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1. Introduction. Let M be a number field, L(x) = α1x1 + . . .+ αnxn
a linear form with linearly independent coefficients in M , c ∈ Q∗ (1) and
a ∈ Z− {0}. By means of his Subspace Theorem, Schmidt [11] showed that
the solutions x ∈ Zn of the norm form equation

(1.1) cNM |Q(L(x)) = a

belong to a finite number of so-called families of solutions (cf. Section 2). Let
P (N) denote the number of solutions x of (1.1) with |x| = max1≤i≤n{|xi|} <
N . Using this result of Schmidt, Győry and Pethő [8] proved that if (1.1)
has infinitely many solutions then

(1.2) P (N) = %1(logN)r +O((logN)r−1) as N →∞,
with a positive constant %1. In (1.2), r denotes a positive integer which,
in the language of Section 2, denotes the maximum of the unit ranks of
those subfields of M to which there corresponds a family of solutions. When
n = [M : Q], we say the form is full and in this case, Győry and Pethő
[9] gave explicitly the constant %1 together with an explicit bound for the
constant implied by the O notation. Later, Everest [3], refined the result in
[9], in the case where M is totally real and r > 1, to deduce

(1.3) P (N) = %1(logN)r + %2(logN)r−1 + o((logN)r−1) as N →∞.
Further, he gave the constant %2 in an explicit form. It is interesting to
compare the dependence of the constants %1 and %2 upon F and a. The
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(1) For a ring R with unity, R∗ will denote the multiplicative group of invertible
elements of R.
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dependence of %1 upon a is marginal having to do with the number of max-
imal families of solutions. Also %1 contains a transcendental part, a rational
multiple of the inverse regulator of M . The dependence of %2 upon a and
F is more subtle. In [2], the first author gave an approach to the explicit
determination of these constants using Dirichlet’s series.

The purpose of this paper is to generalise the result of [8] to arbitrary
decomposable form equations over Z (see Theorem 1) and the result of [3]
to a general class of such equations (see Theorem 2). Further, we give a
surprising application to the distribution of units in abelian group rings (see
Theorem 3). The constants %1 and %2 are ineffective since our proof depends
upon the Thue–Siegel–Roth–Schmidt method. We intend to provide explicit
formulae for these constants in our next paper, in the case where n = degF ,
using the methods of [9], [2] and [3]. This will yield explicit constants in
Theorem 3 also.

Let F (x) = F (x1, . . . , xn) denote a decomposable form with coefficients
in Z. That is, F (x) is a homogeneous polynomial which factorises into linear
factors with algebraic coefficients. Then there are c ∈ Q∗, finite extension
fields M1, . . . ,Mt of Q and linear forms Li(x) with coefficients in Mi, i =
1, . . . , t, such that

(1.4) F (x) = c

t∏

i=1

NMi|Q(Li(x)).

Assume that F has n linearly independent linear factors with algebraic
coefficients and a ∈ Z. The decomposable form equation

(1.5) F (x) = a, x ∈ Zn,
is a generalisation of the equation in (1.1). In [7], Győry extended the concept
of family of solutions (cf. Section 2) to decomposable form equations, and
showed that the solutions are all contained in the union of finitely many
families of solutions. By means of this, Evertse and Győry [5] have obtained
a formula like (1.2) for the solutions of a re-formulation of (1.5).

First we will prove a formula (1.2) (see Theorem 1) for the equation (1.5).
This could be deduced directly from the finiteness results of [7]. However,
it will be shorter to derive it from the formula in [5]. Further, by using the
method of [3], we will generalise (1.3) (Theorem 2) for the equation (1.5)
under restrictive hypotheses on the fields Mi. As an application, we will give
asymptotic formulae (Theorem 3) counting units in group rings ZΓ , where
Γ denotes a finite abelian group.

We would like to point out that our methods give insight into the location
in space of the solutions of the equation in (1.5). Suppose we project the
solutions x ∈ Zn of (1.5) centrally onto the unit ball by dividing each one
by its length. We might ask what is the distribution of the images. Our
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methods show that, far from being uniformly distributed, the images cluster
more densely around a finite number of points on the ball. Say we were to
imagine the solutions represented by stars in the sky and the origin at the
earth’s centre. Looking up into the night sky, what we would see, amongst
the scattered lights, is a finite collection of brighter clusters of stars. These
would be joined by less bright lines (like the “Milky Way”). This remark
will be explained at the end of Section 5.

On this topic, the choice of Euclidean norm (in this case, the “max”-
norm) used to compute P (N) may seem a little arbitrary. Since any two
norms are commensurate, it is easily seen that (1.2) is independent of the
choice in the sense that only the constant implied by the O notation is
affected by a change of norm. It is a more delicate matter to assess the
dependence of %2 (in (1.3)) upon the choice of norm.

2. Results. Let M1, . . . ,Mt appear as before (see (1.4)) and let A denote
the algebra

A = M1 ⊕ . . .⊕Mt.

This is the direct Q-algebra sum of the algebraic number fields formed with
respect to componentwise operations. Thus, 1A = (1, . . . , 1) is the unity of A
andA∗, the multiplicative group of invertible elements ofA is {(α1, . . . , αt) ∈
A : α1 . . . αt 6= 0}. The norm NA|Q(α) of α = (α1, . . . , αt) ∈ A is defined to
be the usual algebra norm, i.e. the determinant of the Q-linear map x 7→ αx
from A to itself. The norm is multiplicative and we have

(2.1) NA|Q(α) =
t∏

i=1

NMi|Q(αi).

