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1. Introduction. In this paper we shall discuss the asymptotic distri-
bution of a wide class of generalized Kloosterman sums. To define these we
let k be a global field and S a finite set of places of k containing the infinite
ones, if there are any. Let kS =

∏
v∈S kv where kv denotes, as usual, the

completion of k at v. Let R be the ring of S-integers of k; it is a discrete,
cocompact subring of kS . Let n ∈ N and µn(k) = {ζ ∈ k : ζn = 1}. We shall
assume that µn(k) has n elements and that all the divisors of n lie in S. This
means that n is invertible in R. Let e : kS → C× be a non-trivial additive
character, trivial on R. We denote the fractional ideal {x ∈ k : e|xR = 1}
by d(e)−1; then d(e) is an ideal of R.

Let
(− )

n
denote the nth order Legendre symbol in R. For a, b ∈ R and

coprime we can write the reciprocity law as follows:
(
a

b

)

n

=
(
b

a

)

n

(a, b)S

where ( · , · )S : k×S × k×S → µn(k) is the Hilbert symbol. Let ε : µn(k) →
C× be an injective character. Then the Kloosterman sums in question are
defined by

Sε(a, b; c) =
∑

x,x (mod c)
xx≡1 (mod c)

ε

((
x

c

)

n

)
e

(
ax+ bx

c

)

for a, b, c ∈ R, c 6= 0. If a or b is divisible by c then this sum will reduce
to a Gauss sum. When k = Q and S = {∞} sums of this sort where first
introduced by Kloosterman [13] in the context of the theory of modular
forms of integral weight. They are important in estimating the number of
representations of a number by a quadratic form. In view of this applica-
tion Kloosterman was led to conjecture an estimate for these sums, namely
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|S1(a, b; p)| ≤ 2
√
p (R = Z, ab 6≡ 0 (mod p) and n = 1) for a prime mod-

ulus p. After initial work by Estermann [5], Davenport [3] and Salié [19]
this estimate was proved in 1948 by A. Weil [23]. In fact, this estimate is a
fairly direct consequence of the Riemann hypothesis for curves over a finite
field applied to Artin–Schreier extensions. For composite moduli one can
also give very good estimates for S1(a, b; c) in this case (see [6]).

The case n = 2 was studied intensively by A. V. Malyshev [17] in the
context of modular forms of half-integral weight, and so also in that of
the representation of an integer by a quadratic form in an odd number of
variables. Here again one can prove analogous, indeed simpler, estimates. In
fact, Kloosterman sums have many properties analogous to Bessel functions
and, just as the Bessel functions of half-integral order are elementary, so also
are the Kloosterman sums with n = 2. We shall return to this theme later. It
is worth noting that the coefficients of the Hardy–Ramanujan–Rademacher
formula for the partition function are essentially Kloosterman sums of this
type and are therefore the earliest appearance of these functions (see [16],
p. 351f.).

The more general Kloosterman sums of order n are associated with meta-
plectic forms on GL2 of order n in the sense of [12]. We shall not go into
this aspect of the theory here.

As we have indicated in the definition of the Sε(a, b; c) we shall be in-
terested in Kloosterman sums in a global context. We shall show that when
gcd(c, ab) = (1) we can represent Sε(a, b; c) as a sum of 2ω(c) complex num-
bers of modulus N(c)1/2 satisfying one additional condition. Here ω(c) de-
notes the number of prime divisors of c in R. The problem which we shall
discuss is whether this set of numbers is uniformly distributed when normal-
ized to lie on the unit circle. We shall not be able to answer this question
but we shall attempt to formulate it more precisely.

One can understand Kloosterman sums in a number of contexts; they
arise in the representation theory of GL2 over finite and non-archimedean
local fields (see, for example [8], 2.2.9, 2.3.2). There is also a wide-ranging
development of Weil’s proof, due principally to Deligne and Katz (see [11]).
Although this appears to be a global method it yields information about
the distribution of Kloosterman sums defined over finite fields. Indeed, in
Weil’s proof of the fundamental estimate for Kloosterman sums yields these
as a sum over all the places of Fq(t) with given degree. It follows that this
sort of equidistribution is quite different from that with which we shall be
concerned here.

