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1. Introduction. For any integer n > 1 let P (n) denote the greatest
prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b
and c are pairwise distinct positive integers then

(1) P ((ab+ 1)(bc+ 1)(ca+ 1))

tends to infinity as max(a, b, c)→∞. In this paper we confirm this conjec-
ture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a
has bounded prime factors. We prove our result in a quantitative form by
showing that if A is a finite set of triples (a, b, c) of positive integers a, b, c
with the property mentioned above then for some (a, b, c) ∈ A, (1) is greater
than a constant times log |A| log log |A|, where |A| denotes the cardinality
of A (cf. Corollary to Theorem 1). Further, we show that this bound cannot
be replaced by |A|ε (cf. Theorem 2).

Recently, Stewart and Tijdeman [9] proved the conjecture in another
special case. Namely, they showed that if a ≥ b > c then (1) exceeds a con-
stant times log((log a)/ log(c+ 1)). In the present paper we give an estimate
from the opposite side in terms of a (cf. Theorem 3).

2. Lower bounds. For any integer n > 1 let ω(n) denote the number
of distinct prime factors of n. Let p1, . . . , ps be distinct primes, and let S
denote the set of positive rational numbers whose prime decompositions do
not contain any prime factor different from p1, . . . , ps.
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Theorem 1. Let A be a finite set of triples (a, b, c) of pairwise distinct
positive integers a, b, c. Suppose that for all (a, b, c) ∈ A, at least one of the
numbers a, b, c, a/b, b/c and c/a is contained in S. Then there exists an
effectively computable positive absolute constant c1 such that

(2) ω
( ∏

(a,b,c)∈A
(ab+ 1)(bc+ 1)(ca+ 1)

)
> c1 log |A| − s.

Obviously, the lower bound in (2) can be replaced by (c1/2) log |A| pro-
vided that log |A| ≥ 2s/c1.

By the prime number theorem (or more precisely, by the fact that the
nth prime exceeds n logn; see [7]) this implies the following.

Corollary. Under the assumptions of Theorem 1, there exists a triple
(a, b, c) in A for which

(3) P ((ab+ 1)(bc+ 1)(ca+ 1)) > c2 log |A| log log |A|
provided that log |A| > s/c22, where c2 is an effectively computable positive
absolute constant.

In the particular case when, for all (a, b, c) ∈ A, at least one of the
numbers a, b, c, a/b, b/c, c/a is contained in S, our Corollary confirms the
above-mentioned conjecture.

We note that for positive integers a, b, c with a = b > c, (1) is at least
P (a2 + 1) which can be estimated from below by log log a (see e.g. [8]).
Hence, for such integers a, b, c the conjecture also holds. On the other hand,
the conjecture is not true for positive integers a, b, c with a > b = c as is
shown by the example a = 2m − 1, b = c = 1, where m ∈ N.

Both the Corollary above and the result of Stewart and Tijdeman [9]
support the following.

Conjecture. Let A be a finite set of triples (a, b, c) of pairwise distinct
positive integers a, b, c. Then there exists (a, b, c) in A for which (3) holds,
provided that |A| > 2, where c2 is an effectively computable positive absolute
constant.

In the proof of Theorem 1, we shall reduce the assertion to be proved
to appropriate T -unit equations in at most 5 unknowns. Several cases will
be distinguished and then a recent bound of Evertse [4] will be used on
the number of solutions of T -unit equations. The constants c1 and c2 in
Theorem 1 and in its Corollary can be made explicit from our proof.

3. Upper bounds. We shall show that the right hand side of (3) cannot
be replaced by |A|ε.

Theorem 2. For all ε > 0 there exist infinitely many finite sets A of
triples (a, b, c) of positive integers a, b, c with b = 2, c = 1 such that for all
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(a, b, c) ∈ A we have

P ((ab+ 1)(bc+ 1)(ca+ 1)) < |A|ε.
One might like to see how small one can make P ((ab+1)(bc+1)(ca+1))

in terms of max(a, b, c). The proof of Theorem 2 gives the existence of triples
(a, b, c) with

P ((ab+ 1)(bc+ 1)(ca+ 1)) < (max(a, b, c))ε

for any fixed ε > 0. The following theorem improves upon this estimate.