In view of (1.4), we may re-write equation (1.5) as

(2.2) cNA|Q(x) = a, x ∈M,

where, in (2.2), M is defined to be M = {x = (L1(x), . . . , Lt(x)) ∈ A : x ∈
Zn}. Now M is a finitely generated Z-module.

Following [7] and [5], we now define the concept of family of solutions.
Let V = QM denote the Q-vector space generated by M. For any subalgebra
B of A with 1A ∈ B, denote by OB the integral closure of Z in B. Let

V B = {v ∈ V : vB ⊆ V } and MB = V B ∩M.

Obviously V B is closed under multiplication by elements of B. Now define

UM,B = {ε ∈ O∗B : εMB = MB , NA|Q(ε) = 1}.
This is a subgroup of finite index in O∗B (see [7]). If x ∈MB is a solution of
(2.2) so is every element of xUM,B . Such a coset is called an (M, B)-family
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of solutions of (2.2), and hence of (1.5) as well. The group O∗B is finitely
generated; let rB denote the torsion-free rank.

Theorem 1. Suppose that equation (1.5) has infinitely many solutions.
Let r denote the maximum of the ranks rB , taken over all Q-subalgebras B
of A with 1A ∈ B, for which (2.2) has an (M, B)-family of solutions. Then
the counting function P (N) of equation (1.5) satisfies (1.2), with a positive
constant %1 which depends only upon F and a.

We will see that r > 0 precisely when (1.5) has infinitely many solutions.
In the special case where t = 1, equation (2.2) reduces to the equation

(2.3) cNM1|Q(x) = a, x ∈M,

where now M = {x = L1(x) : x ∈ Zn}. This is a re-formulation of equation
(1.1). Theorem 1 applies to (2.3), replacing the subalgebras of A by subfields
of M1. Hence in this case, Theorem 1 gives the main result of [8], concerning
equation (1.1).

Theorem 2. Let r be as in Theorem 1 and assume that r > 1. Suppose
that the number fields M1, . . . ,Mt associated with F in (1.4) have the fol-
lowing properties: they are totally real fields or totally imaginary quadratic
extensions of totally real fields, they have unit ranks greater than 1 and none
of them has a subfield of unit rank 1. Then the counting function P (N) of
equation (1.5) satisfies (1.3) with constants %1 > 0 and %2 which depend
on F and a. If n =

∑t
i=1[Mi : Q] then the condition on the subfields of

M1, . . . ,Mt can be omitted.

For the case where t = 1, n = [M1 : Q] with M1 totally real, Theorem 2
provides the main result of [3].

The following example shows that, in Theorem 2, the conditions imposed
on the unit ranks of M1, . . . ,Mt and their subfields are necessary. For i =
1, . . . , t, let di denote distinct, positive, square-free integers greater than 1,
and let Mi = Q(

√
di). By Theorem 1, the number of solutions of x2

i −diy2
i =

1 with |xi|, |yi| < N is %i logN + O(1). Hence, for the decomposable form
equation

t∏

i=1

(x2
i − diy2

i ) = 1,

one cannot expect any better than P (N) = %(logN)t +O((logN)t−1).

3. Counting units in abelian group rings. Let Γ denote a finite
abelian group, with ZΓ denoting the integral group ring. This is the ring
which consists of all expressions

∑
γ∈Γ xγγ for xγ ∈ Z. Addition is linear

and multiplication is taken with respect to the group operation in Γ . Let TΓ
denote the subgroup of ZΓ ∗ defined by TΓ = {±γ : γ ∈ Γ}. It is known that
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ZΓ ∗ is a finitely-generated group. Also, Higman’s Theorem says that the tor-
sion subgroup is precisely TΓ . Let rΓ denote the torsion-free rank. There is
considerable interest in the group ZΓ ∗ (see [10], [12]). In [1], the distribution
of the elements in this group was studied because of the relationship with
the distribution of normal integral bases. Of particular interest is the distri-
bution of these units with respect to the following Euclidean norm: define
|x| = |∑γ xγγ| = maxγ{|xγ |}. Let UΓ (N) denote the counting function

UΓ (N) = #{x ∈ ZΓ ∗ : |x| < N}.
From our theorems, the following arise as special cases.

Theorem 3. Let Γ denote a finite abelian group, with rΓ > 0 denoting
the torsion-free rank of ZΓ ∗. Then we have an asymptotic formula

(3.1) UΓ (N) = µΓ (logN)rΓ +O((logN)rΓ−1) as N →∞,
where µΓ > 0. Suppose Γ does not have a cyclic factor group of order 5, 8,
10 or 12 and rΓ > 1. Then we have the following asymptotic formula:

UΓ (N) = µΓ (logN)rΓ + νΓ (logN)rΓ−1(3.2)

+ o((logN)rΓ−1) as N →∞.
P r o o f. We will prove (3.1) and (3.2) simultaneously. For (3.1), it is

sufficient to prove that the elements x ∈ ZΓ ∗ correspond to the integer so-
lutions of a finite number of decomposable form equations, with coefficients
in Z. For (3.2), we need to check that the associated number fields satisfy
the conditions of Theorem 2. Let Γ̂ denote the character group of Γ . Each
χ ∈ Γ̂ defines a linear form on ZΓ as follows: χ(x) =

∑
γ xγχ(γ). In [1], it

was proved that for x ∈ ZΓ , we have x ∈ ZΓ ∗ if and only if

(3.3)
∏

χ∈Γ̂
χ(x) = ±1.