As will be pointed out later, the case n = 3 has an especial interest.
This is the subject of a joint research programme with R. Livné (Jerusalem)
whom I would like to thank for stimulating my interest in this problem. I
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would also like to thank the Israel Science Foundation which is supporting
this project.

Finally, I would like to acknowledge here my personal debt to Ian Cas-
sels for his help and encouragement in many respects, not least for having
suggested that I might find Kubota’s theory of metaplectic forms interest-
ing.

2. Basic properties of Kloosterman sums. Although Kloosterman
sums are not multiplicative they can be represented as a product over the
primes dividing c. Our first objective will be to reduce the Kloosterman sum
Sε(a, b; c) to the corresponding local case and to make some deductions from
this.

Let w be a place of k, w 6∈ S; let rw be the ring of integers in kw, the
completion of k at w. Let πw be a uniformizer of kw. We shall let qw denote
the order of the residue class field at w; we have qw ≡ 1 (mod n). We define
a character εw : r×w → µn(C) by demanding that εw(x) = ε(ζ) where ζ is
determined by x(qw−1)/n ≡ ζ (mod πw) and ζ ∈ µn(k). We shall let ordw be
the order (or valuation) function at w. Let the order of d(e) at w be dw. We
recall that we can define an additive character ew on kw, trivial on π−dww ·rw
but not on π−dw−1

w · rw, so that for any x ∈ k,

eS(x) =
∏

w 6∈S
ew(x).

Note that the product on the right is finite for any x in the sense that all
but a finite number of terms are 1.

We shall now investigate the Kloosterman sum as defined above. Note
that the definition makes sense for a, b ∈ d(e)−1 and we shall make use of
this extension. Let tw = ordw(c). Then a standard application of the Chinese
Remainder Theorem yields

Sε(a, b; c) =
∏

w 6∈S
w|c

Sw(a, b; tw; c)

with

Sw(a, b; t; c) =
∑

x,x (mod c)
xx≡1 (mod c)

εw(x)tew

(
ax+ bx

c

)

where now the congruences are taken in rw. It is now a standard matter to
analyze this sum.

Proposition 2.1. Assume that the residual characteristic of kw is not 2.
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(i) If min(ordw(a), ordw(b)) ≥ ordw(c)− dw then

Sw(a, b; t; c) =
{

0 if t 6≡ 0 (mod n),
qordw(c)(1− q−1

w ) if t ≡ 0 (mod n).

(ii) If ordw(a) = ordw(b) = ordw(c)− dw − 1 then

Sw(a, b; t; c) = qordw(c)−1
w · (α+ α′)

where α, α′ ∈ C, |α′| = q
1/2
w and α · α′ = qw · εw(−ab−1)t.

(iii) If ordw(a) = ordw(b) = ordw(c) − dw − k with k > 1 and k even
then

Sw(a, b; t; c) = qordw(c)−k/2
w

∑

u:u2≡ba−1 (modπkw)

εw(u)twew

(
2ua
c

)
.

(iv) If ordw(a) = ordw(b) = ordw(c)− dw− k with k > 1 and k odd then

Sw(a, b; t; c) = qordw(c)−(k+1)/2
w

∑

u:u2≡ba−1 (modπkw)

εw(u)twew

(
2ua
c

)

×
∑

ξ(πw)

ew

(
au

c
πk−1
w ξ2

)
.

(v) If ordw(a) 6= ordw(b) and

min(ordw(a), ordw(b)) < ordw(c)− dw − 1

then Sw(a, b; t; c) = 0.

Although the proof of this proposition might safely be left to the reader,
because of its significance for our discussion we shall prove it here.

P r o o f. (i) is trivial. The sum in (ii) reduces to

qordw(c)−1
w ·

∑

x,x (modπw)
xx≡1 (modπw)

εw(x)t · ew
(

1

πdww
· αx+ βx

πw

)

where α = a · πdw+1/c, β = b · πdw+1/c are now units. Now we can apply
Weil’s estimate [23], top of page 207, but to obtain what we need we let χ
(in Weil’s notation) be the character of order 2 times εtww . This shows that
we have a representation of the type asserted for Sw. Finally, we have

Sw(a, b; t; c) = εw(−βα−1)tSw(a, b; t; c)

after making the substitution x 7→ −x · βα−1. This means that
(εw(−ba−1)t)1/2(α+ α′) is real; also αα = qw, α

′ · α′ = qw so that

((εw(−ba−1)t)ε
′
)(α+ α′) = ((εw(−ba−1)t)ε

′
)−1(α+ α′)

or
α+ α′ = εw(−ba−1)−t(α−1 + α−1)qw.
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If α+ α′ 6= 0 then we have

αα′ = qw · εw(−ba−1)−t

as required. If α+ α′ = 0 then we take α and α′ to be the two square roots
of qwεw(−ba−1)−tw .

