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On a cubic congruence in three variables
by
L. J. MorpreLn (Cambridge)

Let p be a large pume, and let f(x, y) be a cubic polynomial in 2,y
with coefficients in G (p), i.e., the field of residues modp. Suppose also
that f(z,y) is irreducible in G(p) or any algebraic extension of G(p).
Let N be the number of solutions of the congruence

(1) H(@,y) = 0 (modp),

where we suppose that the curve f(z, y) = 0 is of genus one. Then there
iy Hasse's wéll known very deep result that

) |¥—p|<2Vp+1,

where yp is the best possible power of p.

Suppose next that f(»,y,2) is a cubic polynomial in z,y,2 with
coefficients in (p) which is not a function of only two independent
variables. Suppose also that j(x, y, 2) is irreducible in G(p) or any alge-
braic extension of G(p). Let now N denote the number of solutions of the
congruence (*)

(3) f(@, 4, 2) =0 (modp) .
It is quite easy to show that
(4) V—p*=0(p), y=32

where the constants implied in O here and throughout the paper are
absolute congtants independent of the coefficients of f(z, y, 2). From (1),
this is easily proved to be the best possible result when f (=, y, ) is homo-
geneous and the curve f(»,y,1) =0 iy of genus one. In general, the
best possible value of y is unknown. In some instances to be dealt with,
we can take y == 1. I put thiy forward as a conjecture in the general case
excluding, of course, the particular homogeneous case noted above.
Trivial cases when y == 1 are given by

zfs z,Y)+fol®, ) =0,

(1) We omit modulus hereafter since we use only modp.
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2 L. J. Mordell

where f, and f; are polynomials of degrees 2 and 3 respectively and, by
# =@, 9)+ 0@, 9) '

where ¢,, gs are homogeneous of degrees 2 and 3 respectively. Here the
complete solution can be expressed by means of two parameters e.g.
=&y, 2=y, ’

A more interesting case is the well-known congruence

ar®+by*+ e+ d = 0 (modp), abed=z£0,

where y = 1.

It is now not without interest to prove the

THEOREM. Let p be a large prime and let

f(@,y) = aa®+8bazy -+ Bcay® + dy?
where we suppose that
(@, y) £ v(Az+ py),

where A, u, v are rational.
Then N = N(k), the number of solutions of the congruence

() F=flz,y)+k
satisfies the inequality
(6) |V —p% =.0(p).

The result iy trivial when p = 2 (mod3). For if » = 0, the crudest
argument gives at most 2p solutions for y, 2. If # 5% 0, we can put y = vz.
Then

2 = (a+3bv+3ev? +d?)ad -+ k& .

Suppose first that a4 3bv+3cv2+de® = 0. This gives 6=10,1,2 or 3
values of ». Then # can be taken arbitrarily and then there are at most
two values for 2, and this gives at most 6p solutions.

Suppose next that a4 3bv--3ev - dvd £ 0. Then arbitrary z gives
one value for @, and so this gives p(p—4) solutions. Hence there are
P°+0(p) solution for (5).

‘We consider next the case when p =1 (mod3). We first of all dispose
of the special case when % = 0. Suppose first that & = 0 and so #* = dayt.
It d=0, y is arbitrary. If d =£ 0, we have a solution & = 0, y =0, and
-1 solutions when z3£0, given by putting y = uz where 1 = dus.
Hence there are O(p) solutions with 2 = 0. Suppose next that @ =% 0, so
that we can put y = aw, 2 = ow. Then

w = (a+3bv+3cv”—|—dvs)w .

For the 8 values of v above, zis arbitrary and this gives dp solutions.
‘We have next p—4 values for » and » values for w giving p(p—9) so-

~
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lutions. Hence the total number when % = 0 is p2+ O (p). Suppose hereafter
k=~ 0.

‘We require in the next section a result which we state as

LemmA 1(2). The number of solutions in x,y of

AX*+BY*=(, ABCso0,

s p-ﬂ(——gBL) where the symbol ( ) is the Legendre symbol.

We consider first the special case when f(z,y) is reducible modp,
and so f (@, ) has a linear factor modp. By means of a linear substitution,
we may suppose a =0 and s0 we consgider

7) 2 = 3bay + 3exy®+-dy*+ k.

