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1. Preface (by M. R.). Let n be an integer . . . this used to be such a
common opening for many papers and letters written by Paul Erdős. On
September 16, 1996 Branko Grünbaum forwarded me the following e-mail
message he just received from Paul:

Dear Branko,
Sorry that I disturb you with the message. Please phone Moshe Rosen-
feld that if he can finish our paper fast he should send it to Schinzel
for Acta Arithmetica. I would like to dedicate it to the 75th birthday
of Cassels. Regards to all shalom lehitraut dod zaken. Paul

Four days later, Paul Erdős left. Without Paul’s foresights, hindsights,
ideas and above all interesting questions, suggestions and comments, it will
be very difficult to do justice in this paper to the numerous exchanges we
had and to the many ideas Erdős had regarding these problems.

2. Introduction. So, let n be an integer. Define D(n), the factor-
difference set of n, by

D(n) = {d : d = |a− b|, n = ab} = {d0 < d1 < . . . < dk}.
In August 1995 we asked the following question:

Is it true that for every positive integer k one can find integers
N1 < . . . < Nk such that |⋂ki=1D(Ni)| ≥ k?

The motivation for this question came from an attempt to answer the fol-
lowing question asked by Erdős [1]:
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Is it possible to place n points in the plane so that n2/3 of the
distances determined by them will be odd integers?

Since it is not possible to place 4 points in the plane so that all 6 distances
determined by them will be odd integers, Erdős noted that an immediate
consequence of Turán’s theorem is that the maximum number of odd integral
distances determined by n points in the plane is n2/3 and asked whether this
bound can be attained. Furthermore, from Turán’s theorem it also follows
that if n2/3 of the distances are odd integers then the graph obtained by
regarding these n points as vertices of a graph and connecting two vertices
by an edge if their distance is an odd integer is the complete tripartite
graph Ka,b,c where a, b, c are as close to each other as possible. Clearly, it
is enough to show that 3n points can be placed in the plane so that 3n2 of
the distances determined by them are odd integers. We tried to place these
points as follows: 2n points on the x-axis at the points (±(2ki + 1)/2, 0) (it
is easy to see that the odd distance graph determined by these points is the
complete bipartite graph Kn,n), we then hoped to find n points (0, pk) on
the y-axis (pk real numbers) so that all distances from these points to all
the 2n points (±(2ki + 1)/2, 0) will be odd integers. If we denote by Dk,i

the distance between (0, pk) and (±(2ki + 1)/2, 0) then these quantities are
related by

D2
k,i = p2

k +
(2ki + 1)

2

2

and so
4p2
k = (2Dk,i − (2ki + 1))(2Dk,i + (2ki + 1)).

In other words, each integer 4p2
k will have to contain in its factor-difference

set the n integers {4ki + 2 : i = 1, . . . , n}. (An affirmative answer to Erdős’
question was found by Piepmeyer [3].)

In Section 3 we deal with the intersection question. In Section 4 we inves-
tigate questions related to the differences di and their frequencies. Clearly,
d0 can be arbitrary. On the other hand, we show that d1 is relatively large.
We use this observation to determine the smallest difference d0 for some in-
finite sequences of integers and discuss related questions. We conclude with
some observations on the gap sequence defined by {gi = di − di−1}.

3. Intersections of factor-difference sets. In this section we discuss
briefly some simple properties of the factor-difference sets and pose a related
open problem. We first observe that for a given pair of distinct integers a
and b there are only finitely many integers n for which {a, b} ⊆ D(n). Using
this observation it is easy to construct k distinct integers Ni that share two
differences. We did not succeed in our attempts to find a construction that
will give us pairs of distinct integers that share a large number of differences.
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Proposition 3.1. For every pair of distinct integers a, b there are only
finitely many integers M for which {a, b} ⊂ D(M).

P r o o f. Assume first that both a and b are even. If {a, b} ⊂ D(M) then
M = (x − α)(x + α), a = 2α and also M = (y − β)(y + β), b = 2β. Hence
x2 − α2 = y2 − β2 and so (x− y)(x+ y) = (α− β)(α+ β).

In other words, (x − y)(x + y) is a factorization into two factors of the
fixed integer (α−β)(α+β). For each factorization m1m2 = (α−β)(α+β) we
can find at most one pair of integers x, y such that (x−y)(x+y) = m1m2 =
(α−β)(α+β), and hence the number of integers M for which {a, b} ⊂ D(M)
is at most twice the number of distinct factorizations of (α− β)(α+ β) into
two factors. If {a, b} ⊂ M then clearly {2a, 2b} ⊂ D(4M) and hence if a, b
are not both even we still cannot have infinitely many integers M for which
{a, b} ⊂ D(M).