(iii) We fix a set U of representatives of rv/π
k/2
v rv. We see that

Sw(a, b; t; c) is

qordw(c)−k
w

∑

u,u,v,v (modπk/2), u∈U
(u+πk/2v)(u+πk/2v)≡1 (πkw)

εw(u+ πk/2v)t

× ew
(

1

πdww
· α(u+ πk/2v) + β(u+ πk/2v)

πkw

)
.

We take u so that uu ≡ 1 (mod πkw). This means that v is determined by
uv + vu ≡ 0 (mod π

k/2
w ).

We see that the exponential term is

ew

(
1

πdww

(
αu+ βu

πkw
+
α− βu2

π
k/2
w

v

))

and the εw-term does not depend on v. The sum over v forces u to sat-
isfy u2 ≡ βα−1 (mod π

k/2
v ) and substituting back we obtain the formula

asserted.
(iv) This case is similar to the previous one, but is a little more involved.

This time we consider u, u (mod π
(k+1)/2
w ) and v, v′ (mod π

(k−1)/2
w ) and so

we see that u is restricted by u2α ≡ β (mod π(k+1)/2). We now fix u0 so
that u2

0 ≡ α−1β (mod πk) and consider u = u0(1 + π
(k−1)/2
w · ξ) where ξ

runs modulo πw. We have u ≡ u0(1 − π(k−1)/2
w ξ + πk−1

w ξ2). It now follows
that

Sw(a, b; t; c) = qordw(c)−(k+1)/2
w

∑

u0:u2
0≡α−1β (modπkw)

εw(u0)t

×
∑

ξ (modπw)

ew

(
1

πdww

(
2α · u0

πkw
+
βu0

πw
ξ2
))

which is a variant form of what is asserted.
(v) In this case the sums vanish just as in the case of Gauss sums taken

to a modulus exceeding the conductor of the character.
It is worth noting that when the residual characteristic of kw is 2 the

estimate in (ii) does not hold. Also in (iv) the inner sum, over ξ, will no
longer be a quadratic Gauss sum but an ordinary character sum and so will
be either qw or 1. Moreover, the outer sums, over u, will have a different
structure.
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In order to bring our results into a more convenient form we let T be the
set of places of k not in S so that

(a) if w | 2 then w ∈ T ,
(b) if w |d(e) then w ∈ T ,
(c) if ordw(a) 6= ordw(b) then w ∈ T .

In view of the last condition T depends on the pair a, b. We can extend eS
to kS∪T by

eS∪T |kS = eS , eS∪T |kw = ew (w ∈ T ).

We let R∗ be the ring of (S ∪ T )-integers in k. We let
( − )∗

n
be the cor-

responding Legendre symbol and S∗ε (a, b; c) the corresponding Kloosterman
sum. We let

Kε(a, b; c) =
∏

w∈T
Sw(a, b; tw; c);

then Kε is a continuous function on its domain of definition in the topology
on
∏
w∈T kw. Then we have shown that

Sε(a, b; c) = Kε(a, b; c) · S∗ε (a, b; c)

where S∗ε (a, b; c) is of the form

(N∗(a) ·N∗(c))1/2
∑

α∈A
α

where A is a multiset of 2ω
∗(c) elements with |α| = 1 which are paired by an

operation ′ : A→ A so that αα′ = ε
((−ab−1

c

)∗
n

)
. Here N∗ denotes the norm

in R∗ and ω∗(c) is the number of prime factors of c in R∗.

