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1. Introduction. Let P (x) and T (x) be polynomials with integer coef-
ficients, and P irreducible. The aim of this paper is to study the absolute
Mahler measure of the composition P (T (x)). Recall that the absolute Mahler
measure of a polynomial R(x) := r

∏d
i=1(x− γi) is defined to be

M(R(x)) :=
(
|r|

d∏

i=1

max(1, |γi|)
)1/d

.

Also, denote by ‖R‖ the sum of the absolute values of the coefficients of R
(its length).

Our main result is the following:

Theorem 1. Let T (x) ∈ Z[x] be of degree t ≥ 2, and be divisible by x,
but 6= ±xt. Then there is a constant cT > 1 such that for any irreducible
polynomial P (x) ∈ Z[x], of degree at least 2, the absolute Mahler measure of
P (T (x)) satisfies M(P (T (x))) ≥ cT . In fact , cT can be taken to be

cT := min
(

1 +
1

2t(2‖T ′‖+ t+ 3)
,M(Pi(T (x))) (i = 1, . . . , N)

)
> 1.

Here the polynomials Pi (i = 1, . . . , N), whose degrees total at most 2t−2, are
the minimal polynomials of the algebraic numbers T (αi) of degree at least 2,
where α1, . . . , αN are a complete non-conjugate set of roots of T (z)T (1/z)
= 1.

The theorem generalises a result of Zhang [Zh], who proved the theorem
in the special case of T (x) = x2 − x. Furthermore, Zagier [Za] proved that

the best value of cx2−x is
(

1
2 (1 +

√
5)
)1/4

. [In fact, Zhang and Zagier con-
sidered M(P1(x))M(P1(1− x)). Now P1(x)P1(1− x) = P (x2 − x) for some
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polynomial P, so that

M(P1(x))M(P1(1− x)) = M(P1(x)P1(1− x))2 = M(P (x2 − x))2.

Conversely, M(P (x2 − x))2 = M(P (x2 − x))M(P ((1− x)2 − (1− x))).]
If we specify that not only P (x) but also P (T (x)) be irreducible, then

we can obtain a (usually larger) lower bound for M(P (T (x))), which more-
over does not involve any exceptional values of unknown size (like the
M(Pi(T (x))) above):

Theorem 2. Let T [x] ∈ Z[x] be of degree t ≥ 2, and be divisible by x,
but 6= ±xt, and let P (x) ∈ Z[x], of degree at least 2, be such that P (T (x))
is irreducible. Then

M(P (T (x))) ≥ c∗T := 1 +
1

2(t− t0 + 4t‖T‖) ,

where xt0 is the highest power of x dividing T .

N o t e s o n t h e t h e o r e m s

1. Since P (T (x)) = P1(±(T (x)− T (0))) for P1(y) = P (±y + T (0)) it is
no restriction to assume that T (x) is divisible by x, and has positive leading
coefficient.

2. The theorems are clearly false if T (x) = ±xt. If T (x) has leading
coefficient a ≥ 1, then P (T (x)) has leading coefficient of modulus at least
ap, where p is the degree of P. Hence, if a ≥ 2, then M(P (T (x))) ≥ |a|1/t >
max(cT , c∗T ). We can therefore assume, in the proofs of both theorems, that
T is monic.

3. For P linear, M(P (T (x))) = 1 iff ±P (y) = y + ε for ε ∈ {−1, 0, 1}
and T (x) + ε = ±xlC(x) with C(x) cyclotomic. Excluding these cases but
including all other linear P we then have, under the other conditions of
Theorem 1, M(P (T (x))) ≥ c′T , where

c′T := min(cT ,M(T (x)),M(T (x) + 1),M(T (x)− 1)).

The proof of Theorem 2 does not work if P is linear, as Lemma 6 cannot be
applied.