Thus, if n denotes the order of Γ then the elements x ∈ ZΓ ∗ can be identi-
fied with the integer solutions x ∈ Zn of two decomposable form equations
(corresponding to the two choices of sign on the right in (3.3)). We need to
prove that the coefficients lie in Z. Let Ω denote the absolute Galois group,
Ω = Gal(Q/Q). Then Ω acts on Γ̂ in the obvious way. Let C denote the set
of equivalence classes of Γ̂ under this action. For each class c ∈ C, let χc
denote a representative character. Now the group Ω acts on the form on the
left of (3.3). It permutes the characters in any particular class. Thus, every
character appears as often as any of its Galois conjugates. This shows that
Ω preserves the form. Since the coefficients are algebraic integers, it follows
that they actually lie in Z.
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Let Qc = Q(χc) denote the extension field generated by the values of χc.
We can re-write the left of (3.3) as

∏

χ∈Γ̂
χ(x) =

∏
c

NQc|Q(χc(x)),

where χc ∈ c is some fixed choice of character. Since Γ is abelian, its char-
acter values are roots of unity so each of the fields Q(χc) is cyclotomic. In
particular, these fields are totally real fields or totally imaginary quadratic
extensions of totally real fields. The only cyclotomic fields which have unit
rank equal to 1 are those of order 5, 8, 10 and 12. Since these extensions
are generated by character values we must exclude characters which have
orders 5, 8, 10 or 12. The character group Γ̂ is naturally isomorphic to Γ .
By duality, subgroups of Γ̂ correspond to factor groups of Γ . This explains
the restriction on the factor groups of Γ to allow (3.2).

We can go further and identify the underlying algebra as the group alge-
bra QΓ . Note that the factors of the decomposable form are linearly inde-
pendent. The matrix of coefficients is L = (χ(γ)) where χ runs over Γ̂ and
γ runs over Γ . The orthogonality relations for abelian characters imply the
relation LLt = nIn, where Lt denotes the conjugate transpose of L and In
denotes the n × n identity matrix. Thus, L is certainly non-singular. Then
the map

(3.4) x 7→ (χc(x)), x ∈ QΓ,
is a ring homomorphism between the group algebra QΓ and the algebra∏
cQc. The non-singularity of L guarantees this map is an isomorphism.

Thus the map in (3.4) is an isomorphism between the underlying algebra of
the form in (3.3) and the group algebra QΓ .

For an alternative description of this isomorphism, see Corollary 8.9.9 in
[10]. On both sides of the isomorphism, the maximal order is the integral
closure of Z. Thus the map preserves maximal orders and it follows that the
unit group ZΓ ∗ maps onto a subgroup of finite index of the product of the
unit groups of the fields Qc. Thus, ZΓ ∗ has the same torsion free rank as
this product group. This means there is a family of solutions corresponding
to the whole group algebra QΓ . Thus we may take r = rΓ in Theorems 1
and 2. Finally, let dc = [Q(χc) : Q]; then we have n = |Γ | =

∑
c dc and

this means that the condition on the subfields in the statement of Theorem
2 can be omitted. This completes the proof that Theorem 3 follows from
Theorems 1 and 2.

Example. Let Γ = C7, the cyclic group of order 7. There are two classes
of characters and the algebra corresponding to the form is the group algebra

(3.5) QΓ ' Q×Q(ζ7).
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In (3.5), ζ7 denotes any primitive 7th root of unity. If Γ = 〈τ〉, let v =
1− τ − τ6, w = 1− τ2− τ5. Then v, w ∈ ZΓ ∗ (v−1 = −1− τ + τ3 + τ4− τ6,
w−1 = −1 + τ − τ2− τ5 + τ6) and it can be shown that ZΓ ∗ ' TΓ × 〈v, w〉.
Thus rΓ = 2 and Theorem 2 applies, so in this special case we deduce that

UΓ (N) = µΓ (logN)2 + νΓ logN + o(logN).

4. Proof of Theorem 1. The following lemma will play a basic role
in the proofs of Theorems 1 and 2. It is a consequence of the main result
of [7], whose proof depends upon Schlickewei’s p-adic generalisation of the
Subspace Theorem.

Lemma 1. The set of solutions of (2.2) is a union of finitely many families
of solutions.

P r o o f. In [7] and [5], the equation

(2.2′) cNA|Q(x) = ±a, x ∈M,

was considered in a more general situation. With the notation of Section 2,
EM,B = {ε ∈ O∗B : εMB = MB} is a subgroup of finite index in O∗B (cf.
[7]). If x ∈ MB is a solution of (2.2′) then so is every element of xEM,B .
Such a set xEM,B is called an (M, B)-family of solutions of (2.2′). It follows
from the main result in [7] (cf. also [5]) that the set of solutions of (2.2′) is
the union, say

⋃u
j=1 xjEM,Bj of families of solutions, where xj is a solution

of (2.2′) and Bj is a Q-subalgebra of A with 1A ∈ Bj .
Denote by J the subset of {1, . . . , u} such that for each j ∈ J , xjEM,Bj

contains at least one element which is a solution of (2.2). If j ∈ J , we may
assume that xj is a solution of (2.2). The group UM,Bj defined in Section
2 is a subgroup of index 1 or 2 in EM,Bj . Thus it follows that the set of
solutions of (2.2) can be expressed as

⋃
j∈J xjUM,Bj , which completes the

proof.

Let α = (α1, . . . , αn) ∈ Qn − {0}. Let K denote any algebraic number
field containing α1, . . . , αn and let τ1, . . . , τd denote the isomorphic embed-
dings of K into Q, where d = [K : Q]. Let (α) denote the fractional ideal of
K generated by α1, . . . , αn, with NK|Q((α)) denoting its norm. The absolute
(multiplicative) Weil height of α is defined to be

(4.1) H(α) = H(α1, . . . , αn) =
{∏d

i=1 max{|τi(α1)|, . . . , |τi(αn)|}
NK|Q((α))

}1/d

.