Theorem 3. There exist infinitely many positive integers m such that
for c = 2m, b = c2, a = c3, we have

P ((ab+ 1)(bc+ 1)(ca+ 1)) < exp
(
c3

log a
log log log a

)

where c3 is an effectively computable positive absolute constant.

Note that the triples (a, b, c) in Theorem 3 have the property that each
of the six numbers a, b, c, a/b, b/c, c/a are contained in the set S consisting
of the powers of 2. This shows that the greatest prime factor of (ab+1)(bc+
1)(ca+1) can be made small (in terms of max(a, b, c)) even for triples (a, b, c)
of the type studied in Theorem 1 and the Corollary. Note, moreover, that in
the construction given in Theorem 3 each of a, b and c is large and, indeed,

log min(a, b, c)� log max(a, b, c),

while in Theorem 2, b and c are bounded. Finally, we remark that the proofs
of Theorems 2 and 3 can be extended to the case when we study k-tuples
(a1, . . . , ak) instead of triples (a, b, c) and we want max1≤i<j≤k P (aiaj + 1)
to be small.

It is likely that our lower bounds obtained for (1) are much closer
to the truth than our upper bounds. In [2] and [5], better upper bounds
have been derived for the greatest prime factors of

∏
b∈B,b′∈B′(b + b′) and∏

b∈B, b′∈B′(bb
′+ 1) respectively, where B, B′ are appropriate finite subsets

of N. However, the constructions given in [2] and [5] cannot be adapted to
our situation because in the present paper we deal with the elements of a
single set A only, and not of two sets as in [2] and [5].

While in Theorems 2 and 3 we gave non-trivial upper bounds for (1), we
have not been able to give a non-trivial upper bound for the left hand side
of (2). Indeed, let n be a large but fixed integer, and let A denote the set
of triples (a, b, c) of positive integers with n ≥ a > b > c so that |A| = (

n
3

)
.

Then clearly the left hand side of (2) is

≤ π(n2) =
(

1
2

+ o(1)
)

n2

logn
= (c4 + o(1))

|A|2/3
log |A| ,

and we have not been able to settle the following
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Problem. Are there infinitely many finite sets A of triples (a, b, c) of
distinct positive integers a, b, c such that , as |A| → ∞, we have

ω
( ∏

(a,b,c)∈A
(ab+ 1)(bc+ 1)(ca+ 1)

)
= o

( |A|2/3
log |A|

)
?

4. Proof of Theorem 1. Let q1, . . . , qt be distinct primes, and denote
by T the set of non-zero rational numbers whose prime decompositions do
not contain any prime different from q1, . . . , qt. Then T is a multiplicative
group. It is in fact the unit group of the ring Z[(q1 . . . qt)−1].

The following lemma is a special case of Theorem 3 of [4] on unit equa-
tions.

Lemma 1 (Evertse [4]). Let a1, . . . , an be non-zero rational numbers.
Then the equation

(4) a1u1 + . . .+ anun = 1

in u1, . . . , un ∈ T with
∑
i∈I aiui 6= 0 for each non-empty I ⊆ {1, . . . , n}

has at most (235n2)n
3(t+1) solutions.

P r o o f o f T h e o r e m 1. In what follows, c5, c6, . . . , c15 denote effec-
tively computable positive absolute constants.

Denote by A1 the subset of A consisting of those triples (a, b, c) in A for
which a/b, b/c or c/a is contained in S. We may consider without loss of
generality those (a, b, c) ∈ A1 for which c/a ∈ S. Let r1, . . . , rq denote the
distinct prime factors of∏

(a,b,c)∈A1
c/a∈S

((ab+ 1)(bc+ 1)(ca+ 1)).

