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1. Introduction. Let K be a global function field with full constant
field Fq, where q is an arbitrary prime power. By a rational place of K we
mean a place of K of degree 1. We write g(K) for the genus of K and N(K)
for the number of rational places of K. For fixed g ≥ 0 and q we put

Nq(g) = maxN(K),

where the maximum is extended over all K with g(K) = g. Equivalently,
Nq(g) is the maximum number of Fq-rational points that a smooth, pro-
jective, absolutely irreducible algebraic curve over Fq of given genus g can
have.

Global function fields K with many rational places, that is, with N(K)
close to Nq(g(K)), have received a lot of attention in the literature. Quite
a number of papers on the subject have also been written in the language
of algebraic curves over finite fields. We refer e.g. to the work of Ihara [7]
and Serre [16]–[19] in the 1980s and to the more recent papers of Garcia
and Stichtenoth [2], [3], Niederreiter and Xing [10], [11], Perret [12], Schoof
[15], van der Geer and van der Vlugt [22], [23], Xing [25], and Xing and
Niederreiter [27], [28]. The construction of global function fields with many
rational places, or equivalently of algebraic curves over Fq with many Fq-
rational points, is an interesting problem per se, but it is also important for
applications in the theory of algebraic-geometry codes (see [20], [21]) and
in the recent constructions of low-discrepancy sequences introduced by the
authors [9], [11], [26].
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For the practical aspects of these applications it is important that the
constructions of global function fields with many rational places are explicit ,
in the sense that they yield descriptions in terms of generators and defining
equations. The constructions by Serre [16]–[19] use class field theory and
are thus not explicit. More attention is now devoted to the desideratum of
obtaining explicit constructions. Typical explicit constructions use Artin–
Schreier extensions (see Garcia and Stichtenoth [2] and Niederreiter and
Xing [10], [11]), Kummer extensions (see Voß and Høholdt [24] and Xing
[25]), and subfields of cyclotomic function fields (see Niederreiter and Xing
[10] and Quebbemann [13]).

The present paper can be viewed as a continuation of the work in [10]
which led to a catalog of explicitly constructed global function fields over the
binary field F2 with many rational places. We now extend this work to other
small finite fields Fq that are of practical interest, specifically for q = 3, 4, 5.
We employ various methods based on Artin–Schreier extensions, Kummer
extensions, cyclotomic function fields, and in some cases also Hilbert class
fields. Except for the examples based on Hilbert class fields, all global func-
tion fields are explicitly constructed, but in some examples using cyclotomic
function fields one may need a computer algebra system to calculate the
defining equation. Some examples are quite straightforward, but others re-
quire detailed arguments to validate them. In Section 2 we recall the neces-
sary background on cyclotomic function fields and Hilbert class fields and
in Sections 3, 4, and 5 we present our examples for the cases q = 3, 4, and
5, respectively.

2. Background on cyclotomic function fields and Hilbert class
fields. Let B = Fq[x] be the polynomial ring over Fq and F = Fq(x) the
rational function field. We will often use the convention that a monic irre-
ducible polynomial P in B is identified with the place of F which is the
unique zero of P , and we will denote this place also by P . It will also be
convenient to write∞ for the “infinite place” of F , that is, for the place of F
which is the unique pole of x. For an arbitrary place Q of a global function
field we write νQ for the normalized discrete valuation corresponding to Q.

We briefly describe the theory of cyclotomic function fields as developed
by Hayes [4]. For a fixed algebraic closure F ac of F , let µ ∈ EndFq (F

ac) be
given by

µ(u) = uq + xu for all u ∈ F ac.

There is a ring homomorphism

B → EndFq (F
ac), f(x) 7→ f(µ).
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The Fq-vector space F ac is made into a B-module by

uf(x) = f(µ)(u) for u ∈ F ac.

This B-module is a Carlitz module, which is the simplest type of Drinfeld
module; see Carlitz [1] and Hayes [4], [6]. For any monic polynomial M ∈ B
we define the B-module

ΛM = {z ∈ F ac : zM = 0}
of division points. Then ΛM is a cyclic B-module which is B-isomorphic to
BM := B/(M). The cyclotomic function field FM := F (ΛM ) is the subfield
of F ac generated over F by all elements of ΛM . Then FM/F is a finite abelian
extension and Gal(FM/F ) is isomorphic to B∗M , the group of units of the
ring BM . For f ∈ B we write f for the residue class of f mod M . Then
the Galois automorphism σA ∈ Gal(FM/F ) associated with the element
A ∈ B∗M is determined by σA(λ) = λA for λ ∈ ΛM . If P ∈ B is a monic
irreducible polynomial not dividing M , then the Artin symbol[

FM/F

P

]

of the place P is equal to σP . Furthermore, if M and N are two monic
coprime polynomials in B, then FMN is the composite field of FM and FN .
Proofs of these results can be found in Hayes [4].

For monic polynomials M ∈ B, the Euler function Φq is defined by
Φq(M) = |B∗M |, the order of the group B∗M . If M has degree d ≥ 1, then
according to [8, Lemma 3.69] we have the formula

Φq(M) = qd
r∏

i=1

(1− q−di),

where d1, . . . , dr are the degrees of the distinct monic irreducible polynomials
over Fq dividing M . There is a special subgroup of B∗M consisting of all
residue classes c with a nonzero c ∈ Fq; we denote this subgroup by F∗q .

For a finite abelian extension E/K, a place P of K, and a place Q of
E lying over P , the decomposition group of Q over P depends only on P
and E/K, but not on Q, and so we can call it the decomposition group of P
in E/K. This subgroup of Gal(E/K) fixes a subfield of E/K which we call
the decomposition field of P in E/K. It is a well-known fact (see e.g. [20,
Theorem III.8.3]) that for an intermediate field L of E/K, the place P splits
completely in L/K if and only if L is contained in the decomposition field
of P in E/K. For the convenience of the reader we also state the following
results from Hayes [4], [5].