Obviously, H(α) does not depend upon the choice of K. Further,

H(λα) = H(α) for α ∈ Qn − {0}, λ ∈ Q∗.
As before, let A denote the algebra M1 ⊕ . . .⊕Mt. We define the height

of ξ = (ξ1, . . . , ξt) ∈ A to be the absolute Weil height of the vector with
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components consisting of ξ1, . . . , ξt and their conjugates over Q. Thus, if
σi,1, . . . , σi,ni denote the embeddings of Mi into Q, i = 1, . . . , ni = [Mi : Q],
then

H(ξ) = H(σ1,1(ξ1), . . . , σ1,n1(ξ1), . . . , σt,1(ξt), . . . , σt,nt(ξt)).

For every H > 0, denote by N(H) the number of solutions x of (2.2)
with H(x) < H. For a Q-subalgebra B of A with 1A ∈ B, let rB be defined
as in Section 2.

Lemma 2. Suppose that (2.2) has infinitely many solutions. There is an
asymptotic formula

N(H) = %(logH)r +O((logH)r−1) as H →∞,
where % is a positive number independent of H and r > 0 denotes the max-
imum of the rB taken over all Q-subalgebras B of A with 1A ∈ B for which
equation (2.2) has an (M, B)-family of solutions.

P r o o f. A similar result was proved in [5] for equation (2.2′) above under
the assumption that x and −x are identified. Our Lemma 2 can be proved
in the same way. In the proof of Corollary 4 of [5] it is enough to use our
Lemma 1 instead of Theorem 1 of [5] and to choose K = Q with S denoting
the ordinary absolute value, the trivial group {1} instead of O∗S and the
families of solutions of (2.2) instead of those of (2.2′).

In our paper, it will be more convenient to work with a slightly dif-
ferent height H(ξ) for elements ξ of A. With the above notation, for ξ =
(ξ1, . . . , ξt) ∈ A, we define

H(ξ) = max
i,j
{|σi,j(ξi)|}.

P r o o f o f T h e o r e m 1. Let K denote the splitting field of the de-
composable form F over Q, and let d = [K : Q]. Consider equation (1.5)
in the form (2.2). Let g =

∑t
i=1 ni. There is a positive rational integer λ,

depending only upon F and a, such that for each solution x of (1.5), (2.2)
is equivalent to

(4.2) c′NA|Q(x′) = a′, x′ ∈M,

where c′ = λc and a′ = λg+1a are already rational integers and x′ = λx ∈
OA. Thus setting x′ = (ξ′1, . . . , ξ

′
t), we have by (4.1),

H(x′) = H(x′)NK|Q((σ1,1(ξ′1), . . . , σt,nt(ξ
′
t)))

1/d.

But NK|Q((σ1,1(ξ′1), . . . , σt,nt(ξ
′
t))) is a positive integer which divides

NK|Q(ξ′i) in Z, for each i. In view of (2.1) and (4.2), it follows that this
latter norm is bounded above by a number which is independent of x′. Since
H(x′) = H(x) and H(x′) = λH(x), we deduce

(4.3) c1H(x) ≤ H(x) ≤ c2H(x),
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for each solution x of (2.2), where c1, c2 are positive constants. Since, by
assumption, F has n linearly independent linear factors over Q, the map
x 7→ x = (Li(x))1≤i≤t establishes a one-to-one correspondence between the
solutions x of (1.5) and the solutions x of (2.2). Taking the conjugates of
the linear factors Li, i = 1, . . . , t, and using Cramer’s Rule, we deduce that
for the corresponding solutions x of (1.5) and x of (2.2), we have

(4.4) c3H(x) ≤ |x| ≤ c4H(x).

In (4.4), c3 and c4 denote positive constants. Then by (4.3) and (4.4), to
each solution x of (1.5) with |x| < N , there corresponds a solution x of (2.2)
with H(x) ≤ c5N for some c5 > 0. By Lemma 2, we have

P (N) ≤ %(logN + log c5)r +O((logN + log c5)r−1)(4.5)

= %(logN)r +O((logN)r−1).

Conversely, there is a constant c6 > 0 such that to each solution x of (2.2)
with H(x) ≤ c6N there corresponds a solution x of (1.5) with |x| < N .
Hence, by Lemma 2 again, we deduce

P (N) ≥ %(logN + log c6)r +O((logN + log c6)r−1)(4.6)

= %(logN)r +O((logN)r−1).

Now (4.5) and (4.6) imply (1.2).

5. Proof of Theorem 2. We use the notation of Sections 1–4. In par-
ticular, the one-to-one correspondence x 7→ x = (L1(x), . . . , Lt(x)) between
the solutions of (1.5) and (2.2). Let B denote a Q-subalgebra of A with
1A ∈ B. As was shown in [5], there is a partition P = {P1, . . . , Pq} of
{1, . . . , t}, depending only upon B, and there are algebraic number fields
K1, . . . ,Kq which are uniquely determined by B, with the following prop-
erty: let 1Ps = (ξ1, . . . , ξt) ∈ A with ξi = 1 if i ∈ Ps and ξi = 0 otherwise
then

(5.1) B =
{ q∑
s=1

1Psηs : ηs ∈ Ks, s = 1, . . . , q
}
.