Denote by T the set of non-zero rational numbers whose prime decomposi-
tions do not contain any prime different from p1, . . . , ps and r1, . . . , rq. Then
T is a multiplicative group generated by at most s+ q distinct primes. Let
(a, b, c) be an arbitrary triple in A1 with c/a ∈ S, and put

(5) ab+ 1 = e1, bc+ 1 = e2, ca+ 1 = e3.

Then e1, e2 and e3 are clearly pairwise distinct and greater than 1. Further,
a, b and c are uniquely determined by e1, e2 and e3.

Put λ = c/a. Then it follows from (5) that

e2 − 1
e1 − 1

=
bc

ab
= λ,

whence

(6) e2 − λe1 + λ = 1, where e2, λe1, λ ∈ T.
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This is a T -unit equation in (e2, λe1, λ). If e2 − λe1 = 0 then λ = 1, i.e.
a = c, which is not possible. If −λe1 + λ = 0 then e1 = 1, which is also
impossible. Hence there is no vanishing subsum on the left hand side of (6).
Thus, by Lemma 1, the number of (e2, λe1, λ) is at most cs+q+1

5 .
We can write a = a′d, c = c′d where a′, c′, d are positive integers with

(a′, c′) = 1. The numbers a′ and c′ are uniquely determined by e2, λe1 and λ.
Then, by (5), e3 = ca+1 = (c′a′)d2 +1, i.e. d is a solution of the diophantine
equation

(7) (c′a′)x2 + 1 ∈ T in x ∈ Z.
By Theorem 2 of [3], the number of solutions d of (7) is at most cs+q+1

6 . It
is easy to see that e1, e2, e3 and hence a, b, c are uniquely determined by
e2, λe1, λ and d. Thus the number of triples (a, b, c) in A1 with c/a ∈ S is
at most (c5c6)s+q+1, whence the cardinality |A1| of A1 satisfies

(8) |A1| ≤ cs+q+1
7 .

Denote now by A2 the subset of A consisting of those triples (a, b, c) for
which a, b or c is contained in S. We may consider without loss of generality
those (a, b, c) ∈ A2 for which c ∈ S. Let now r1, . . . , rq denote the distinct
prime factors of the product∏

(a,b,c)∈A2
c∈S

((ab+ 1)(bc+ 1)(ca+ 1)),

and let T be as above. Let (a, b, c) be an arbitrary triple in A2 with c ∈ S,
and let e1, e2, e3 be defined as in (5). Then it follows from (5) that

(e2 − 1)(e3 − 1) = (bc)(ca) = c2(ab) = c2(e1 − 1),

whence

(9) c2e1 − e2e3 + e2 + e3 − c2 = 1.

This is a T -unit equation in (c2e1, e2e3, e2, e3, c
2). It is easily seen that dis-

tinct triples (a, b, c) in A2 with c ∈ S yield distinct solutions of (9). To apply
our Lemma 1 to equation (9), we have to distinguish several cases.

First assume that there is no vanishing subsum on the left hand side
of (9). Then, by Lemma 1, the number of solutions of (9) is bounded above
by cs+q+1

8 . Hence, in this case the number of (a, b, c) under consideration is
at most cs+q+1

8 .
Next we assume that there is a vanishing subsum, denoted by Σ, on the

left hand side of (9). After omitting this vanishing subsum Σ, consider the
remaining equation in (9). Since Σ has at least two terms, there are at most
three terms on the left hand side of the remaining equation. We distinguish
some subcases according to the number of terms on the left hand side of the
remaining equation.
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If there is only one term in the remaining equation, then it must be
positive, i.e. it can be only c2e1, e2 or e3. But this contradicts the fact that
e1, e2, e3 are all greater than 1.

If there are two terms in the remaining equation, then we have
(5

2

)
= 10

possibilities. In each case, the remaining equation is a T -unit equation in
2 unknowns, and up to a T -unit factor, Σ is another unit equation in 2
unknowns. By our Lemma 1, the first equation has at most cs+q+1

9 solutions,
and the same holds for the number of solutions of the second equation up
to a T -unit factor.

First consider the cases when, in (9), Σ contains both c2e1 and e2e3.