Proposition 1. Let M = Pn for some integer n ≥ 1 and some monic
irreducible polynomial P over Fq of degree d. Then:
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(i) The place ∞ of F splits into Φq(M)/(q − 1) places in FM/F , each
with ramification index q − 1. In particular , each place of FM lying over ∞
is rational and the full constant field of FM is Fq. The decomposition group
of ∞ in FM/F is F∗q .

(ii) The only places of F that can be ramified in FM/F are ∞ and P ,
and P is totally ramified. The genus of FM is given by

g(FM ) =
1
2

(
qnd− nd− q

q − 1
Φq(M)− dqd(n−1) + 2

)
.

(iii) f(z) = zP
n

/zP
n−1

is an Eisenstein polynomial in B[z] with respect
to the place P. If λ ∈ FM is a root of f(z) and Q is the unique place of FM
lying over P , then λ is a Q-prime element , i.e., νQ(λ) = 1.

Next we recall some pertinent facts about Hilbert class fields. A conve-
nient reference for this topic is Rosen [14]. Let L be a global function field
with full constant field Fq and assume that N(L) ≥ 1. We distinguish a ra-
tional place P∞ of L and let A be the P∞-integral ring of L, i.e., A consists
of the elements of L that are regular outside P∞. Then the Hilbert class field
HP∞ of L with respect to P∞ is the maximal unramified abelian extension
of L (in a fixed separable closure of L) in which P∞ splits completely. The
extension HP∞/L is finite and its Galois group is isomorphic to the frac-
tional ideal class group Pic(A) of A, which in the case under consideration
(P∞ rational) is isomorphic to the group Div0(L) of divisor classes of L of
degree 0. In particular, we have [HP∞ : L] = h(L), the divisor class number
of L. For each place P of L there is an associated Galois automorphism
τP ∈ Gal(HP∞/L), and the Artin symbol of P for the extension HP∞/L is
equal to τP . The place P corresponds to the divisor class of P − deg(P )P∞
in Div0(L). Next we prove two theorems on which several of our examples
are based.

Theorem 1. Let F = Fq(x) and let L/F be an extension of degree r ≥ 2
with g(L) ≥ 1. Assume that there are two different rational places P and P∞
of L which are totally ramified over F , with P∞ lying over ∞, and suppose
that 1, 2, . . . , r− 1 are gap numbers of P. Then there exists a global function
field K with full constant field Fq such that

g(K) =
h(L)
r

(g(L)− 1) + 1 and N(K) =
2h(L)
r

.

P r o o f. It follows from the conditions on P and P∞ that rP − rP∞ is
a principal divisor of L. Moreover, the condition on the gap numbers of P
implies that, for each 1 ≤ k ≤ r − 1, the divisor kP − kP∞ of L is not
principal. Consequently, the divisor class [P − P∞] of P − P∞ in Div0(L)
has order r. Let G be the cyclic subgroup of Div0(L) generated by [P −P∞].
Let HP∞ be the Hilbert class field of L with respect to P∞ and let K be the
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subfield of HP∞/L fixed by G. Then [K : L] = h(L)/r. From the definition
of the Hilbert class field we get that P∞ splits completely in K/L, and by
considering the Artin symbol we see that P also splits completely in K/L.
Thus N(K) ≥ 2h(L)/r. Furthermore, the extension K/L is unramified, and
so the Hurwitz genus formula yields

2g(K)− 2 =
h(L)
r

(2g(L)− 2),

whence the formula for g(K) in the theorem. Next we note that a rational
place Q 6= P, P∞ of L splits completely in K/L if and only if the divisor
class [Q − P∞] belongs to G. This is equivalent to [Q − P∞] = n[P − P∞]
for some integer n with 0 ≤ n ≤ r− 1, and this condition can be written as
[Q−nP + (n− 1)P∞] = [0]. But this identity is impossible for n = 0 by the
Weierstrass gap theorem and for 1 ≤ n ≤ r− 1 by the condition on the gap
numbers of P . Therefore N(K) = 2h(L)/r.

R e m a r k 1. If the degree r is a prime and we drop the condition on the
gap numbers of P in Theorem 1, then we can still conclude that N(K) ≥
2h(L)/r and that N(K) is a multiple of h(L)/r, with g(K) being given by
the same formula as in Theorem 1.

R e m a r k 2. The same conclusion as in Remark 1 can be reached if we
assume that L is an arbitrary global function field with full constant field
Fq, that P and P∞ are two different rational places of L, and that r is the
least positive integer such that rP − rP∞ is a principal divisor of L.

Theorem 2. Let the global function field L be a constant field extension
of the global function field L1 with N(L1) ≥ 1. Then there exists a global
function field K with the same full constant field as L such that

g(K) =
h(L)
h(L1)

(g(L)− 1) + 1 and N(K) =
h(L)N(L1)
h(L1)

.

P r o o f. Let P∞ be a rational place of L lying over a rational place of
L1 and let HP∞ be the Hilbert class field of L with respect to P∞. Then
Gal(HP∞/L) = Div0(L). Let K be the subfield of HP∞/L fixed by Div0(L1).
Then [K : L] = h(L)/h(L1). The rational places of L that are lying over a
rational place of L1 split completely in K/L. Therefore

N(K) =
h(L)N(L1)
h(L1)

.