Further, Ks is a subfield of Mi for i ∈ Ps. This implies that

(5.2) O∗B ' O∗K1
× . . .×O∗Kq ,

where O∗Ks denotes the unit group of the ring of integers of Ks, s = 1, . . . , q.
Let FB denote an (M, B)-family of solutions of (2.2). We recall that rB

denotes the rank of O∗B . Let PFB (N) denote the number of solutions of (1.5)
with |x| < N and with x corresponding to elements of the family FB .
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Lemma 3. If rB > 1 then there are real numbers %FB > 0 and δFB such
that

PFB (N) = %FB (logN)rB + δFB (logN)rB−1 + o((logN)rB−1) as N →∞.
Firstly we deduce Theorem 2 from Lemmas 1 and 3. Lemma 3 will be

proved later.

P r o o f o f T h e o r e m 2. By Lemma 1, the set of solutions of (2.2) is
a union

(5.3) F1 ∪ . . . ∪ Fu,

where for each j, Fj is an (M, Bj)-family of solutions of (2.2), for some
Q-subalgebra Bj of A with 1A ∈ Bj . We may assume that for at least one
of the j, rBj is maximal, i.e. rBj = r. We may also suppose that we deal
with the case where rBj ≥ 1. We show that rBj ≥ 1 implies rBj > 1. Each
B = Bj can be written in the form (5.1). This gives rB =

∑q
s=1 rankO∗Ks . It

follows from our assumptions about the subfields of Mi that rankO∗Ks ≥ 2
for at least one s, whence rB ≥ 2, proving our claim.

For a tuple J = {j1, . . . , jv} of integers from {1, . . . , u} with j1 < . . . <
jv, let BJ = Bj1 ∩ . . . ∩ Bjv , FJ = Fj1 ∩ . . . ∩ Fjv and let PJ(N) denote
the number of solutions x of (1.5) with x corresponding to elements of
FJ . It follows from Lemma 3 of [5] that FJ is the union of finitely many
(M, BJ)-families. By Lemma 3,

(5.4) PJ(N) = %J (logN)r + δJ(logN)r−1 + o((logN)r−1) as N →∞,
where %J > 0 if rBJ = r, %J = 0 if rBJ < r and δJ = 0 if rBJ < r − 1. Now
by the inclusion-exclusion principle, it follows from (5.3) that

P (N) =
u∑

j=1

Pj(N)−
∑

|J|=2

PJ(N) +
∑

|J|=3

PJ(N)− . . . ,

where

% =
u∑

j=1

%j −
∑

|J|=2

%J +
∑

|J|=3

%J − . . .

We have P (N) ≥ Pj(N) for j = 1, . . . , u, hence % ≥ %j for j = 1, . . . , u. But
for some j we have %j > 0 thus % > 0. This proves the asymptotic formula
desired for P (N).

If, in particular, n = degF =
∑t
i=1[Mi : Q] then in (2.2), M generates A

over Q. In this case, the set of solutions of (2.2) is the union of finitely many
pairwise distinct (M, A)-families of solutions (cf. [7]). Now the assertion of
Theorem 2 follows as above without any assumption on the unit ranks of
the subfields of M1, . . . ,Mt. This completes the proof of Theorem 2.
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Now we go on to prove Lemma 3. Let FB denote an (M, B)-family of so-
lutions with rB > 0. Then FB = x′UM,B , where x′ is a solution of (2.2) with
x′ ∈ MB . Consider the subgroup of O∗B consisting of elements (ξ1, . . . , ξt)
with real components. We note that by the assumption made on the fields
Mi in Theorem 2, all the components here are totally real. Let UB denote
the intersection of the maximal torsion-free subgroup of this latter subgroup
with UM,B .

Lemma 4. UB is a subgroup of finite index both in UM,B and in O∗B.
Further , there are finitely many elements x1, . . . , xw in FB such that the
xiUB form a partition of FB into pairwise disjoint subsets.

P r o o f. By assumption, each number field Mi, i = 1, . . . , t, is either a
totally real field or a totally imaginary quadratic extension of a totally real
field. As is known (see e.g. [6]), each subfield of Mi is also of this type. In
particular, this applies to the fields Ks, s = 1, . . . , q, in the representation
(5.1). Further, for each s, the maximal torsion-free subgroup of the group of
real units in Ks is of finite index in O∗Ks (see also [6]). In view of (5.2), this
implies that the maximal torsion-free subgroup of O∗B consisting of elements
with real components in A is also of finite index in O∗B . Since UM,B is also of
finite index in O∗B (see [7]), it follows that UB is of finite index both in UM,B

and in O∗B . If y1, . . . , yw is a full set of representatives for the cosets of UB in
UM,B then the assertion follows with the choice xi = x′yi for i = 1, . . . , w.

Let B and U = UB carry the same meaning as in Lemma 4. Let x0

be a solution of (2.2) with x0 ∈ MB and let Px0,U (N) denote the number
of solutions of (1.5) with |x| < N and with x corresponding to the set of
solutions x0U .

Proposition. Under the assumptions above, let rB > 1. Then

Px0,U (N) = %x0,U (logN)rB + δx0,U (logN)rB−1 + o((logN)rB−1)

as N →∞, where %x0,U > 0 and δx0,U are real numbers.

P r o o f o f L e m m a 3. This is immediate from the Proposition and
Lemma 4.

It remains to prove the Proposition and this requires some more lemmas.
To simplify notation, we assume B is chosen with r = rB . For those B with
rB < r, we can proceed in the same way. We will assume that B and O∗B
are represented as in (5.1) and (5.2). For non-zero elements α ∈ A, we use
the notation h(α) = logH(α).