3. Two special formulae. In this section we shall prove two special
formulae, one for the case n = 2, analogous to the elementary expression
for K1/2, and for n = 3, analogous to the Wirtinger–Nicolson formula for
Airy’s integral (see [22], 188–190). These two formulae are known in var-
ious forms. The case n = 2 goes back to Davenport and Salié. It seems
very possible that the form given here can be found in the works of Maly-
shev but I have been unable to locate it. A more local version of the case
n = 3 has been given by Duke and Iwaniec [4]. Other proofs are due to
Elkies, Katz and Livné. R. Livné informs me that he has proved a ver-
sion of the n = 3 case for general c by a rather different method. The
point of the following theorem is that it brings out the global aspects of
the formulae and these are important for understanding questions of uni-
form distribution. The formulae in question are given in the following the-
orem.
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Theorem 3.1. Suppose that gcd(ab, c) = 1 and that gcd(d(e), c) = (1).
Then if n = 2 we have

Sε(a, b; c) =
∑

x2≡a·b (mod c)

e

(
2x
c

)
· ε
((

a

c

)

2

)
·G(c)

where

G(c) =
∑

y (mod c)

e

(
y2

c

)

if gcd(2, c) = (1). If n = 3 and gcd(3, c) = (1) then

Sε(a, b; c) =
∑

x (mod c)

e

(
Ax3 +Bx

c

)
· ε
((

a

c

)

3

)
ε

((
b

c

)

3

)−1

when A,B are also coprime to c and 27abA+B3 ≡ 0 (mod c).

P r o o f. The proofs of these two formulae are similar. First of all, in
view of the Chinese Remainder Theorem, we may enlarge S so that the
prime ideals in the decomposition of c become principal. We shall then
verify the formulae when c is a prime power. It is then easy, as in Section 2,
to deduce the general case using the primary decomposition. As always in
this connection the cases c = π (π prime) and c = πk (k ≥ 2) behave rather
differently and we treat them separately.

We begin with c = π and n = 2. We shall consider the group X of
characters on (R/πR)∗. Let, for χ ∈ X,

τ(χ) =
∑

x (modπ)

χ(x)e(x/π)

be the local Gauss sum. Then

e(bx/π) =
∑
χ

χ(bx)τ(χ)/(N(π)− 1).

This gives

Sε(a, b; c) = (N(π)− 1)−1
∑

χ∈X

∑
x

χ(bx)η(x)e
(
ax

π

)
τ(χ)

where η is the character of order 2 (i.e. η(x) = ε
((
x
π

)
2

)
. The inner sum is

χη(a)τ(χη). By the Davenport–Hasse theorem ([3], [15], Theorem 10.1) we
have

τ(χη) · τ(χ) = χ(2)−2τ(χ2)τ(η).
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In this case τ(η) = G(π) and so we obtain

Sε(a, b; c) = (N(π)− 1)−1
∑
χ

χ(b)χη(a)τ(χ2)

= (N(π)− 1)−1η(a)G(π)

×
∑

χ∈X
χ(ab) · χ(4)−1

∑

ξ(π)
ξ 6≡0 (modπ)

χ(ξ2)e
(
ξ

π

)
.

The sum over χ can now be carried out and we obtain

η(a)
∑

ξ2≡4ab (modπ)

e

(
ξ

π

)
G(π)

which is clearly equivalent to the formula asserted. When n = 3 the formula
has been proven with k = 1, a = 1, b = −27A, B = 1 by Duke and
Iwaniec [4] (see also [24]). The general case follows by a simple change of
variables. If we now consider the case c = πk with k ≥ 2 then for the case
n = 2 we have only to apply Proposition 2.1. In the case n = 3 we have to
analyze

∑

x (mod c)

e

(
Ax3 +Bx

c

)

asymptotically. Again there is a distinction between the cases where c is an
even and an odd power. Let us suppose first that c = π2k (k ≥ 1). Then we
fix a set of representations of R/πk and with x1 in this set we see that the
sum above is
∑
x1

∑

x2 (modπk)

e

(
a(x1 + πkx2)3 +B(x1 + πkx2)

π2k

)

=
∑
x1

∑

x2 (modπk)

e

(
Ax3

1 +Bx1

π2k +
3Ax2

1x2 +Bx2

πk

)
.

The summation over x2 can be carried out. We obtain

N(π)k
∑

x1: 3Ax2
1 6=B≡0 (modπk)

e

(
Ax3

1 +Bx1

π2k

)
.