An immediate consequence of the above proposition is:

Proposition 3.2. For every positive integer k we can find integers N1 <
. . . < Nk such that |⋂ki=1D(Ni)| ≥ 2.

P r o o f. Let

α =
p1 . . . pk + pk+1 . . . pn

2
and β =

p1 . . . pk − pk+1 . . . pn
2

where p1, . . . , pn are distinct odd primes. It is easy to see that (α−β)(α+β)
= p1 . . . pn. For any factorization m1m2 of p1 . . . pn set x + y = m1 and
x− y = m2. The unique solutions to these equations yield integers x and y
such that x2 − α2 = y2 − β2 and hence {2α, 2β} ⊂ D(x2 − α2).

We could not find constructions that will give us pairs of integers that
share many differences but we believe that they exist. The best examples
we could identify were the following sets of 3 integers each that share 4 dif-
ferences:

• {420, 3780, 14940, 76860}
⊂ D(6925500) ∩D(37901500) ∩D(108448956),

• {420, 3780, 61695, 154332}
⊂ D(2778300) ∩D(862552800) ∩D(5400442044).

These examples were found by Barry Guiduli. They led us to the follow-
ing conjecture:

Conjecture 1. For every positive integer k there are integers N1 <
. . . < Nk such that |⋂ki=1D(Ni)| ≥ k.

4. The factor-difference sequence and its gaps. In this section we
study the differences di and the gaps gi = di − di−1. We first show that the
difference d1 is fairly large. We use this to establish the smallest difference d0
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for all integers consisting of the product of 8 consecutive integers. We show
that there are infinitely many integers n having 4 factors of size

√
n+ c 4

√
n

and pose related problems. We conclude with some observations on the gap
sequence gi.

Proposition 4.1. d1(n) ≥ 2 4
√
n.

P r o o f. Let D(n) = {d0 < . . . < dk} and let di = ai − bi, n = aibi. We
have

d2
i = (ai − bi)2 = (ai + bi)2 − 4aibi = (ai + bi)2 − 4n.

So the numbers {(ai + bi)} are all distinct, all ≥ 2
√
n and hence

ai + bi ≥ 2
√
n+ i.

So
d2
i ≥ (2

√
n+ i)2 − 4n = 4i

√
n+ i2.

Hence di ≥ 2 4
√
n
√
i and in particular, d1 ≥ 2 4

√
n.

We also note that ai = 1
2 ((ai + bi) + (ai − bi)) >

√
n+ 4
√
n
√
i and hence

for a fixed constant c the integer n can have at most 1 + c2 divisors d such
that

√
n ≥ d ≤ √n+ c 4

√
n.

Proposition 4.2. Let

Na = a(a+ 1)(a+ 2)(a+ 3)(a+ 4)(a+ 5)(a+ 6)(a+ 7).

Then for a ≥ 5:

• d0 = 16a+ 56;
• There are 4 differences di that are ≤ 16 4

√
Na.

P r o o f. Consider the following 4 factorizations of Na:

• (a+ 1)(a+ 2)(a+ 4)(a+ 7) ∗ a(a+ 3)(a+ 5)(a+ 6),
• (a+ 1)(a+ 2)(a+ 5)(a+ 6) ∗ a(a+ 3)(a+ 4)(a+ 7),
• (a+ 1)(a+ 3)(a+ 4)(a+ 6) ∗ a(a+ 2)(a+ 5)(a+ 7),
• (a+ 2)(a+ 3)(a+ 4)(a+ 5) ∗ a(a+ 1)(a+ 6)(a+ 7).

The corresponding differences determined by these factorizations are:

• 16a+ 56,
• 4a2 + 28a+ 60,
• 8a2 + 56a+ 72,
• 16a2 + 112a+ 120.

Note that for a ≥ 5, 16a+ 56 > 2 4
√
Na and hence by the previous propo-

sition it must be the smallest difference of Na. The second claim obviously
holds for the above 4 differences.

Proposition 4.2 exhibits an infinite sequence of integers that have at least
4 “small” differences. By “small” we mean ≤ c 4

√
n. It is conceivable that by
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using some specific numbers a or other factors for Na one can try to identify
sequences with even more “small” differences. The following proposition
shows that one could not obtain more “small” differences by using only
8 factors.