Since the extension K/L is unramified, the Hurwitz genus formula yields

2g(K)− 2 =
h(L)
h(L1)

(2g(L)− 2),

and the formula for g(K) in the theorem follows.
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We will not review the theory of Artin–Schreier extensions and Kummer
extensions since an excellent summary of it can be found in the book of
Stichtenoth [20, Section III.7].

We recall from Section 1 that Nq(g) is the maximum number of rational
places that a global function field with full constant field Fq and genus g can
have. Values or upper bounds for Nq(g) are tabulated in Serre [16]–[19]; see
also Niederreiter and Xing [11]. A global function field K with full constant
field Fq and genus g is called optimal if N(K) = Nq(g). The trivial optimal
function field K = F = Fq(x) with g(K) = 0 and N(K) = q + 1 will not be
listed among the following examples.

3. The case q = 3. In this section we list examples of global function
fields K with full constant field F3 and many rational places. Most of these
examples are obtained by an explicit construction. We summarize the results
in the following table. An entry that corresponds to an optimal function field
is marked with an asterisk.

Table 1

g(K) 1∗ 2∗ 3∗ 4∗ 5 6 7 8 9∗ 10 11 12 13 14 15∗

N(K) 7 8 10 12 12 14 16 15 19 19 20 22 24 24 28

Example 3.1. g(K) = 1, N(K) = 7, K = F3(x, y) with

y2 = x3 − x+ 1.

In the Kummer extension K/F , the places x, x+1, and x−1 split completely
and the place ∞ is totally ramified. The only other ramified place of K is
lying over x3 − x+ 1. This example is well known.

Example 3.2. g(K) = 2, N(K) = 8, K = F3(x, y) with

y2 = x6 − x2 + 1.

All rational places of F split completely in the Kummer extension K/F .
The only ramified place of K lies over x6 − x2 + 1.

Example 3.3. g(K) = 3, N(K) = 10, K = F3(x, y) with

y3 − y = x4 − x2.

In the Artin–Schreier extension K/F , the places x, x + 1, and x − 1 split
completely and the place ∞ is totally ramified. This example is listed in
Serre [19].

Example 3.4. g(K) = 4, N(K) = 12, K = F3(x, y) with

y3 − y =
x3 − x

(x2 + 1)2 .
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All rational places of F split completely in the Artin–Schreier extension
K/F . The only ramified place of K lies over x2 + 1.

Example 3.5. g(K) = 5, N(K) = 12, K = F3(x, y1, y2) with

y2
1 = x3 − x+ 1, y2

2 = −x4 + x2 + 1.

In this tower of Kummer extensions, the places x, x+1, and x−1 split com-
pletely in K/F . The first Kummer extension is the one from Example 3.1.

Example 3.6. g(K) = 6, N(K) = 14, K = F3(x, y1, y2) with

y2
1 = x3 − x+ 1, y3

2 − y2 = u :=
(x+ 1)y1 + (x+ 1)2

x
.

Note that L = F3(x, y1) is the field in Example 3.1. The rational places
of L are P∞, the unique place lying over ∞, and P1 = (0, 1), P2 = (1, 2),
P3 = (2, 1), P4 = (0, 2), P5 = (1, 1), P6 = (2, 2), where P = (a, b) is the
rational place determined by (x, y1) ≡ (a, b) mod P . Since νP∞(y1) = −3,
the principal divisor of u is given by

(u) =
6∑

i=3

Pi − P1 − 3P∞.

Therefore, the places P3, P4, P5, and P6 split completely in the Artin–
Schreier extension K/L and P1 is totally ramified in K/L. Furthermore, a
short calculation yields

νP∞

(
u−

(
y1

x

)3

+
y1

x

)
= −2,

and so P∞ is also totally ramified in K/L.

Example 3.7. g(K) = 7, N(K) = 16. Consider the irreducible polyno-
mial P = x4 + x3 + x2 + x + 1 over F3 and the corresponding cyclotomic
function field FP . The Galois group Gal(FP /F ) = B∗P has order 80. Let K
be the subfield of FP /F fixed by the subgroup H = F∗3 · 〈x〉 of B∗P , where 〈x〉
is the cyclic subgroup generated by x ∈ B∗P . Then |H| = 10 and [K : F ] = 8.
From parts (i) and (ii) of Proposition 1 we know that P is the unique rami-
fied place in K/F and that it is totally and tamely ramified. Moreover, the
place∞ splits completely in K/F . Since x ∈ H, a consideration of the Artin
symbol of the place x shows that x also splits completely in K/F . The genus
of K is obtained from the Hurwitz genus formula, in the form given in [20,
Theorem III.4.12], which yields 2g(K)−2 = −2 ·8+4 ·(8−1), i.e., g(K) = 7.

Example 3.8. g(K) = 8, N(K) = 15, K = F3(x, y1, y2) with

y2
1 = x3 − x+ 1, y3

2 − y2 =
x(x− 1)
x+ 1

.
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This example was already given in the appendix of [9]. Note that L =
F3(x, y1) is the field in Example 3.1. The places x and x−1 split completely
in K/F and ∞ is totally ramified in K/F . The two places of L lying over
x+ 1 are totally ramified in the Artin–Schreier extension K/L.

Example 3.9. g(K) = 9, N(K) = 19, K = F3(x, y1, y2) with

y3
1 − y1 = x(x− 1), y3

2 − y2 =
x(x− 1)
x+ 1

.

This example was also given in the appendix of [9]. For L = F3(x, y1) we
have g(L) = 1 and N(L) = 7. The places x and x − 1 split completely in
the Artin–Schreier extension L/F and ∞ is totally ramified in L/F . The
places of L lying over x or x − 1 split completely in the Artin–Schreier
extension K/L and the unique place of L lying over x+ 1 has degree 3 and
is totally ramified in K/L. If P∞ is the unique place of L lying over∞, then
νP∞(y1) = −2 and a straightforward calculation shows that

νP∞

(
x(x− 1)
x+ 1

−
(
x+ 1
y1

)3

+
x+ 1
y1

)
= −1.