We will pass to logarithmic space where we apply the geometry of num-
bers. Our results can now be described by modelling the whole set-up in the
following general way. It is sufficient to count the logarithms of the absolute
values of the conjugates of the component units below a fixed bound. But
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these are linear forms which arise in the following way. By Lemma 4, U is
free of rank r, hence each element of U can be expressed in terms of basis
elements, say f1, . . . , fr. Then (with componentwise multiplication), each
u ∈ U may be expressed as

u = fe11 . . . ferr , e = (e1, . . . , er) ∈ Zr.
Thus each component ui of u looks like fe1i1 . . . f

er
ir for some algebraic num-

bers fij , j = 1, . . . , r. By (5.1) and (5.2), it is easy to see that for fixed i,
these fij generate a subgroup of finite index in the unit group of the subfield
Ks of Mi. The logarithm of the absolute value of any conjugate of ui is a
linear form in e with real coefficients. Thus we have a collection of real linear
forms φl(e), l = 1, . . . , d, e ∈ Rr, where d =

∑
s ds and ds = [Ks : Q], which

correspond to the logarithms of the absolute values of the conjugates of the
units, which are the components of u in A. These forms have rank r and∑
l φl = 0 identically by the unit condition. Each of these forms which is

not identically zero has at least two coefficients which are linearly indepen-
dent over Q. This follows from our assumption about the unit ranks of the
subfields of the fields Mi. In what follows, only those forms φl which are not
identically zero will be considered. For any vector e ∈ Rr, define

(5.5) φ(e) = max
l
{φl(e)}.

The forms φl(e) have rank r. This, together with the condition
∑
l φl(e) = 0,

e ∈ Rr, guarantees that φ(e) is commensurate with |e|. This fact was pointed
out in Lemma 2.2 of [4]. Geometrically, the region φ(e) < Y for real Y > 0
defines a polytope. Thus the number of lattice points within that region is
easily estimated by the volume of the region, with an error term of order
equal to the volume of the boundary. In fact, much more can be (and has
been) said. The following formula arises as a direct application of Proposition
2.1 in [4]:

(5.6) φ(Y ) = #{x ∈ Zr : φ(e) < Y } = C1Y
r + o(Y r−1).

In (5.6), C1 denotes a positive constant. Let

U(X) = #{u ∈ U : H(u) < X}.
We will also require an estimate of the number of elements of U with a
particular conjugate as largest. Given s = 1, . . . , q, let τsj : Ks → Q denote
an embedding. Define Usj by

Usj = {u ∈ U : H(u) = |τsj(us)|}.
Let Usj(X) denote the corresponding counting function

Usj(X) = #{u ∈ Usj : H(u) < X}.
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Lemma 5. We have

U(X) = C1(logX)r + o((logX)r−1),(5.7)

Usj(X) = C2(s, j)(logX)r + C3(s, j)(logX)r−1 + o((logX)r−1).(5.8)

P r o o f. Of course (5.7) is a re-statement of (5.6) with Y = logX. To
prove (5.8) we appeal to Lemma 3.2 in [4] (with ps = 0, qs = 1 and N = 1).

In order to prove our Proposition, we will need the following refinement of
Lemma 5. Let H∗(u) (respectively H∗∗(u)) denote the second (respectively
third) largest element of the set {|τsj(us)|}s,j . This set is composed of all
the absolute values of all the conjugates of the components in u and we do
allow repetitions; thus H(u) = H∗(u) is allowable, for example. Let C4 > 1
and C5 > 1 denote constants. Define the following sets:

U∗ = {u ∈ U : H∗(u)/H(u) < C4/h(u)C5},
U∗∗ = {u ∈ U : H∗∗(u)/H(u) < C4/h(u)C5}.

In what follows, we are generally unconcerned about the precise values of C4

and C5 since our formulae do not depend upon these values in any important
way (see Lemma 6 for example). This explains why the notation is chosen
also to be independent of any mention of them. Define the basic counting
function of U∗∗ as follows:

U∗∗(X) = #{u ∈ U∗∗ : H(u) < X}.
Also, let

U∗sj = Usj ∩ U∗, U∗∗sj = Usj ∩ U∗∗,
U∗∗sj (X) = #{u ∈ U∗∗sj : H(u) < X}.

Lemma 6. There are asymptotic formulae as follows:

U∗∗(X) = C1(logX)r + o((logX)r−1),(5.9)

U∗∗sj (X) = C2(s, j)(logX)r + C3(s, j)(logX)r−1 + o((logX)r−1),(5.10)

where C1, C2, C3 denote the same constants as in Lemma 5.

P r o o f. For any e ∈ Rr, let φ∗(e) (respectively φ∗∗(e)) denote the second
(respectively third) largest element of the set {φl(e)} in (5.5). Suppose C6 =
logC4 and define

φ∗∗ = {0 6= e ∈ Rr : φ∗∗(e)− φ(e) < C6 − C5 log φ(e)}
and

φ∗∗(Y ) = #{e ∈ Zr ∩ φ∗∗ : φ(e) < Y }.
Clearly, the formula in (5.9) is equivalent to the following statement:

(5.11) φ∗∗(Y ) = C1Y
r + o(Y r−1).
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P r o o f o f (5.11). It is sufficient to estimate the size of the complemen-
tary set

{e ∈ Zr : φ(e) < Y, φ(e) ≤ φ∗∗(e) + C5 log φ(e)− C6},
in the set considered in (5.6) and show this estimate lies in the error term.
Now φ∗∗(e) ≤ φ(e) always so the complementary set is contained within the
set

{e ∈ Rr : φ(e) < Y, |φ(e)− φ∗∗(e)| < C5 log φ(e)}.
However since φ(e) < Y , we see that this set is contained in