We can assume, by the appropriate choice of the set of representations, that
3Ax2

1 +B ≡ 0 (mod π2k). We obtain now

N(π)k
∑

x1: 3Ax2
1+B≡0 (modπk)

e

(−2Ax1

π2k

)
.
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In this case also G(π2k) = N(π)k so that we have now proved the assertion
in this case.

Now consider the case c = π2k+1 where k ≥ 1. Here we let x1 run through
a set of representatives modulo πk+1. By the same argument as before we
obtain for our sum

N(π)k
∑

x1: 3Ax2
1+B≡0 (modπk)

e

(
Ax3

1 +Bx1

π2k+1

)
.

We let x1 = x0 + πkξ where x0 satisfies 3Ax2
0 +B ≡ 0 (mod π2k+1) (if the

congruence is soluble). In this case we obtain

N(π)k
∑
x0

∑

ξ

e

(
Ax3

0 +Bx0

π2k+1 +
3ξ2A

π

)

= N(π)kG(π)ε
((

3A
π

)

2

)∑
x0

e

(
Ax3

0 +Bx0

π2k+1

)
.

We have G(π2k+1) = N(π)kG(π) and so the result follows as before.

4. Uniform distribution. In this section we shall formulate a problem,
the question as to the uniform distribution of the Kloosterman sums. The
characteristic feature of the sums Sε(a, b; c) is that on altering c by a unit
the value of Sε(a, b; c) is changed in an unpredictable fashion. In order to
take account of this we shall consider a family of compact sets Bj in kS so
that B1 ⊂ B2 ⊂ . . . These will be assumed to grow in a uniform fashion.
The type of example we have in mind is, for w ∈ S,

Bj = {x ∈ kw : |x|w ≤ j} ×B0

where B0 is fixed and compact in
∏
v∈S−{w} kv. Another class of examples

could be
Bj =

∏

v∈S
{x ∈ kv : |x|v ≤ Φv(j)}

where the Φv are increasing functions of j. We shall suppose that

Card(Bj ∩R) = Vol(Bj)/Vol(kS/R) +O(Vol(Bj)Θ)

for some Θ < 1. The volume is taken with respect to some additive Haar
measure on kS ; the formulation above does not depend on the choice. Let
us now suppose that S is taken so that d(e) = (1) and that a and b are
units. Then in view of Proposition 2.1 we see that Sε(a, b; c) is a sum of
2ω(c) numbers which can be paired by an involution ′ so that if α is one of
these numbers then

αα′ = N(c) · ε
((−a−1b

c

)

n

)
.
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Under this condition the numbers are unique. Here ω(c) is, as before, the
number of prime factors of c in R. We can now define

S(k)
ε (a, b; c) =

∑
α

αk

where the α represent the numbers above.

Problem 4.1. For which families B1 ⊂ B2 ⊂ . . . as above do we have,
for k 6= 0, ∑

c∈Bj∩R
S(k)
ε (a, b; c) ·N(c)−k/2 = o(Vol(Bj))?

Since 2ω(c) = O(N(c)ε) for any ε > 0 this would mean that we would
have equidistribution of the α’s as long as

(a) Vol(Bj+1) ∼ Vol(Bj) and
(b)

∑
c∈(Bj+1−Bj)∩RN(c)ε = o(Vol(Bj))

for some ε > 0. This is a non-lacunarity condition on the Bj . Note that (b)
implies the analogous estimate with ε = 0. It would then follow from our
regularity condition

Card(Bj ∩R) = Vol(Bj)/Vol(kS/R) +O(Vol(Bj)Θ)

that

Vol(Bj+1 −Bj)/Vol(kS/R) = O(Vol(Bj)Θ) + o(Vol(Bj))

= o(Vol(Bj)).

From this condition (a) follows. The reverse implication would follow if
the Bj are so constructed that c ∈ (Bj+1 − Bj) ∩ R implies that N(c) =
O(Vol(Bj)Θ

′
) for a Θ′ > 0 and Vol(Bj+1−Bj) = O(Vol(Bj)Θ

′′
) for Θ′′ < 1

(which is rather stronger than (a)). In this case we would have, for ε > 0,
∑

c∈(Bj+1−Bj)∩R
N(c)ε = O(Vol(Bj)max(Θ,Θ′′)+εΘ′).