Thus, P∞ is totally ramified in K/L.

Example 3.10. g(K) = 10, N(K) = 19. Consider the cyclotomic func-
tion field E = FM with M = x5 ∈ F3[x]. The Galois group Gal(E/F ) =
B∗M has order 162. Let K be the subfield of E/F fixed by the subgroup
H = F∗3 · 〈x+ 1〉 of B∗M , where 〈x + 1〉 is the cyclic subgroup generated by
x+ 1 ∈ B∗M . Then |H| = [E : K] = 18 and [K : F ] = 9. By Proposition 1(i),
the place ∞ splits completely in K/F . Since x + 1 ∈ H, a consideration of
the Artin symbol of the place x+ 1 shows that x+ 1 also splits completely
in K/F . The place x is totally ramified in K/F by Proposition 1(ii). To cal-
culate the genus of K, we consider the extension E/K. Let Q be the unique
place of K lying over the place x and R the unique place of E lying over Q.
Let λ ∈ Λx5 be a root of f(z) = zx

5
/zx

4
, then λ is an R-prime element by

Proposition 1(iii). Furthermore, the minimal polynomial of λ over K is

m(z) =
∏

τ∈H
(z − τ(λ)) ∈ K[z].

It follows then from [20, Proposition III.5.12] that the different exponent
d(R|Q) of R over Q is given by

d(R|Q) = νR(m′(λ)) =
∑

τ∈H\{1̄}
νR(λ− τ(λ))

=
8∑

i=1

νR(λ− λ(x+1)i) +
8∑

i=0

νR(λ− λ2(x+1)i).



Cyclotomic function fields 67

It is clear that νR(λ − λ2(x+1)i) = 1 for 0 ≤ i ≤ 8 since the constant term
of the polynomial 2(x+ 1)i is not equal to 1. Furthermore, we have

νR(λ− λ(x+1)i) =
{

27 for i = 3, 6,
3 for i = 1, 2, 4, 5, 7, 8.

Thus, we get d(R|Q) = 81. The 81 places of E lying over ∞ are tamely
ramified in E/K with ramification index 2 by Proposition 1(i). Altogether,
the Hurwitz genus formula yields

18(2g(K)− 2) + 81 · 1 + 81 · (2− 1) = 2g(E)− 2 = 486,

where the last identity is obtained from Proposition 1(ii). Hence we get
g(K) = 10.

Example 3.11. g(K) = 11, N(K) = 20. Let L = F3(x, y) with

y2 = x(x2 + 1)(x2 − x− 1).

We have g(L) = 2 and N(L) = 6, with the places x + 1 and x − 1 split-
ting completely in the Kummer extension L/F and x and ∞ being totally
ramified in L/F . Furthermore, L has exactly two places of degree 2. By the
standard method (see [20, Theorem V.1.15]) we get the divisor class number
h(L) = 20. Now it suffices to invoke Theorem 1 with r = 2. The condition
on the gap numbers of P in Theorem 1 follows from the Weierstrass gap
theorem.

Example 3.12. g(K) = 12, N(K) = 22. Let L = F3(x, y) with

y2 = x(x4 + x− 1).

Then g(L) = 2 and N(L) = 6, with the places x+1 and x−1 splitting com-
pletely in the Kummer extension L/F and x and∞ being totally ramified in
L/F . Furthermore, L has exactly four places of degree 2. Thus we get h(L) =
22. Now it suffices to invoke Theorem 1 with r = 2. The condition on the
gap numbers of P in Theorem 1 follows from the Weierstrass gap theorem.

Example 3.13. g(K) = 13, N(K) = 24. Let L = F3(x, y) with

y2 = x(x4 − x3 + x2 − x+ 1).

Then g(L) = 2 and N(L) = 6, with the places x+1 and x−1 splitting com-
pletely in the Kummer extension L/F and x and∞ being totally ramified in
L/F . Furthermore, L has exactly six places of degree 2. Thus we get h(L) =
24. Now it suffices to invoke Theorem 1 with r = 2. The condition on the
gap numbers of P in Theorem 1 follows from the Weierstrass gap theorem.

Example 3.14. g(K) = 14, N(K) = 24, K = F3(x, y1, y2) with

y2
1 = (x2 + 1)(x4 + x3 − x+ 1), y3

2 − y2 =
x3 − x

(x2 + 1)2 .
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For L = F3(x, y1) we have g(L) = 2 and N(L) = 8, with all rational places
of F splitting completely in the Kummer extension L/F . Furthermore, all
rational places of L split completely in the Artin–Schreier extension K/L,
and the unique place of L lying over x2 +1 is the only ramified place in K/L.