(5.12) {e ∈ Rr : φ(e) < Y, |φ(e)− φ∗∗(e)| < C5 log Y }.
The set in (5.12) is a measurable region since its boundary is defined

by piecewise linear maps. Thus the number of lattice points the region con-
tains can be estimated by the sum of the (r-dimensional) measure of the
region and the (r − 1-dimensional) measure of the boundary of the region.
Geometrically, the claims we make about this, and similar, regions are fairly
obvious since the basic object of study is a polytope in a real, r-dimensional
space. For a formal proof, place a unit cube around each of the lattice points.
Count 1 towards the volume of the region every time the cube is interior
to the region. If the cube intersects the boundary of the region, count 1
towards the volume of the boundary. Both of these measures are easily es-
timated by integrating via substitution. Let θ1 denote the largest of the
φl(e), with θ2 denoting the second largest and so on up to θr. There are
only finitely many possible orderings of the θi. It follows that the Jacobian
of this transformation is piecewise constant and thus it is certainly bounded.
With our new variables, we inherit the inequality |θ1− θ3| < C5 log Y . Each
of the new variables is bounded above by Y and we need to place some
lower bound also. Since

∑
l φl(e) = 0 identically and φ(e) < Y , we see that

each φl(e) > −(d− 1)Y . Thus we impose this same lower bound on each of
the θi, i = 1, . . . , r. (Since θ1 ≥ 0 always, this is quite a concession.) Then
compute the measure of the set

(5.13) {θ ∈ Rr : −(d− 1)Y ≤ θr ≤ . . . ≤ θ1 < Y, |θ1 − θ3| < C5 log Y }.
The total contribution to the integral from the θ1 and θ2 variables is
O((log Y )2). Integrating over the remaining r − 2 variables gives a con-
tribution of O(Y r−2). Multiplying these two gives a term O(Y r−2(log Y )2)
which is within the error term required by (5.11). On the boundary, one of
the inequalities in (5.13) must be changed to an equality with the corre-
sponding variables being identified. A similar argument now gives the same
error term.

P r o o f o f (5.10). Using the φ-notation, those elements in the comple-
mentary set are already contained within the set in (5.13). This is because
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they correspond to a particular choice of forms as first and second largest.
Since we showed that the number of lattice points in (5.13) is already counted
in the error term, it follows that the number of lattice points in a subset
will be so counted.

We are counting solutions x ∈ Zn of (1.5) corresponding to the set of
solutions x0U considered above. By (1.4), (1.5), (2.1) and (2.2), there are
constants bi and units ui such that

(5.14) Li(x) = biui,

where x0 = (b1, . . . , bt) and u = (u1, . . . , ut) ∈ U . For each i = 1, . . . , t,
there are ni = [Mi : Q] conjugate embeddings σij : Mi → Q and the image
of each ui under σij lies in R. Applying these to the equations in (5.14), we
obtain

∑t
i=1 ni linear equations which we write as

(5.15) Lij(x) = bijuij , x = (x1, . . . , xn), i = 1, . . . , t, j = 1, . . . , ni.

We are assuming that among the Lij , there are n linearly independent linear
forms. We will use that fact to express the entries xi in x as linear combi-
nations of the uij . Choose a set of n linearly independent forms with the
proviso that whichever |uij | is largest, its corresponding form Lij is in the
set. This could be guaranteed by choosing that form first and then complet-
ing to an independent set. After re-labelling, we have a set of n equations,

(5.16) Ll(x) = blul, l = 1, . . . , n.

Using this representation, we are able to prove the following:

Lemma 7. Let x denote a solution of F (x) = a (see (1.5)), corresponding
to x0u ∈ x0U . Then:

(i) We have

(5.17) log |x| = h(u) +O(1).

(ii) For all s = 1, . . . , q and j = 1, . . . , ds = [Ks : Q] for which U∗sj is
infinite, there are constants αsj such that for all u ∈ U∗sj ,

(5.18) log |x| = h(u) + αsj +O

(
1

h(u)C5

)
.

P r o o f. (i) (This is similar to (4.4).) Clearly H(u) < C7|x| by (5.16)
and the triangle inequality. Inverting the system of equations in (5.16) now
gives a similar inequality in reverse. Taking logarithms gives (5.17).

(ii) Let u ∈ U∗sj . It is sufficient to deal with the case where h(u) is large
enough. Then we have for each xk,

xk = Ωsjkτsj(us) +O(H∗(u)) = Ωsjkτsj(us) +O

(
H(u)
h(u)C5

)
.
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Assume that |x| = |xk0 |. Then Ωsjk0 is not zero (otherwise we contradict
(i)). We may write

(5.19) xk0 = Ωsjk0τsj(us)
(

1 +O

(
1

h(u)C5

))
.

Take the logarithm of the absolute value of both sides in (5.19). Using the
estimate log(1 + ε) = ε+O(ε2) for small ε > 0 now gives

(5.20) log |x| = h(u) + log |Ωsjk0 |+O

(
1

h(u)C5

)
.

Next assume k is chosen with |Ωsjk| largest. Then we get, in the same
way,

(5.21) log |xk| = h(u) + log |Ωsjk|+O

(
1

h(u)C5

)
.

It follows from (5.20) and (5.21) that |Ωsjk0 | = |Ωsjk|. This proves (5.18)
with the choice αsj = log |Ωsjk|.

P r o o f o f t h e P r o p o s i t i o n. Recall that Px0,U (N) denotes the
number of solutions x ∈ Zn of (1.5) with |x| < N which correspond to
x0U . In other words, Px0,U (N) is the number of u ∈ U for which x0u cor-
responds to a solution x ∈ Zn of (1.5) with |x| < N . We decompose the
counting function Px0,U (N) according to the sets mentioned in our lemmas.
Thus, a first decomposition arises as follows:

(5.22) Px0,U (N) = #{u ∈ U∗∗ : |x| < N}+ #{u ∈ U − U∗∗ : |x| < N}.
Using (5.7) in tandem with (5.9), we note that

(5.23) #{u ∈ U − U∗∗ : H(u) < N} = o((logN)r−1).