(a1) Σ cannot be c2e1 − e2e3 − c2 = 0 since e2 + e3 = 1 cannot hold
because of e2, e3 > 1.

(a2) If Σ : c2e1 − e2e3 + e3 = 0 and e2 − c2 = 1 then for % := e1/e3

we get c2% − e2 + 1 = 0. Then it follows that % = 1, i.e. e1 = e3, which is
impossible.

(a3) If Σ : c2e1 − e2e3 + e2 = 0 and e3 − c2 = 1 then interchanging e2

and e3 we get the previous case, which is not possible.

Consider now the cases when Σ contains c2e1 but does not contain e2e3.
Then we have again three cases to be distinguished.

(a4) The case Σ : c2e1 + e2 + e3 = 0, −e2e3 − c2 = 1 cannot hold since
e1, e2, e3 and c are positive.

(a5) If Σ : c2e1 + e2 − c2 = 0 and −e2e3 + e3 = 1 then, by Lemma 1,
the number of (e2e3, e3, e1, e2/c

2) is at most c2(s+q+1)
10 . Then the number of

(a, b, c) in A2 under consideration is at most c2(s+q+1)
10 .

(a6) If Σ : c2e1 +e3−c2 = 0 and −e2e3 +e2 = 1 then we get the previous
case by interchanging e2 and e3.

Next consider the cases when Σ contains −e2e3, but does not contain
c2e1. Then there are again three possibilities.

(a7) The case Σ : −e2e3 +e2− c2 = 0, c2e1 +e3 = 1 cannot hold because
c2e1, e3 > 1.

(a8) Similarly, Σ : −e2e3 + e3 − c2 = 0, c2e1 + e2 = 1 cannot hold.
(a9) If Σ : −e2e3 + e2 + e3 = 0 and c2e1 − c2 = 1 then c2(e1 − 1) = 1

whence c = 1 and e1 = 2. But this implies that ab = 1, which is impossible.
(a10) Finally, there remains the case when Σ does not contain c2e1 and

e2e3. In this case we have Σ : e2 +e3− c2 = 0 and c2e1−e2e3 = 1. Then the
number of (c2e1, e2e3, e3/e2, c

2/e2) is at most c2(s+q+1)
10 . For fixed values of

the coordinates it follows that e2e3(e3/e2) = e2
3 and hence e3, e2, c and e1 are

uniquely determined. Thus the number of (a, b, c) in A2 under consideration
is at most c2(s+q+1)

10 .
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Consider now the cases when there are three terms in the remaining
equation. This equation cannot have vanishing subsums because otherwise
one of the positive terms on the left hand side of (9) would be equal to 1,
which is impossible. Further, in Σ there must exist one positive and one
negative term. Hence we have to distinguish 3 · 2 = 6 subcases.

(b1) If Σ : c2e1 − e2e3 = 0 and e2 + e3 − c2 = 1 then, by Lemma 1, the
number of (e2, e3, c

2, c2e1/(e2e3)) is at most cs+q+1
11 . But for fixed values of

the coordinates, e1 and hence a, b, c are uniquely determined. Thus, in this
case the number of (a, b, c) in A2 under consideration is at most cs+q+1

11 .
(b2) If Σ : c2e1 − c2 = 0, −e2e3 + e2 + e3 = 1 then e1 = 1, which is

impossible.
(b3) If Σ : −e2e3 + e2 = 0 and c2e1 + e3 − c2 = 1 then e3 = 1, which is

not possible.
(b4) If Σ : −e2e3 + e3 = 0 and c2e1 + e2 − c2 = 1 then e2 = 1, which is

impossible.
(b5) If Σ : e2 − c2 = 0 and c2e1 − e2e3 + e3 = 1 then the number

of (c2e1, e2e3, e3, c
2/e2) is at most cs+q+1

12 . However, for fixed values of the
coordinates, e2 and hence c and e1 are uniquely determined. Hence the
number of (a, b, c) ∈ A2 under consideration is at most cs+q+1

12 .
(b6) If Σ : e3 − c2 = 0 and c2e1 − e2e3 + e2 = 1 then interchanging e2

and e3 we arrive at the previous case.