Example 3.15. g(K) = 15, N(K) = 28. Consider the cyclotomic func-
tion field E = FM with M = x6 ∈ F3[x]. The Galois group Gal(E/F ) = B∗M
has order 486. Let K be the subfield of E/F fixed by the subgroup H of B∗M
generated by x + 1 and x − 1. By noting that (x − 1)6 ≡ (x + 1)3 mod x6,
it is easily seen that |H| = 54. We also have F∗3 ⊆ H and [K : F ] = 9. By
Proposition 1(i), the place ∞ splits completely in K/F . By considering the
Artin symbols, we see that the places x+ 1 and x− 1 also split completely
in K/F . Furthermore, the place x is totally ramified in K/F by Proposition
1(ii). To calculate the genus of K, we consider the extension E/K. Let Q
be the unique place of K lying over the place x and R the unique place
of E lying over Q. Then, as in Example 3.10, we obtain that the different
exponent d(R|Q) of R over Q is given by

d(R|Q) =
∑

τ∈H\{1̄}
νR(λ− τ(λ)),

where λ ∈ Λx6 is a root of f(z) = zx
6
/zx

5
. The elements of H are the residue

classes of (−1)i(x + 1)j(x − 1)k mod x6, where i ∈ {0, 1}, j ∈ {0, 1, 2},
and k ∈ {0, 1, . . . , 8}. The values of νR(λ − τ(λ)) are calculated by noting
that τ(λ) = λs(x) for some polynomial s(x) over F3 of degree ≤ 5, that
νR(λ − τ(λ)) = 1 if the constant term of s(x) is 6= 1, and that if s(x) 6= 1
and the constant term of s(x) is 1, then νR(λ− τ(λ)) = 3r with r being the
least positive integer for which the coefficient of xr in s(x) is 6= 0. Among
the values of νR(λ− τ(λ)) with τ ∈ H\{1}, exactly 27 values are equal to 1,
exactly 18 values are equal to 3, exactly six values are equal to 9, and exactly
two values are equal to 27. This leads to d(R|Q) = 189. The 243 places of
E lying over ∞ are tamely ramified in E/K with ramification index 2 by
Proposition 1(i). Altogether, the Hurwitz genus formula yields

54(2g(K)− 2) + 189 · 1 + 243 · (2− 1) = 2g(E)− 2 = 1944,

where the last identity is obtained from Proposition 1(ii). Hence we get g(K)
= 15.

4. The case q = 4. In this section we list examples of global function
fields K with full constant field F4 and many rational places. Most of these
examples are obtained by an explicit construction. We always write α for
an element of F4 satisfying α2 + α + 1 = 0. We summarize the results in
the following table. An entry that corresponds to an optimal function field
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is marked with an asterisk.
Table 2

g(K) 1∗ 2∗ 3∗ 4∗ 5 6∗ 7 8 9 10 11 12 13 15

N(K) 9 10 14 15 17 20 21 21 22 27 25 28 30 33

Example 4.1. g(K) = 1, N(K) = 9, K = F4(x, y) with

y2 + y = x3.

The places x, x+1, x+α, and x+α+1 split completely in the Artin–Schreier
extension K/F and the place ∞ is totally ramified in K/F . This example
is a special case of [20, Example VI.4.2].

Example 4.2. g(K) = 2, N(K) = 10, K = F4(x, y) with

y2 + y =
x

x3 + x+ 1
.

All rational places of F split completely in the Artin–Schreier extension
K/F . The only ramified place of K lies over x3 + x+ 1. This example was
given by Serre [19].

Example 4.3. g(K) = 3, N(K) = 14. Consider the irreducible polyno-
mial P = x3 + α over F4 and the corresponding cyclotomic function field
FP . The Galois group Gal(FP /F ) = B∗P has order 63. Let K be the subfield
of FP /F fixed by the subgroup of B∗P generated by x. Then [K : F ] = 7.
The place ∞ splits completely in K/F by Proposition 1(i), and a consid-
eration of the Artin symbol shows that the place x also splits completely
in K/F . By Proposition 1(ii), P is the unique ramified place in K/F and
it is totally and tamely ramified. Thus, the Hurwitz genus formula yields
2g(K)− 2 = −2 · 7 + 3 · (7− 1), i.e., g(K) = 3. An example obtained from
a Klein curve is listed in Serre [19].

Example 4.4A. g(K) = 4, N(K) = 15, K = F4(x, y1, y2) with

y2
1 + y1 = x3, y3

2 = (x2 + x)y1 + x4 + 1.

Let L = F4(x, y1) be the field in Example 4.1. Then, using the notation in
Example 3.6, the four places of L given by (0, 0), (0, 1), (α, α), and (α +
1, α + 1) split completely in the Kummer extension K/L. The place of L
lying over ∞ and the two places of L lying over x + 1 are totally ramified
in K/L. This example is equivalent to one given by Voß and Høholdt [24].

Example 4.4B. g(K) = 4, N(K) = 15. Consider the cyclotomic function
field FM with M = x4 +x+ 1 ∈ F4[x]. Since x4 +x+ 1 = (x2 +x+α)(x2 +
x+ α2) in F4[x], FM is the composite field of Fx2+x+α and Fx2+x+α2 by [4,
Proposition 1.4] and the Galois group Gal(FM/F ) = B∗M has order 225. Let
K be the subfield of FM/F fixed by the subgroup H = F∗4 · (F2[x]/(M))∗
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of B∗M . Then |H| = 45 and [K : F ] = 5. Since the decomposition group
of ∞ in both Fx2+x+α/F and Fx2+x+α2/F has order 3 by Proposition 1(i),
the decomposition group of ∞ in FM/F has order 3 or 9. In both cases,
the decomposition group of ∞ in FM/F is contained in H, and so ∞ splits
completely in K/F . Since x, x+ 1 ∈ H, the places x and x + 1 also split
completely in K/F . The only places of K that can be ramified in K/F are
those lying over x2 + x + α or x2 + x + α2, and they are tamely ramified.
Hence by the Hurwitz genus formula,

2g(K)− 2 ≤ −2 · 5 + 2 · (5− 1) + 2 · (5− 1),

i.e., g(K) ≤ 4. But N(K) = 15 > N4(g) for g = 0, 1, 2, 3, and so we must
have g(K) = 4.

