(24(m—|— n(3 +7c/x)))2ﬂ( 2

icm

Another note on Hardy-Littlewood’s theorem 211

with B, n, m, %, h subject to conditions (5.3), (5.4), (5.5), (5.6) and (5.10).
These easily imply )

(5.13) rely(v,) >

(;
so that by (5.7) ¢
(5.14)

Ty Mm+n(3+mfx)—r;
¢ |2],|
— | g~1og®58) 1 ()(§-118) ,
[2eal™

lm+n(3+:,lx)—zr1 A 25 [\ (3+7/x)
i o, (3)°)

2
Further

B3

o

+n(8+w/x%)—
([‘zz’ll)m M  gtomsain |

Also, by (5.11) and (2.1)

e%wu 1\ M2

> (_) - g~ 42 log(1/8) /loglog(1/%)
120,[" \0

so that by (5.13) and (5.14) we have

(5.15) e Iy(v,) > 512048 og(U)/loglog(/e) |
Similarly we come to the inequality
(5.16) re I5(v,) < — §~Y2g—48 log(Li)/loglog(1/6)

valid with a certain », satisfying
(5.17) L log(1/6)—1ogo9(1/8) < # < — log(1/8) .
% Y

Hence, in view of (3.6)-(3.7), we may write

—1a 4 og(1/d) )
rg:ia:ilrf'(e*) > §~2exp (~ 14 1og10g(1/6)10g10g10g(1/6)
which by (5.11) implies
= _ log(1/6) )
12 14 2P .
(5.18) D;:fF(y) = 6" exp ( 14 Ioglog(1/6)logloglog(l/z?)
Since trivially
Fy) = 0{y™)

we obtain (1.3) immediately from (5.18). The inequality (1.4) follows
similarly from (5.16) and (3.8)-(3.9).
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On primitive prime factors of Lehmer numbers I

by
A. ScHINZEL (Warszawa)

Lehmer numbers are called terms of the sequences
("= B")/(a—P),
(a"— B (a*—p%) ,

where « and B are roots of the trinomial 22—I12 2+ M, and L and M are
rational integers (cf. [4]). Without any essential lost of generality (cf. [9])
we can assume that

1)

n odd,

7 even,

Ppla, f) =

L>0, M#0, K=L—4M=0.

Lehmer numbers constitute a generalization of the numbers o"—b"
(@, b —rational integers). A prime p is called a primitive prime factor
of a number a"—b" if

a"—b"  bub ra*—b*  for k<nm.
p P

A proper (not merely automatical) generalization of this notion for
Lehmer numbers is the notion of a prime factor p such that

| Pn PptELPy... Py s
or, which is easily proved to be equivalent,
2| Pn

D. H. Lehmer [4] calls such primes p primitive extrinsic prime factors
of P,. In a postscript to my paper [7] I stated erroneously that Lehmer
calls them intrinsic divisors, the term which has been used in a different
sense by M. Ward [9]. To simplify the terminology, I adopt in the present
paper the following definition.

DEFINITION. A prime p is called a primitive prime factor of the number P,
if p|Py but prKLPg...Ppy.

but

but pinPs..Ppy.
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