Suppose first that b = 0, and so ¢£0. If y = 0, 2 is arbitrary and
there are at most two values for 2, i.e., this gives O(p) solutions. If y =% 0,
2 is arbitrary and # is uniquely determined giving p?-—p solutions. Hence
the total number is p*—O0(p).

Suppose next that bs£0. If y = 0, we have at most 2p solutions
for # and 2. Suppose then y =% 0. Then (3)

(8) - 3bys® = (3bay + §cy®)?+ (8bd — § ¢*)y* 4+ 3bky .
Suppose firgt that 4bd—3¢? = 0. Then
- oy\?
(9) 2 = 3by (m—}- 2b) +k.
K —3b
By Lemma 1, (9) has 21 (p— (—p—y
=

p2+ O (p) solutions when b =% 0, and 4bd—3¢® = 0.
Suppose next that b(4bd—3c?) £ 0. Since y =% 0, there are at most
three values of y for which (3bd—2c?)y*+ 3bky = 0. Since each value

)) = p?—p solutions. We have then

- of  gives at most two values of 2, at most 6p solutions arise in this way.

If we exclude these three possible values of y and y = 0, (8) has
\" —3b
32 o
v .

(*) A proof is given in Bachmann’s Arithmetik der quadratisches Formen, Bd. 1,
page 491. Another proof is also easily found by proving the existence of at le.ast one
golution X,, ¥, in the usual way, and then putting ¥ — X, = #(X — X,) where t is & ra-
tional parameter. <

(*) We understand throughout by a fraction 1/v, v54 0 (modp) the integer » where
v = 1 (modp) (when appropriate).
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solutions. Hence we have also p*+O(p) solutions of (7) when f(=z,y)
is reducible (modp). We suppose hereafter that p =1 (mod3), and that
f(@,y) is irreducible (modp).

This sixth power residues of the numbers ¥ = 0,1, ...,p—1 can be
arranged in seven sets. The first consists of the single number & = 0,
and the other six consist each of +(p —1) numbers. The number of solu-
tions of (5) is the same for two numbers %', k in the same set. For then
with appropriate v, &’ = k%, and the congruence

22 = ax® + 3baty + Scxy? -+ dy? + kv’

is replaced by () on putting # = v*X, y = *Y, 2 = v*Z.
We denote by N(ky), N (%), ..., N (k) the number of solutions of (5)
corresponding to the sets in which the %k may lie. Then

(10) ZN (k) = N (ko) + 42— 1) (N () + .. +- N (k) = p°

sinee the left-hand side is the number of solutions of (5) in the four vari-
ables z,y, z, k. Next

p—1
) D Ny =

k=0

Ne(ho) 4 (p = 1) (F() + o+ W2(h) = N,

where ¥® is the number of solutions in x,y, 2, @, ¥y, 2 of

(12) zﬁ“zzzf(wu%)_ﬂmy?/)-
Denote by N® the number of solutions of
(13) _ - Mo, y)—f(2,y)=0.

These will contribute to (12), (2p —~1)N® sgolutions. When (13) is not
satisfied, we have (p—1)(p*—N®) solutions of (12) since we can take

Z—2=9, v=1,2,..,p—1. Hence
N = (p—1)(p*—N®) + (2p—1)N®,
= PP —p*+pN® .

—1
Combining (10) and (11) with ' 1 = p, we have
k=0

(I (o) =22 +4 (0 = 1) [(¥ (k) — 92 - .. o (I (k) — )] = pN® —pt .

We shall prove below that N® = p®4-O(p2). Then if & =0,
Hp =) (k) —p) = 0(p?),

and so ¥ (k)—p* = O(p), the required result (6).
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To find N®, we put @, = &£, y, =y +4. Then

o, of 201 & a?
@ fenregrel by (e 2 g M) <o,
and we require the number of solutions in =,y, £, 7. We write this as
(15) Ax?+2Hay + By? + 2Fy -+ 262+ C = 0,

and we now find the number of solutions in @,y for given &, .
‘We state the result as

Lmva 2. The number N® of solutions in @,y of (15) when no one of
A=0, M—AB=0, A=ABC+2FGH—AF—BG:—CH2z=0
is satisfied, 18 given by
H*—AB
NG = _(——.) .
P ?
For we can write (15) in turn as

(Az+Hy + @)+ (AB—H) P+ 2(AF — GH)y + AC—G* = 0,
(AB—H*) (Ao +Hy+ G +((AB—H¥)y+ AP —GHP+ A4 =0 .