Example 4.5. g(K) = 5, N(K) = 17. Consider the cyclotomic function
field FM with M = x4 ∈ F4[x] and Galois group Gal(FM/F ) = B∗M of
order 192. Let K be the subfield of FM/F fixed by the subgroup H =
F∗4 · (F2[x]/(M))∗ of B∗M . Then |H| = 24 and [K : F ] = 8. The places x+ 1
and ∞ split completely in K/F and the place x is totally ramified in K/F .
This example is a member of the family of function fields constructed by
Quebbemann [13].

Example 4.6. g(K) = 6, N(K) = 20. Let L = F4(x, y) with

y2 + y =
x

x3 + x+ 1

and L1 = F2(x, y), so that L is a constant field extension of L1. Note that
L is the field in Example 4.2, hence g(L) = 2 and N(L) = 10. The corre-
sponding values for L1 are g(L1) = 2 and N(L1) = 4. Furthermore, L1 has
exactly three places of degree 2. Let h(L) be the divisor class number of L
and h(L1) the divisor class number of L1. Then it follows from [20, Propo-
sition V.1.10 and Theorem V.1.15] that h(L)/h(L1) = 5. Now it suffices to
invoke Theorem 2.

Example 4.7. g(K) = 7, N(K) = 21. Consider the cyclotomic function
field FM with M = (x3+x+1)2 ∈ F4[x] and Galois group Gal(FM/F ) = B∗M
of order (43 − 1) · 43. Let H = S2 · S7 ⊆ B∗M , where S2 is the 2-Sylow
subgroup and S7 the 7-Sylow subgroup of B∗M . Then |H| = 7 · 43. Let K
be the subfield of FM/F fixed by H, then [K : F ] = 9. Since the order
of x and x + 1 in B∗M is 14, we have x, x + 1 ∈ H, and so the places x
and x + 1 split completely in K/F . Furthermore, the place ∞ splits into
three rational places of K, each with ramification index 3, and the place
x3 + x+ 1 is totally and tamely ramified in K/F . Thus, the Hurwitz genus
formula yields 2g(K)− 2 = −9 · 2 + 3 · (3− 1) + 3 · (9− 1), that is, g(K) = 7.
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Example 4.8. g(K) = 8, N(K) = 21. Let L = F4(x, y) with

y2 + y = x(x2 + x+ 1)2

and L1 = F2(x, y), so that L is a constant field extension of L1. We have
g(L) = g(L1) = 2, N(L) = 9, and N(L1) = 3. Furthermore, L1 has ex-
actly three places of degree 2. Then h(L)/h(L1) = 7 in the notation of
Example 4.6. Now it suffices to invoke Theorem 2.

Example 4.9. g(K) = 9, N(K) = 22, K = F4(x, y1, y2) with

y3
1 = x4 + x+ 1 = (x2 + x+ α)(x2 + x+ α2), y2

2 + y2 =
y2

1 + y1 + 1
x2(x+ 1)2 .

For L = F4(x, y1) we have g(L) = 3 and N(L) = 13. The places x, x + 1,
x + α, and x + α2 split completely in the Kummer extension L/F and ∞
is totally ramified in L/F . Four rational places P of L are totally ramified
in the Artin–Schreier extension K/L, namely those P lying over x or x+ 1
with y1 ≡ α mod P or y1 ≡ α2 mod P . The nine remaining rational places
of L split completely in K/L.

Example 4.10. g(K) = 10, N(K) = 27. Consider the cyclotomic func-
tion field E = FP1P2 with the irreducible polynomials P1 = x3 + x+ 1 and
P2 = x3 +x2 + 1 in F4[x] and the subfields L1 = FP1 and L2 = FP2 of E/F .
For i = 1, 2 let Ki be a subfield of Li/F such that Ki is contained in the
decomposition field of∞ in Li/F and [Ki : F ] = 3. Let K be the composite
field of K1 and K2. Since L1 and L2 are linearly disjoint by the proof of [4,
Theorem 2.3], we have [K : F ] = 9. The place ∞ splits completely in K1/F
and K2/F , and so ∞ splits completely in K/F by [20, Corollary III.8.4].
Note that G = (F2[x]/(P1P2))∗ is a subgroup of Gal(E/F ) = B∗P1P2

of or-
der 49 and is thus the 7-Sylow subgroup of Gal(E/F ). Consequently, G is
contained in the Galois group Gal(E/K) of order 9 · 72. By considering the
Artin symbols, we see that the places x and x+ 1 split completely in K/F ,
thus N(K) = 3 · 9 = 27. In order to determine the genus of K, we observe
that the place x3 +x+ 1 is unramified in K2/F and the place x3 +x2 + 1 is
unramified in K1/F and we use Abhyankar’s lemma [20, Proposition III.8.9].
Thus, x3 + x + 1 and x3 + x2 + 1 are tamely ramified in K/F , each with
ramification index 3. Together with the Hurwitz genus formula this shows
that 2g(K)− 2 = −2 · 9 + 9 · (3− 1) + 9 · (3− 1), that is, g(K) = 10.

Example 4.11. g(K) = 11, N(K) = 25, K = F4(x, y1, y2) with

y3
1 = x4 + x+ 1, y2

2 + y2 = xy1(x+ y1).

Note that L = F4(x, y1) is as in Example 4.9, so that g(L) = 3 and N(L) =
13. The unique place of L lying over ∞ is totally ramified in the Artin–
Schreier extension K/L and the other 12 rational places of L split completely
in K/L.
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Example 4.12. g(K) = 12, N(K) = 28. Let L be the field in Example 4.3
with g(L) = 3, N(L) = 14, and [L : F ] = 7. Recall that the places x and ∞
split completely in L/F . Now let K = L(y) with

y2 + y =
x

x+ 1
.

Then all rational places of L split completely in the Artin–Schreier extension
K/L. The only ramified place in K/L is the unique place of L of degree 7
lying over x+ 1.