4. The constants cT and c∗T can be improved, at the expense of some
complication. For instance, c∗T can be taken to be max(λ′, λ′′), where λ′ is
the root > 1 of λ−8 + λ−2(2t−t0)/l1 = 1 and λ′′ is the root > 1 of λ−8 +
λ−2(t−t0)/max(l0, l1) = 1. Here l0 = ‖(xtT (1/x))′‖ and l1 = ‖T ′‖. Further
improvements in cT and c∗T can usually be made, using the details of the
proofs, for specific T.

2. Background. The results of this paper can be regarded as one of
a series in which a lower bound is found for the mean value, over the con-
jugates of an algebraic number α, of some function. To obtain non-trivial
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bounds, one must of course use the fact that these conjugates are not ar-
bitrary complex numbers. This is usually done by choosing a symmetric
function of the conjugates which is a non-zero integer. For instance, Siegel
[Si], in bounding the trace of a totally positive algebraic integer, used the
discriminant of α. Schinzel and Zassenhaus [ScZas], and later Blanksby and
Montgomery [BlMo], in connection with Lehmer’s question, used the resul-
tant of α and a root of unity. Cassels [Ca], bounding the maximum modulus
of the conjugates of a non-reciprocal algebraic integer α, used the resul-
tant of α and 1/α. Dobrowolski [Do], again in connection with Lehmer’s
question, used the resultant of α and αp, for p prime. The papers [Sm1],
[Sm2], [RhSm], [Fl1], [Fl2], on the spectra of the mean values of various
functions f(x) over conjugate sets of algebraic integers, used inequalities of
the form

(2.1) f(x)−
∑

j

aj log |Pj(x)| ≥ c > 0,

where the Pj are minimal polynomials of α′ with f(α′) small, and the aj are
> 0. The resultants of α and α′ are assumed not to vanish. Then it follows
easily that the required mean value is at least c, except possibly for α con-
jugate to some α′. This often yields a spectrum of the smallest mean values.
In 1993 Zagier [Za], in connection with M(P (x2 − x)), introduced a fruitful
extension of (2.1), by producing inequalities of this type with |Pj(x)| re-
placed by |Pj(x)|ν , for each valuation ν of a field containing α. This enabled
him to readily treat means over conjugate sets of (not necessarily integer)
algebraic numbers.

Very recently, Beukers and Zagier [BeZa] have made further substantial
improvements in this area, making possible a much wider class of lower
bounds for heights of certain algebraic points on varieties. They do this
by working over products of projective spaces Pn(Q) over the algebraic
numbers Q. This makes the optimisation of auxiliary functions technically
much easier. One reason is that all variables can be assumed to be of modulus
at most 1. Further, when optimising over a hypersurface, considerations of
harmonicity enable one to assume that at most one variable has modulus
strictly smaller than 1.

3. Results of Beukers and Zagier. In this section we state a version
of Lemma 3.1 of [BeZa] (Lemma 3). We state only a special case, which is
sufficient for our applications. We also state an important result (Propo-
sition 4), which they derive from that lemma. We use Lemma 3 to prove
Theorem 1, after some optimisation. Theorem 2 follows from Proposition 4,
the optimisation having already been carried out in the proof of Proposi-
tion 4.
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We first need some notation, essentially that from [BeZa]. Let P(Q) de-
note the projective line over Q, with

x = (x10, x11, x20, x21, . . . , xt0, xt1)

a typical point of P(Q)t. Let X(Q) be a hypersurface in P(Q)t with equation
F (x) = 0 having integer coefficients, and let X1 denote the intersection of
X with the polydisc {|xij | ≤ 1, i = 1, . . . , t, j = 0, 1}. Let G(x) be a mul-
tihomogeneous polynomial over P(Q)t, of degree di in xi = (xi0, xi1) (i =
1, . . . , t). To define the height H(α) of α in an algebraic number field K
of degree D = [K : Q] over Q, we let | |ν be the valuations of K, with
completions Kν of degrees Dν = [Kν : Qν ] over Qν . For archimedean ν
put |x|ν = |x|−Dν/D, while for ν non-archimedean normalise | |ν so that
|p|ν = p−Dν/D for the unique rational prime p with |p|ν < 1. Then de-
fine H(α) =

∏
ν max(1, |α|ν), while for α = (α0, α1) ∈ P(Q) put H(α) =∏

ν max(|α0|ν , |α1|ν). These definitions are independent of the choice of the
field K containing α.