Thus we would have the implication for

ε <
1
Θ

(1−max(Θ,Θ′′)).

The second, and naturally accompanying problem is:

Problem 4.2. For which families B1 ⊂ B2 ⊂ . . . do we have, for k 6= 0,
∑

c∈Bj∩R
c prime

S(k)
ε (a, b; c) logN(c) ·N(c)−k/2 = o(Vol(Bj))?
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This is perhaps the problem which is of greater general interest and
applicability. One would hope that it would follow by a sieve argument from
a solution to Problem 4.1.

In order to analyze these further we have to examine what happens when
we enlarge S. Let then v be a valuation of k not in S. Let Ŝ = S ∪ {v} and
let Ŝε(a, b; c) be the corresponding Kloosterman sum. We then have, by the
multiplicativity of Sε,

Sε(a, b; c) = Sv(a, b, ordv(c); c) · Ŝε(a, b; c).
In fact, this also yields, with an obvious notation,

S(k)
ε (a, b; c) = S(k)

v (a, b; ordv(c); c) · Ŝ(k)
ε (a, b; c).

Suppose now that we know that Problem 4.1 has a positive solution for Ŝ
and a family of domains of the form

Bj × {x ∈ kv : ordv(x) = u, x ≡ ξ (mod πvv)}.
The function c 7→ S

(k)
v (a, b; ordv(c); c), considered as a v-adic function, be-

comes very singular as c→ 0 in kv. If ordv(c) > 1 then we have

S(k)
v (a, b; ordv(c); c)

= N(c)k/2
{
ε(c, A)kwev

(
2Ak
c

)
+ ε(c1 −A)kwev

(−2Ak
c

)}

× ε((c, a)−1
w )k

where A is a v-adic solution to A2 = ab if there are any, and
S

(k)
v (a, b; ordv(c); c) = 0 otherwise.

It follows from this that if Problem 4.1 has a positive solution with a
fair degree of regularity in the family Bj for S ∪ {v} then it will also hold
for S. This should also be the case in the context of Problem 4.2. These
observations are important as they show that we can avoid the problems
caused by the factors of a and b in c (and also of any common factors of c
and d(e)).

5. Discussion. At the present time it is not realistic to expect a solu-
tion to the problems formulated in Section 4. The most significant results
at present known are those concerning the case k = 1. Here the method of
Kuznetsov [14] can be applied; it is much more convenient to use the simpli-
fied version due to Goldfeld–Sarnak [9]. In its original form this applies only
to the case where k = Q, S = {∞} and n = 1. It is not difficult to extend
this method to the case of imaginary-quadratic fields k (see [20] and [1] for
an even wider generalization). All of these results apply to the case where
S consists of one place ∞ and Bj = {x : |x|∞ ≤ j}. One obtains non-trivial
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esitmates for ∑

N(c)≤j
S(a, b; c)N(c)−1/2.

If we use the theory of metaplectic groups, that is, in this context, the
Kubota homomorphism (see [12]), we can extend such results to the case
of general n. The question of relaxing the conditions on the set S, by
far the most restrictive condition, has been approached by Cogdell and
Piatetski-Shapiro in [2], Part II, where they treat the function-field case.
In their main result they show how, essentially, one can treat the case
S = {∞, v1, v2, . . . , vt} and

Bj = {x ∈ k∞ : |x|∞ ≤ j} × C1 × . . .× Ct
with C1, . . . , Ct fixed. They prove in fact a rather different result in which the
characteristic functions of C1, . . . , Ct are replaced by the matrix coefficients
of fixed cuspidal representations. In Theorem 4.3 they investigate the case
where S = {v1, . . . , vt} and Bj =

∏t
i=1{x ∈ kvi : |x|vi ≤ ji} where now j is

a multi-index (j1, . . . , jt).
These methods can be extended directly to the case of metaplectic

groups, so that general n can be investigated. One curious feature of this
case is that a leading term appears from the generalized theta functions
indicating a certain bias in the distribution of the Kloosterman sums. To
obtain precise results involves not only very delicate calculations but also the
application of the generalized Shimura correspondence ([7]) and an analysis
of the corresponding local representations. These results will appear else-
where.