By (5.17), there is a C8 > 0 such that

#{u ∈ U − U∗∗ : |x| < N} ≤ #{u ∈ U − U∗∗ : h(u) < logN + C8}
and by (5.23), the right hand side is o((logN)r−1).

For the first term on the right in (5.22), we make a further refinement
as follows:

(5.24)
∑

s,j

#{u ∈ U∗sj : |x| < N}+
∑

s,j

#{u ∈ U∗∗sj − U∗sj : |x| < N}.

For the first term in (5.24), we invoke (5.18) which allows us to replace
log |x| essentially by h(u) + αsj . Thus (5.24) becomes

(5.25)
∑

s,j

#{u ∈ U∗sj : h(u) < logN − αsj}

+
∑

s,j

#{u ∈ U∗∗sj − U∗sj : |x| < N}.
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Expand the first term of (5.25) by counting in U∗∗sj :

(5.26)
∑

s,j

#{u ∈ U∗∗sj : h(u) < logN − αsj}

−
∑

s,j

#{u ∈ U∗∗sj − U∗sj : h(u) < logN − αsj}

+
∑

s,j

#{u ∈ U∗∗sj − U∗sj : |x| < N}.

The first term in (5.26) is U∗∗sj (N/eαsj ) and the formula for this can be
written down by applying (5.10):

(5.27)
∑

s,j

{C2(s, j)(logN − αsj)r + C3(s, j)(logN)r−1 + o((logN)r−1)}.

By Lemma 5,
∑
s,j C2(s, j) = C1, which is positive. Hence formula (5.27) is

clearly of the shape required by the Proposition. The proof of the Proposition
will be finished by showing that the last two terms in (5.26) contribute only
to the error term. Firstly, absorb them into one by reversing the inequality
in the first bracket and by invoking (5.17) which allows us to replace log |x|
by h(u) +O(1):

∑

s,j

#{u ∈ U∗∗sj − U∗sj : logN − αsj ≤ h(u) < logN +O(1)}.

Then it is sufficient to estimate

(5.28) #{u ∈ U∗∗ − U∗ : |h(u)− logN | < C9}.
In fact, we can estimate (5.28) by O((logN)r−2 log logN), which lies well
within the error term. The heuristic is that the condition u ∈ U∗∗−U∗ and
the inequality both surrender one degree of freedom. Using the notation of
the proof of Lemma 6, we are counting lattice points in a region defined by
inequalities

(5.29) {e ∈ Rr : φ(e) < Y, |φ(e)− Y | < C9,

φ∗(e) ≤ φ(e) < φ∗(e) + C10 log Y },
where Y = logN . The boundary of the region in (5.29) is defined by linear
forms. Just as before, we may estimate the number of lattice points in the
region by the sum of the volume of the region and the volume of the bound-
ary. Change the variables by substituting θi for the ith largest of the φl(e),
where i = 1, . . . , r. We apply the same lower bound as before for the new
variables. It comes down to estimating the measure of a region

{θ ∈ Rr : −(d− 1)Y ≤ θr ≤ . . . ≤ θ1 < Y, |θ1 − Y | < C9,

θ2 ≤ θ1 ≤ θ2 + C10 log Y }.



190 G. R. Everest and K. Győry

Since θ1 is constrained within an interval of bounded length, the total con-
tribution from the θ1 integral is obviously O(1). Since θ1 and θ2 are at most
C10 log Y apart, the contribution from the θ2 integral is O(log Y ). The con-
tribution from the remaining variables is O(Y r−2). Multiplying these error
estimates gives a term which is O(Y r−2 log Y ). Since Y = logN we obtain an
error term well within that required by the Proposition. For the boundary,
a similar argument gives the same error term.

R e m a r k. From our analysis, it is clear that each of the coefficients xi
comprising x consist of a linear combination of H(u) and H∗(u) with an
error term which is O(H∗∗(u)). To project the vector x centrally means to
divide by the norm. Since any two norms are commensurate, altering the
norm only affects the shape of the unit ball. It follows from (5.17) that H(u)
is commensurate with any norm so we may divide x by H(u) to get an idea
of the location of any cluster points. We see that the image on the unit ball
is a vector a with an error term which is O(H∗(u)/H(u)). For “most” of
the units, this error is vanishingly small and it follows that the vectors a
form a finite collection of cluster points. We actually proved more in this
paper, namely, units tend to have two dominant conjugates. This makes a
statement about the lines on the ball which join the cluster points. In our
next paper, we will examine more closely the coordinates of these points,
and the lines which join them. This will involve a more detailed study of the
distribution of the various xk and not just |x|.
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[9] —, Über die Verteilung der Lösungen von Normformen Gleichungen III , ibid. 37

(1980), 143–165.
[10] G. Karp i lovsky, Unit Groups of Classical Rings, Oxford University Press, 1988.



Solutions of decomposable form equations 191

[11] W. M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526–551.
[12] S. Sehga l, Topics in Group Rings, Dekker, New York, 1978.

School of Mathematics Institute of Mathematics and Informatics
University of East Anglia Lajos Kossuth University
Norwich, Norfolk NR4 7TJ, U.K. H-4010 Debrecen, Pf 12, Hungary
E-mail: g.everest@uea.ac.uk E-mail: gyory@math.klte.hu

Received on 17.9.1996 (3046)