Lemma 3 (Special case of Lemma 3.1 of [BeZa]). Let Λ=maxx∈X1 |G(x)|.
Then for any point x ∈ X(Q) with G(x) 6= 0 we have

t∏

i=1

H(xi)di ≥ 1/Λ.

The lemma gives us a lower bound for the height of a point which is on
the hypersurface F = 0 but not on G = 0. Of course, only if Λ < 1 does the
lemma give a non-trivial lower bound.

Now let F be a bihomogeneous polynomial in xi = (xi0, xi1) (i = 1, 2)
over Q, of bidegrees di in xi and degrees dij in xij (i = 1, 2; j = 0, 1). Let
E be a subset of {(1, 0), (2, 0)}, and put

cF = max
(i,j)6∈E

∥∥∥∥
∂F

∂xij

∥∥∥∥,

while for i = 1, 2,

δi =
{
di1 − (di − di0)/2 if (i, 0) ∈ E,
(di0 + di1 − di)/2 if (i, 0) 6∈ E,

and δ = max(δ1, δ2). For a hypersurface F (x) = 0, let F (x−1) = 0 denote
the hypersurface F (x11, x10, x21, x20) = 0. Then

Proposition 4 ([BeZa]). Let % be the unique real root larger than 1
of x−2 + c−1

F x−δ = 1. Then for each point x on F (x) = 0 but not on
x10x11x20x21F (x−1) = 0 we have

H(x1)H(x2) ≥ %1/2.
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4. Preliminary lemmas. We need the following lemma:

Lemma 5. Let T (x) ∈ Q[x], of degree t, be divisible by x, and be such that
T (x) = β and T (1/x) = β′ have the same roots, with the same multiplicities.
Suppose further that β′ is irrational. Then T (x) = ±√ββ′xt.

P r o o f. Let a 6= 0 be the leading coefficient of T. Then

β′(T (x)− β) = a(β′xt − xtT (1/x)),

identically in x. Note that xtT (1/x) has degree at most t − 1. Now, on
comparing coefficients of x, x2, . . . , xt−1 we see, from the irrationality of β′,
that these coefficients must all be 0. Then we get a2 = ββ′ on putting x = 0.

Using this result, we can prove the following

Lemma 6. Suppose that P (x), T (x) ∈ Z[x], where P has degree p ≥ 2
and T (x), of degree t, is divisible by x but not by xt. Suppose further that
P (T (x)) is irreducible over Q, with α a root of P (T (x)) = 0. Then there is
a conjugate α′ of α with T (1/α′) 6= T (1/α).

P r o o f. Put β = T (α), β′ = T (1/α). Then α is a root both of T (x) = β
and T (1/x) = β′. Note that β is of degree p over Q, since by the irreducibility
of P (T (x)), P (x) is certainly irreducible.

Now suppose that T (1/α′) = T (1/α) for each root α′ of T (x) = β. Then
T (1/α) is in the fixed field of Gal(Q(α)/Q(β)), i.e. β′ = T (1/α) ∈ Q(β). But
now both T (x) = β and T (1/x) = β′ are essentially the minimal polynomials
of α over Q(β), so have the same roots. Also [Q(β′) : Q] = [Q(β) : Q] = p
≥ 2, so that β′ is irrational. Then Lemma 5 gives a contradiction.

Lemma 7. Let P (x), T (x) ∈ Z[x] with P irreducible, of degree at least 2,
and T of degree t, divisible by x but not by xt. Then P (T (x)) is not cyclo-
tomic, and M(P (T (x))) > 1.

P r o o f. Suppose that P (T (x)) is cyclotomic. Then, for any zero β of P ,
T (x) = β has all roots being roots of unity, so that T (x)−β = a

∏
i(x+ θi),

where |θi| = 1. From this, T (1/x) − β = ax−t(
∏
i θi)

−1∏
i(x + θi), so that

T (x) = β and T (1/x) = β have the same roots. Now Lemma 5 gives a
contradiction. Finally, M(P (T (x))) > 1 using a classical result of Kronecker
to the effect that the only polynomials in Z[x] with measure 1 are those of
the form ±xlC(x), C cyclotomic.