Example 4.13A. g(K) = 13, N(K) = 30, K = F4(x, y1, y2, y3) with

y2
1 + y1 = x3, y2

2 + y2 =
(
y1

x

)3

, y2
3 + y3 =

(
xy2

y1

)3

.

Thus, K is obtained by a tower of Artin–Schreier extensions. The places
x + 1, x + α, and x + α + 1 split completely in K/F , the place x splits
into one rational place of K with ramification index 4 and four rational
unramified places of K, and the place ∞ is totally ramified in K/F . This
example is a member of the family of function fields constructed by Garcia
and Stichtenoth [2].

Example 4.13B. g(K) = 13, N(K) = 30. Let L be the field in Exam-
ple 4.4B with g(L) = 4, N(L) = 15, and [L : F ] = 5. Recall that the places
x, x + 1, and ∞ split completely in L/F and that the place x2 + x + α is
totally ramified in L/F . Now let K = L(y) with

y2 + y =
x(x+ 1)
x2 + x+ α

.

Then all rational places of L split completely in the Artin–Schreier extension
K/L. The only ramified place in K/L is the unique place of L lying over
x2 + x+ α.

Example 4.14. g(K) = 15, N(K) = 33. Consider the cyclotomic func-
tion field FP with the irreducible polynomial P = x5 + x2 + 1 over F4. The
Galois group Gal(FP /F ) = B∗P has order 1023. Let K be the subfield of
FP /F fixed by the subgroup H = F∗4 · (F2[x]/(P ))∗ of B∗P . Then |H| = 93
and [K : F ] = 11. The places x, x + 1, and ∞ split completely in K/F .
The only ramified place in K/F is the place lying over x5 + x2 + 1 and
it is totally and tamely ramified. Thus, the Hurwitz genus formula yields
2g(K)− 2 = −2 · 11 + 5 · (11− 1), i.e., g(K) = 15.

5. The case q = 5. In this section we list examples of global function
fields K with full constant field F5 and many rational places. All examples
are obtained by an explicit construction. We summarize the results in the
following table. An entry that corresponds to an optimal function field is
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marked with an asterisk.
Table 3

g(K) 1∗ 2∗ 3∗ 4∗ 5 6 7 8 9 10 11 12

N(K) 10 12 16 18 20 21 20 22 24 26 26 30

Example 5.1. g(K) = 1, N(K) = 10, K = F5(x, y) with

y2 = 3(x4 + 2).

All rational places of F except∞ split completely in the Kummer extension
K/F . The only ramified place of K lies over x4 + 2.

Example 5.2. g(K) = 2, N(K) = 12, K = F5(x, y) with

y2 = (x2 + 2)(x4 + 3x2 + 3).

All rational places of F split completely in the Kummer extension K/F .
The only ramified places of K are those lying over x2 + 2 or x4 + 3x2 + 3.

Example 5.3. g(K) = 3, N(K) = 16, K = F5(x, y) with

y4 = 2− x4.

The places x − 1, x − 2, x + 1, and x + 2 split completely in the Kummer
extension K/F . The only ramified place of K lies over x4− 2. This example
was given by Serre [19].

Example 5.4. g(K) = 4, N(K) = 18. Consider the cyclotomic function
field E = FP1P2 with the irreducible polynomials P1 = x2 + 2 and P2 =
x2 + 3 in F5[x] and the subfields L1 = FP1 and L2 = FP2 of E/F . For
i = 1, 2 let Ki be the subfield of Li/F fixed by the cyclic subgroup 〈x〉 of
Gal(Li/F ) = B∗Pi ; then [Ki : F ] = 3. The places x and ∞ split completely
in both K1/F and K2/F . Let K be the composite field of K1 and K2.
Then [K : F ] = 9 since L1 and L2 are linearly disjoint by the proof of [4,
Theorem 2.3]. Furthermore, the places x and ∞ split completely in K/F
by [20, Corollary III.8.4], and so N(K) ≥ 18. The only ramified places in
K/F are those lying over x2 + 2 or x2 + 3, each with ramification index 3
by Abhyankar’s lemma [20, Proposition III.8.9]. Thus, the Hurwitz genus
formula yields 2g(K) − 2 = −2 · 9 + 3 · 2 · (3 − 1) + 3 · 2 · (3 − 1), that is,
g(K) = 4. Since N5(4) = 18, we must have N(K) = 18.

Example 5.5. g(K) = 5, N(K) = 20, K = F5(x, y1, y2) with

y2
1 = 3(x4 + 2), y2

2 = 2(x4 + 4x3 + x2 + 4x+ 3).

Note that L = F5(x, y1) is the field in Example 5.1. All rational places of
L split completely in the Kummer extension K/L. The only ramified places
in K/F are those lying over x4 + 2 or x4 + 4x3 + x2 + 4x+ 3.
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Example 5.6. g(K) = 6, N(K) = 21, K = F5(x, y) with

y5 − y = x(x− 1)(x− 2)(x− 3).

The places x, x− 1, x− 2, and x− 3 split completely in the Artin–Schreier
extension K/F and the place ∞ is totally ramified in K/F . This example
was already given in the appendix of [9].

Example 5.7. g(K) = 7, N(K) = 20, K = F5(x, y1, y2) with

y2
1 = (x2 + 2)(x4 + 3x2 + 3), y2

2 = x4 + 2x3 + 2x2 + 1.

Thus, K is obtained by a tower of Kummer extensions. The places x, x− 1,
x− 2, x− 3, and ∞ split completely in K/F . The only ramified places of K
are those lying over either x2 + 2, x4 + 3x2 + 3, or x4 + 2x3 + 2x2 + 1.