The left hand side of the remaining equation cannot have more than
three terms, hence all possibilities have been taken into account. Finally,
we infer that the total number of (a, b, c) in A2 is at most cs+q+1

13 . In other
words,

(10) |A2| < cs+q+1
13 .

It follows from (8) and (10) that

|A| < cs+q14 ,

whence
q > c15 log |A| − s.

This completes the proof of Theorem 1.

5. Proofs of Theorems 2 and 3. Theorem 2 will follow easily from
the following lemma.

Lemma 2. For all ε > 0 there are numbers δ = δ(ε) and n0 = n0(ε) such
that if n ≥ n0, then there are more than δn integers m with the properties
that 1 ≤ m ≤ n and

(11) P (m(2m− 1)) ≤ mε.
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P r o o f. This is a special case of a result of Balog and Ruzsa ([1], Corol-
lary 2) which generalizes a theorem of Hildebrand [6].

P r o o f o f T h e o r e m 2. We apply Lemma 2 with ε/2 in place of ε,
and for some n > n0(ε/2), we consider all the numbers m satisfying the
conditions in Lemma 2, and let M denote the set of those integers m. Let
A denote the set of triples (a, b, c) for which a = m − 1, b = 2, c = 1 with
m > 3 and m ∈M. Then for sufficiently large n we have

(12) |A| = |{m : m ∈M, m > 3}| ≥ |M| − 3 > δn− 3 > δn/2,

and it follows from (11) (with ε/2 in place of ε) and (12) that for all (a, b, c) =
(m− 1, 2, 1) ∈ A we have

(13) P ((ab+ 1)(bc+ 1)(ca+ 1)) = P ((2m− 1) · 3 ·m) ≤ mε/2 ≤ nε/2

for n large enough. It follows from (12) and (13) that

P ((ab+ 1)(bc+ 1)(ca+ 1)) < |A|ε

for n > n1(ε) and this completes the proof of Theorem 2.

P r o o f o f T h e o r e m 3. For k = 2, 3, . . . , write Qk =
∏
p≤k p so that

by the prime number theorem we have

(14) logQk = (1 + o(1))k as k →∞.
Assume that k ≥ 10, and let c = 2Qk , b = c2, a = c3. Then each of the
numbers ab+ 1, bc+ 1, ca+ 1 is of the form cj + 1 = 2jQk + 1 with j = 3, 4
or 5, and this number divides (2jQk +1)(2jQk−1) = 22jQk−1. As is known,

22jQk − 1 =
∏

d|2jQk
Φd(2)

where Φd(x) denotes the dth cyclotomic polynomial. Hence

P (22jQk − 1) = max
d|2jQk

P (Φd(2)) ≤ max
d|2jQk

Φd(2).

However, we have

Φd(2) =
∏

1≤j≤d
(j,d)=1

|2− e2πij/d| ≤ 3ϕ(d) ≤ 3ϕ(2jQk)

where ϕ( ) is Euler’s function. Thus it follows that

(15) P ((ab+ 1)(bc+ 1)(ca+ 1)) ≤ max
j=3,4,5

P (22jQk − 1) < max
j=3,4,5

3ϕ(2jQk).
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Since j ≤ 5 and k ≥ 10, by Mertens’ formula and (14) we have

ϕ(2jQk) = 2jQk
∏

p|2jQk

(
1− 1

p

)
= 2jQk

∏

p|Qk

(
1− 1

p

)

= 2jQk
∏

p≤k

(
1− 1

p

)
< c16

Qk
log k

< c17
Qk

log logQk
.

Here c16, c17 and c18, c19 below, are effectively computable positive absolute
constants. It follows that for 3 ≤ j ≤ 5 we have

2ϕ(2jQk) = exp((log 2)ϕ(2jQk)) = exp
(
c18

Qk
log logQk

)
(16)

< exp
(
c19

log c3

log log log c3

)
= exp

(
c19

log a
log log log a

)
.

The result follows from (15) and (16) and this completes the proof of The-
orem 3.
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