Lemma 8. For any T (z) ∈ C[z] of degree t we have, for z ∈ C \ {0},
|T (z)T (1/z)− 1| ≤ ||T (z)|2 − 1|+ l1|T (z)|mt(1−m−2).

Here l1 = ‖T ′(z)‖ and m = max(|z|, |z|−1).

P r o o f. We use the inequality

|T (x)− T (y)| ≤ l1|x− y|(max(1, |x|, |y|))t−1 (x, y ∈ C)



244 G. Rhin and C. J. Smyth

which is easily checked. Then, for x = z, y = 1/z, the lemma follows imme-
diately from

|T (z)T (1/z)− 1| = |T (z)T (z)− 1− T (z)(T (z)− T (1/z))|.

5. Proof of Theorem 1. For the proof, we apply Lemma 3 with

F (x) :=
(
T

(
x11

x10

)
+

t∏

i=1

(−xi1
xi0

))
xt10

t∏

i=2

xi0

and

G(x) :=
( t∏

i=1

xi0xi1

)B+t
(
T

(
x11

x10

)
T

(
x10

x11

)
− 1
)
,

where B is an integer to be chosen later.
Let P be irreducible of degree p, with P (β) = 0, and suppose that

T (x)−β splits over Q(β) into irreducible factors
∏L
i=1 Ti(x). Let αi1, . . . , αiti

be the zeros of Ti (i = 1, . . . , L). Then since αij and αij′ are conjugate
over Q, and [Q(αi1) : Q] = tip, we have

(5.1)
L∏

i=1

ti∏

j=1

H(αij) =
L∏

i=1

H(αi1)ti = M(P (T (x)))t.

Next, rename the αij as α1, . . . , αt. Then T (x) − β =
∏t
i=1(x − αi),

since T (x) is assumed monic (see Note 2 of Section 1), so that β = T (α1) =
−∏i(−αi). Hence x = (α1, 1, α2, 1, . . . , αt, 1) lies on F = 0. Now P (T (α1))
= 0, i.e. P is the minimal polynomial of T (α1), so that G(x) = 0 only if P is
the minimal polynomial of some T (α1), where α1 is a root of T (α1)T (1/α1)
= 1. Since xt−1(T (x)T (1/x)− 1) ∈ Z[x] has degree at most 2t− 2, the sum
of the degrees of the minimal polynomials Pi(x) (i = 1, . . . , N) of all T (α1)
with T (α1)T (1/α1) = 1 is also at most 2t − 2. So G(x) 6= 0 unless P = Pi
for some i. Since these Pi are accounted for in the statement of the theo-
rem, we can assume that G(x) 6= 0. Note that the M(Pi(T (x))) are > 1 by
Lemma 7.

Now, in the notation of Section 3, di = 2(B+t), so, on applying Lemma 3,
we obtain

(5.2) M(P (T (x))) =
( t∏

i=1

H(αi)2(B+t)
)1/(2t(B+t))

≥ Λ−1/(2t(B+t)).

It remains to estimate this lower bound, and to choose B so that it is
as large as possible. As noted in the proof [BeZa] of Proposition 4, this
maximum will occur at a point where at most one of the xi is less than one
in modulus, with all other |xij | = 1. Essentially this is because there is one
constraint F (x) = 0 on the xij . We consider the four possibilities:
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1. |x10| ≤ 1. Put x10 = x, x11 = ω, so that, on X, T (ω/x) = %/x, where
|ω| = |%| = 1. Then using Lemma 8,

|G| = |x|B+t|T (ω/x)T (x/ω)− 1|(5.3)

≤ |x|B+t{(|x|−2 − 1) + l1|x|−1(1− |x|2)|x|−t}
= (1− |x|2)|x|B−1{|x|t−1 + l1}.(5.4)

2. |x11| ≤ 1. Put x11 = x, x10 = ω, so that T (x/ω) = %x, where |ω| =
|%| = 1. Then (5.3) again holds, and, in a similar way to (5.4) we get

(5.5) |G| ≤ (1− |x|2)|x|B+1{|x|t−1 + l1}.
3. |xi0| ≤ 1, i > 1. Then we have similarly xi0 = x, T (ω) = %/x, and

(5.6) |G| = |x|B+t|T (ω)T (1/ω)− 1| = (1− |x|2)|x|B+t.