The result is now obvious from Lemma 1.

There are some cases of (15) requiring special consideration and it
will convenient to deal with these first.

We show that we cannot have both ac—b2 =0, db—¢? = 0 except
when both b =0, ¢ =0, each of these latter implying the other since
ad == 0. For then

2 2
1@, 9) =L ot 30ty 1 3emyr - Ly
= (bw+ oy fbe ,

and this has been excluded. We may suppose then that ac—b? =£ 0 unless
b=c¢=0.

The special cases referred to arc when any of A =0, AB—H2=0
and 4 = 0.

%
Suppose firgt that 4 =0, i.e., Z_gﬁ =0 or af-+by=0. This will not

be identically satisfied in &, 7 since we cannot have both a =0, b = 0.
2

Hence 2—51; = 0 is satistied by p sebs of values for £,7. We can deal at

once with the case £ = 0, n = 0. Then in (14), z, y are arbitrary and we

have P? solutions of (14). We now exclude the case £ =0, # = 0. Then

65377$0 since af-+-by =0, b&-+con =0 require ac—b%=0. This has

been excluded unless b=c¢=0 and this we deal with in a moment.
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. . 0
Hence excluding & =5 = 0, there are p—1 values of y for which jé+

+y aga %L 0. Each of these determines x uniquely and so 0( 2) sfets of
I

B
Then # is arbitrary and so we have agaﬂn O(pﬂ) sets of solutions for

&
’ ’Suppose next b=¢=0. Then (14) takes the shape

solutions arise for £, 5, @, y. Suppose next that y satlsﬁes 5 + Y30

(16) adt - drp -+ 3adm + 3dn2y + 3 (akar +dny?) = 0,
and A =0 gives £=0. Then
n(dn?+3dny +3dy®) = 0.

Hence either 7 = 0 and there are p* solutions for @, y, ory =1, 2, ..., p—1.
For each value of 7, there are at most 2 values for y since d 5= 0 and «
is arbitrary. We have here again O(p?) solutions.

Suppose next that H2—AB =0, ie,,
' of o of \2 _ .
am 55’@_(65871 = P+4-2Qfn+Rp*=0,

say. This is not identically congruent to zero it b = ¢ = 0, or if ac—b* =% 0.
Hence (17) gives O(p) sets of values for &, #. Also (14) takes the shape

9, 0,
(18) 1 n)+a ];'*‘y%’i'”(ﬂm*‘ﬂy)“EO,
say. We cannot have both 4= 0, u = 0 unless both £ =0, » = 0. For
o P _yp of 0, and so
651 ? P glves 5‘5‘8—‘ = ana 8§ .
af+bn=0, cf+dn=0, bi+on=0.

Then b*—a¢c = 0 which has been excluded unless b = ¢ = 0. We note

b=c¢=0 would give £ = = 0. Hence putting Az uy = X, there are

at most O(p) values for #, y and again O(p?) sets of solutions in z, y, &, 9.
Suppose finally that

A4 =ABC+2FGH—AF—B@—-CH? =0,

so that 4 ig a quintic binary form in &, . We prove that 4 is not identically
congruent to zero. The leading £ terms 4’, B’, ... in 4, B, ... are
A'=3ak, B =3¢, 0 =a,
, 3b
F = -—2—' 62 ]

G'=§2252, H' = 3b¢.
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Hence the coefficient of & in 4 ig’
9%+ 2 ab® — 4 ab® — 4 afo— 9ab? = § (a’o— ab?) .