Proposition 4.3. Given 8 distinct weights w1, . . . , w8, there are at most
4 distinct ways to partition the weights into pairs of quadruples {wi1 , wi2 ,
wi3 , wi4} and {wi5 , wi6 , wi7 , wi8} so that

wi1 + wi2 + wi3 + wi4 = wi5 + wi6 + wi7 + wi8 .

P r o o f. Given two distinct partitions

{wi1 , wi2 , wi3 , wi4} {wi5 , wi6 , wi7 , wi8}
and

{wj1 , wj2 , wj3 , wj4} {wj5 , wj6 , wj7 , wj8},
we claim that any two quadruples belonging to distinct partitions must
share exactly two of the weights wi. Clearly two such quadruples cannot be
disjoint. If they share 3 weights then since the total weight of each quadruple
is half the sum of the 8 weights, the fourth weights must be identical and if
two quadruples share one weight then the complimentary quadruple of one
pair will share 3 weights with the other quadruple.

Assume that there are 5 distinct partitions. Consider the 5 quadruples
containing the weight w8. If we remove the weight w8 from each quadruple
we obtain 5 triples of weights such that each pair of triples have exactly one
weight in common and the sum of the three weights is a constant. We can
rewrite it as a system of 5 equations

∑7
i=1 αi,jxi = c where in each equation

exactly 3 of the coefficients αi,j are 1 and the other 4 are 0. It is not difficult
to see that up to a permutation of rows and columns, the matrix A = (αi,j)
is uniquely determined. The easiest way to describe it is by removing any 2
lines from the Fano Plane and let αi,j be the line-point incidence matrix of
the 7 points and 5 lines. Hence without loss of generality, we may assume
that the matrix A is given by




1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1


 .

Clearly, the vector X0 given by xi = c/3 is a solution to
∑7
i=1 αi,jxi = c

and the general solution is X0 + Y where AY = 0. Using Gaussian elimina-
tion one can easily check that the null-space of A is equal to the null space
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of the matrix 


1 1 1 0 0 0 0
0 −1 −1 1 1 0 0
0 0 −1 2 2 0 1
0 0 0 1 −1 1 −1
0 0 0 0 −2 2 0


 .

Clearly the null space of this matrix (and therefore of A) does not contain
any vectors whose 7 coordinates are distinct, hence every solution of this
system must contain equal weights, contradicting our assumption that all
8 weights are distinct. Note that the weights 0, 1, . . . , 7 can be partitioned
into equal weight quadruples in 4 distinct ways (which yielded the desired
factorizations in Proposition 4.2).

We wondered whether replacing the 8 factors in Na by more factors will
yield examples of integers with more “small” differences. In order to suc-
ceed we will need to partition the 2n factors so that not only the sums
of the weights will be equal but also higher order moments will be equal.
Erdős recalled that a similar problem was tackled by Hua [2]. In that paper
Hua deals with Tarry’s problem, but the results were not strong enough
to give us more than 4 “small” differences. One way to obtain more than
4 “small” differences using the approach of Proposition 4.2 would be, for
instance, to find 12 distinct integers {n1, . . . , n12} such that one can find at
least 5 partitions of these integers into disjoint pairs of 6-tuples so that
both the sums and the sums of the squares of the numbers in each 6-
tuple are equal. This of course will yield an infinite sequence of integers
{(a+ n1)(a+ n2) . . . (a+ n12)} each having 5 “small” differences.

From the proof of Proposition 4.1 we see that if n has a difference of size
c 4
√
n then it must have a divisor which is very close to

√
n.

Erdős recalled that Imre Ruzsa asked a question related to the number of
divisors “close” to

√
n an integer n can have. More precisely, Erdős believed

that I. Ruzsa asked whether it is true that the number of divisors between√
n and

√
n+
√
n

1−ε is uniformly bounded. We ask:

1. Is there an absolute constant K, so that for every c, the number of
divisors of n between

√
n and

√
n+ c 4

√
n is at most K for n > n0(c) ?

2. Can the asymptotic behavior of d0(n!) be determined?

We also made some observations regarding the gap sequence {gi =
di − di−1}. Further explorations were unfortunately terminated by the cir-
cumstances. We observed that the smallest gap is 3 and it occurs iff n =
2m(m + 1). There can be arbitrarily many small gaps. For instance if n =
am(m + 1) then for every factorization a = pq we obtain a gap g = p + q
which is independent of m.
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