4. |xi1| ≤ 1, i > 1. Then xi1 = x, T (ω) = %x and

(5.7) |G| = |x|B+t|T (ω)T (1/ω)− 1| = (1− |x|2)|x|B+t.

We see, therefore, that (5.4) of case 1 gives the largest upper bound for
|G|.

Now for A > 0,

max
y∈[0,1]

(1− y2)y2A =
AA

(A+ 1)A+1 =
1
A

(
1− 1

A+ 1

)A+1

<
1
eA

.

Hence, from (5.4),

Λ ≤ 2
e

{
1

B + t− 2
+

l1
B − 1

}
≤ 2(1 + l1)
e(B − 1)

.

Now, choosing B = 2l1 + 3, (5.2) gives

M(P (T (x))) ≥ e1/(2t(2l1+t+3)) > 1 +
1

2t(2l1 + t+ 3)
.

6. Proof of Theorem 2. Take

F (x10, x11, x20, x21) = xt10x
t
20

(
T

(
x11

x10

)
− T

(
x21

x20

))
.

Assume that P (T (x)) is irreducible, with P (T (α)) = 0. Then, by Lemma 6,
there is another zero α′ of P (T (x)) with T (1/α′) 6= T (1/α). So the point
(α, 1, α′, 1) is on F (x) = 0 but not on F (x−1) = 0. Thus, applying Proposi-
tion 4, and using the fact that H(α, 1) = H(α′, 1) = H(α) = M(P (T (x))),
we get

(6.1) M(P (T (x))) ≥ %1/4.
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To calculate %, first note that‖∂F/∂x1j‖ = ‖∂F/∂x2j‖ = lj (j = 0, 1), in
the notation of Note 4 of Section 1. Then

cF =
{
l1 if E = {(1, 0), (2, 0)},
max(l0, l1) otherwise,

and

δ =
{
t− t0/2 if E = {(1, 0), (2, 0)},
1
2 (t− t0) otherwise,

where xt0 ‖T (x). Let %′ be the value of % when E = {(1, 0), (2, 0)}, and
%′′ be the value of % for all other E, as defined in Proposition 4. Then we
have % = max(%′, %′′), which, with (6.1), gives the estimate of c∗T in Note
4 of Section 1. To find a simpler, slightly smaller lower bound c∗T , we put
λ = (%′′)1/4. Then, since cF ≤ max(l0, l1) ≤ t‖T‖, and from the definition
of %′′,

1− λ−8 = λ−2(t−t0)/max(l0, l1) ≥ λ−2(t−t0)/(t‖T‖).
Putting λ = 1 + ε and using λ−k ≥ 1− kε we obtain

8ε ≥ (1− 2(t− t0)ε)/(t‖T‖)
so that

c∗T ≥ %1/4 ≥ (%′′)1/4 = 1 + ε ≥ 1 +
1

2(t− t0 + 4t‖T‖) .

Acknowledgements. Theorem 1 was originally proved by the use of an
auxiliary function inequality of the form

logMy(T (y)− T (x))− 1
2 log |T (x)| − c1 log |xt−1(T (x)T (1/x)− 1)| ≥ c2

valid for all x ∈ C, generalising an inequality of Zagier [Za] for T (x) = x2−x.
Here c1, c2 > 0, and My(T (y) − T (x)), a function of x only, is the classical
(relative) Mahler measure of T (y)− T (x), T (y)− T (x) being regarded as a
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would significantly improve the lower bound cT , and simplify the proof. We
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