Since @ =40, this requires b2 = ac. Similarly ¢ = db. Hence if be -0,
b2 &
f(&n) E?fs+3b§zn+30§n2+_ns,

and so f(&,#n) would be a cube except for a factor 1/be.
If, however, b = 0 then ¢ =0, and

f(Ea"?)—“fs'l'd?')s-

Now
A=3at, B=3dn, O=af+dp®, 2F =3dy®, 2G=3as, H=0,
Then
4 = 9ad én(a® - dn®y—2 ad?Ent —%F daPnét £ 0
identically.

Hence 4 = 0 gives at most O(p) sets of values of £, %. Since then (14)
splits into two linear factors in #, ¥ we have at most O(p) sets of values
for #,y. Hence at most O(p?) solutions arise when 4 = 0.

Since there are O(p?% solutions in &,7,,y when any of 4 =0,

—AB =0, 4 =0, we have

NGO = Z(p+ (gz—;—’yi))+0(pz) ’
& -

where the summation is taken over all the values of £, n except the ex-
cluded sets O(p) in number when 4 = 0 ete. Hence

(19) N® =p*4-0(p?).
This finishes the proof.

It seems as if the same method might apply te the congruence
B =f(w,y)+k

The ideas just developed make it quite easy to deal with N, the
number of solutions of the congruence

f(2, y) = aa®48ba?y +3cay? +dy* =1, " where  f(z,y) =% v(Aw+py) .

When p = 2 (mod3), we have trivially

|¥ —p|=0(1)

on putting y = va.
We prove that when p = 1 (mod3), we have

|¥N—p|=00/p).
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‘We now consider the number ¥ (k) of solutions for k=0, 1, ...

fa,y)=1.

The numbers % can be arranged in four classes. The first containg
only % = 0 and the other three each contain }(p—1) numbers, namely
one class of cubic residues and two of non- cublc residues. Denote by
N (%), N (%), N (k,), N (k) the number of solutions of the corresponding
congruences. Then we find easily

N (o)+ 4 (0 —1) (N (k) + N (ko) + N (Fs)) = 92,
No(Ko) 4 $(p —1) (N2(ky) + N2(Rep) + N*(k)) = N® = p*+ O (p?)
where N@®), the number of solutions of f(z, y) = f(#,, ¥;) i8 given in (19).
Hence
(N () —p)2 3 (p — 1) (I (o) — p) + (I ()

and so

yp—1of

—p)+(N (ke)—2)*) = O(p?),

N(k)—p =0(/p), Kks£0.

The result is of course included in (2), but the elementary proof seems
of interest.

The same idea leads to a result on cubic exponential sums given
by the

THEOREM. Suppose that

f(, ) = a®-+ 3baty 4 ewy® + dyd o » (I + py )P
Then :
S )
e? " = 0(p).
z,y=0

‘When p = 2 (mod3), the result is trivial on putting y = va.
Suppose then p =1 (mod3), and unite

D=1 ong
S(k) = 6—/(:6.1/)
2,=0
Then there are obviously four different sums 8(0) =
arising from the cubic character of %.

Hence

p?and S (ky), 8 (%), S (%s)

nik
20 ) (H,2) ) (1))

=pN® =p'+0(p°),

<k, ®,y,5,y, <p, since the sum
(®,y) = (2, 9;). Hence

=0(p) it k=0,

B(0) +§ (p—1) (8%(hy) + 8%(Ro) + 82( k)

the summation being taken over 0
in % is zero unless f
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It may be noted that when f(z, y) is the general polynomial of the third
degree, it has been conjectured that

—1
—f(a:,v)
5= 35 ),
®,5=0
and that y =1 is best possible. I conjecture that |8] < 4p. Professor
Davenport informs me that he has proved the result with y = Z. The
conjecture i3 true when

9(@,y) = f (@, y) +ma+ny
in the case when (:_}2>= 1, where

D = —a?i? + 6abed — dac® — 4bd° - 3b%?

is the discriminant of f(x,y). For then, the factors of the Hessian of
f(z,y) have integer coefficients, and so by a linear substitution with
integer coefficients and determinant prime to p, we can write

g Z E1‘—’(Axaunﬂ+c'x+1)17)

’
rx

where 4, B, 0, D are integers. From a known deep result,

|2 (AX”—G-CX)‘ < 9 /2) ,

and so |8 < 4p
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