Example 5.8. g(K) = 8, N(K) = 22, K = F5(x, y) with

y5 − y =
x4 − 1
x

.

The places x−1, x−2, x−3, and x−4 split completely in the Artin–Schreier
extension K/F and the places x and ∞ are totally ramified in K/F .

Example 5.9. g(K) = 9, N(K) = 24, K = F5(x, y1, y2) with

y2
1 = (x2 + 2)(x4 + 3x2 + 3), y2

2 = (x3 + x2 + 4x+ 1)(x3 + 4x2 + 4x+ 4).

Note that L = F5(x, y1) is the field in Example 5.2. All rational places of
L split completely in the Kummer extension K/L. The only ramified places
in K/L are those lying over x3 + x2 + 4x+ 1 or x3 + 4x2 + 4x+ 4.

Example 5.10. g(K) = 10, N(K) = 26, K = F5(x, y) with

y5 − y =
x4 − 1
x6 .

The places x− 1, x− 2, x− 3, x− 4, and ∞ split completely in the Artin–
Schreier extension K/F and the place x is totally ramified in K/F .

Example 5.11. g(K) = 11, N(K) = 26, K = F5(x, y1, y2) with

y4
1 = (x+ 1)(x2 + x+ 1), y2

2 = (x+ 2)(x2 + 2).

Note that L = F5(x, y1) satisfies g(L) = 3 and N(L) = 14. The places x,
x − 1, and x − 2 split completely in the Kummer extension L/F and the
places x + 1 and ∞ are totally ramified in L/F . The 13 rational places of
L lying over either x, x − 1, x − 2, or ∞ split completely in the Kummer
extension K/L. The only ramified places in K/L are those lying over x+ 2
or x2 + 2.

Example 5.12A. g(K) = 12, N(K) = 30, K = F5(x, y) with

y5 − y =
x5 − x

(x2 + 2)3 .
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All rational places of F split completely in the Artin–Schreier extension
K/F . The only ramified place of K lies over x2 + 2.

Example 5.12B. g(K) = 12, N(K) = 30. Consider the cyclotomic
function field E = FM with M = (x2 + 2)2 ∈ F5[x] and Galois group
Gal(E/F ) = B∗M of order 600. Let K be the subfield of E/F fixed by the
cyclic subgroup H = 〈x〉 of B∗M . Then |H| = 40 and [K : F ] = 15. The
places x and ∞ split completely in K/F . To calculate the genus of K, we
consider the extension E/K whose only ramified places are those lying over
x2 + 2 or ∞. Let Q be the unique place of K lying over x2 + 2 and R the
unique place of E lying over Q. Then, as in Example 3.10, we obtain that
the different exponent d(R|Q) of R over Q is given by

d(R|Q) =
∑

τ∈H\{1̄}
νR(λ− τ(λ)),

where λ ∈ ΛM is a root of f(z) = z(x2+2)2
/zx

2+2. Since x10 ≡ 3 mod M , the
elements of H are the residue classes of cxi mod M , where c is an arbitrary
nonzero element of F5 and 0 ≤ i ≤ 9. The values of ν = νR(λ − τ(λ))
in the sum above are as follows. For i = 0 and c 6= 1 we have ν = 1;
for i = 1, 3, 5, 7, 9 and all c we have ν = 1; for each i = 2, 4, 6, 8 we have
ν = 25 for exactly one value of c and ν = 1 for the other values of c.
Altogether, four values of ν are equal to 25 and 35 values are equal to 1, so
that d(R|Q) = 135. The 150 places of E lying over ∞ are tamely ramified
in E/K with ramification index 4 by Proposition 1(i). Thus, the Hurwitz
genus formula yields

40(2g(K)− 2) + 135 · 2 + 150 · (4− 1) = 2g(E)− 2 = 1600,

where the last identity is obtained from Proposition 1(ii). Hence we get
g(K) = 12.

References

[1] L. Car l i tz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167–182.
[2] A. Garc ia and H. St ichtenoth, A tower of Artin–Schreier extensions of function

fields attaining the Drinfeld–Vladut bound , Invent. Math. 121 (1995), 211–222.
[3] —, —, On the asymptotic behaviour of some towers of function fields over finite

fields, J. Number Theory, to appear.
[4] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer.

Math. Soc. 189 (1974), 77–91.
[5] —, Stickelberger elements in function fields, Compositio Math. 55 (1985), 209–239.
[6] —, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields,

D. Goss, D. R. Hayes and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1–32.
[7] Y. Ihara, Some remarks on the number of rational points of algebraic curves over

finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721–724.



76 H. Niederreiter and C. P. Xing

[8] R. Lid l and H. Niederre i ter, Introduction to Finite Fields and Their Applica-
tions, revised ed., Cambridge University Press, Cambridge, 1994.

[9] H. Niederre i ter and C. P. Xing, Low-discrepancy sequences and global function
fields with many rational places, Finite Fields Appl. 2 (1996), 241–273.

[10] —, —, Explicit global function fields over the binary field with many rational places,
Acta Arith. 75 (1996), 383–396.

[11] —, —, Quasirandom points and global function fields, in: Finite Fields and Ap-
plications, S. D. Cohen and H. Niederreiter (eds.), Cambridge University Press,
Cambridge, 1996, 269–296.

[12] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38
(1991), 300–322.

[13] H.-G. Quebbemann, Cyclotomic Goppa codes, IEEE Trans. Inform. Theory 34
(1988), 1317–1320.

[14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987),
365–378.

[15] R. Schoof, Algebraic curves over F2 with many rational points, J. Number Theory
41 (1992), 6–14.

[16] J.-P. Serre, Sur le nombre des points rationnels d’une courbe algébrique sur un
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