For the case k 6= 1 the situation is more delicate. First of all we should
note that from αα′ = ε

((−ab−1

c

)
n

)
we have

S(k)
ε (a, b; c) = ε

((−ab−1

c

)

n

)k
S(−k)
ε (a, b; c).

Since under our assumptions a and b are units we see that

ε

((−ab−1

c

)

n

)
· ε((−ab−1, c)S)k

where (· , ·)S denotes the Hilbert symbol on k×S × k×S . This is a locally con-
stant function and it follows that we can, by a suitable modification of
the Bj , deduce the case of negative k from that for positive k. For this
reason we shall restrict our attention to the case of k > 0.

Unfortunately, with one exception, no analytic representation is known
for the S(k)

ε (a, b; c) with k > 1 (cf. [18], [21]). It is not impossible that one
will be found as there is still little clarity on what general functions of this
type can be obtained from the theory of automorphic forms on groups of
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higher rank. The one case where such results do exist is when n = 2; by
Theorem 3.1 we have

S(k)
ε (a, b; c) = S(1)

ε (ka, kb; c)

for gcd(k, c) = (1). Hence in this case Kuznetsov’s method will suffice to
deal with the general case. This would mean, for example, that if we take a
non-square a ∈ N and we consider, for X > 1,

T (X) = {x/c : 0 < x < c, x2 ≡ a (mod c), c ≤ X}
then T (X) will be uniformly distributed in [0,1] for X → ∞. In fact, this
has been proved by C. Hooley [10] using a weaker estimate for the av-
erages of the S

(k)
ε (a, b; c) than we can obtain. Apparently this argument

has been carried out in detail by I. Vardi in his MIT Ph.D. Thesis (see
the remarks in [9] and [20]) but I have not had access to it. I am grateful
to J. Brüdern for pointing out Hooley’s work to me. (Added in proof: see
also W. D u k e, J. B. F r i e d l a n d e r and H. I w a n i e c, Equidistribution of
roots of a quadratic congruence to prime moduli , Ann. of Math. 141 (1995),
423–441.)

Finally, we shall examine the case k = 2. Suppose that c is a prime power
and gcd(ab, c) = 1. Then we have

S(2)
ε (a, b; c) = Sε(a, b; c)2 − 2N(c) · ε

((−ab
c

)

n

)
.

Now

Sε(a, b; c)2 =
∑
x,y

ε

((
xy

c

)

n

)
e

(
a(x+ y) + b(x+ y)

c

)
.

We substitute u = x+y, v = xy. In order that T 2−uT + v ≡ 0 (mod c) be
soluble we require that u2 − 4v should be a quadratic residue (mod c). We
deduce that (writing QNR to indicate a quadratic non-residue)

Sε(a, b; c)2 = 2
∑
u,v

v 6≡0 (mod c)

ε

((
v

c

)

n

)
e

(
au+ buv

c

)

− 2
∑

u2−4vQNR

ε

((
v

c

)

n

)
e

(
au+ buv

c

)

−
∑

u2−4v≡0 (mod c)
v 6≡0 (mod c)

ε

((
v

c

)

n

)
e

(
au+ buv

c

)

where the factor 2 accounts for the fact that if u2−4v 6≡ 0 (mod c) we have
two distinct summands in the original sum and the last term corrects for the
exceptional case. The first term is easily computed; it is 2N(c)ε

((−ab
c

)
n

)
.
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The last term is −Sε2(2a, 2b; c). Thus we have

S(2)
ε (a, b; c) = −2

∑

u2−4vQNR

ε

((
v

c

)

n

)
e

(
au+ buv

c

)
− Sε2(2a, 2b; c).

If we fix a non-trivial quadratic non-residue δ then we can write this last
sum as

S(2)
ε (a, b; c) = −

∑

u,v,w (mod c)
u2−4v≡δw2 (mod c)

ε

((
v

c

)

n

)
ε

(
au+ buv

c

)
.

An analogous result holds for arbitrary c when δ is taken to be a quadratic
non-residue modulo all divisors of c and the factor (−1) is replaced by
(−1)ω(c).

Analogous formulae hold for higher S(k)(a, b; c) but they are more com-
plicated. From the point of view of collecting numerical evidence about the
problems of Section 4 they might be of some use—unfortunately, the evalu-
ation of these sums for composite c is very involved.
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