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In [5] K. Matsumoto considered a certain zeta-function ϕ(s) and proved
limit theorems in the complex plane C for it. Let

Am(x) =
g(m)∏

j=1

(1− a(j)
m xf(j,m)).

Here g(m) is a positive integer, a(j)
m are complex numbers and f(j,m) natural

numbers, 1 ≤ j ≤ g(m), m ∈ N, where N stands for the set of all natural
numbers. Moreover, let s = σ+ it be a complex variable, and let pm denote
the mth prime number. Define

ϕ(s) =
∞∏
m=1

A−1
m (p−sm ).

In [5] it is assumed that

g(m) ≤ cpαm, |a(j)
m | ≤ pβm

with a positive constant c and non-negative constants α and β. The paper
[5] contains two limit theorems for logϕ(σ0 + it). The first of them examines
the case σ0 > α+ β + 1, and the second, under some additional conditions
on ϕ(s), concerns the case % < σ0 ≤ α + β + 1, where % is a constant with
α + β + 1/2 ≤ % < α + β + 1. It is an interesting problem to study the
limit distribution of ϕ(s). This was done in [6], where the upper and lower
bounds for this limit distribution were obtained.

In [3] we have given a generalization of the results from [5]. We have
proved two functional limit theorems with weight for ϕ(s). Let G be a
region of the complex plane, and let C∞ stand for the Riemann sphere

[31]
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with spherical metric d. Denote by H(G) the space of analytic functions
f : G → (C∞, d) equipped with the topology of uniform convergence on
compacta. Moreover, let T0 be a fixed positive number, and let w(τ) be
a positive function of bounded variation on [T0,∞). Let D1 = {s ∈ C :
σ > α+ β + 1}. Define

U = U(T,w) =
T\
T0

w(τ) dτ,

suppose that limT→∞ U(T,w) =∞ and define a probability measure

PT,w(A) =
1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ)∈A} dτ, A ∈ B(H(D1)).

Here IA denotes the indicator function of the set A, and B(S) stands for
the class of Borel sets of the space S. In [3] the following assertion has been
obtained.

Theorem A. There is a probability measure Pw on (H(D1),B(H(D1)))
such that the measure PT,w converges weakly to Pw as T →∞.

Theorem 2 of [3] concerns the behaviour of ϕ(s) in the half-plane σ >
α+ β + 1/2.

It is of interest to find the explicit form of the limit measure in Theorem A.
B. Bagchi [1] applied ergodic theory to identify limit measures. Unfortu-
nately, we do not know an ergodic theorem with weight w(τ). Therefore we
must introduce some additional condition on the function w(τ). Denote by
Eξ the mean of the random variable ξ. Let X(τ, ω) be an ergodic process,
τ ∈ R, ω ∈ Ω̃, with E|X(τ, ω)| < ∞, and with sample paths integrable
almost surely in the Riemann sense over every finite interval. Suppose that
the function w(τ) satisfies the relation

(1)
1
U

T\
T0

w(τ)X(τ, ω) dτ = EX(0, ω) + o(1)

almost surely as T → ∞. The latter relation is a generalization of the
classical Birkhoff–Khinchin theorem which asserts that

lim
T→∞

1
T

T\
0

X(τ, ω) dτ = EX(0, ω)

almost surely.
Denote by γ the unit circle on the complex plane, that is, γ = {s ∈ C :

|s| = 1}. Moreover, let

Ω =
∏
p

γp,
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where γp = γ for all primes p. With the product topology and pointwise mul-
tiplication the infinite-dimensional torus Ω is a compact topological group.
Therefore there exists a probability Haar measure m on (Ω,B(Ω)). Thus we
obtain the probability space (Ω,B(Ω),m). Let ω(p) stand for the projection
of ω ∈ Ω to the coordinate space γp. Then, setting

ω(k) =
∏

pα ‖ k
ωα(p),

where pα ‖ k means that pα | k but pα+1 - k, we obtain an extension of the
function ω(p) to the set of all natural numbers as a completely multiplicative
unimodular function.

As noted in [5], ϕ(s) is a holomorphic function in the half-plane σ >
α+β+1 with no zeros, and it is represented there by an absolutely convergent
Dirichlet series

ϕ(s) =
∞∑

k=1

b(k)
ks

,

where b(k) = Bkα+β . Let D = {s ∈ C : σ > α + β + 1/2}, and for s ∈ D
and ω ∈ Ω, set

ϕ(s, ω) =
∞∑

k=1

b(k)ω(k)
ks

.

Since, as N →∞, ∑

k≤N
|b(k)|2 = BN2(α+β+1/2),

by Lemma 3.4.3 of [1] the series ϕ(s, ω) converges uniformly on compact
subsets of D, and ϕ(s, ω) is an H(D)-valued random element defined on the
probability space (Ω,B(Ω),m). Let Pϕ denote the distribution of ϕ(s, ω),
and let P1,ϕ be the restriction of Pϕ to (H(D1),B(H(D1))). The aim of this
paper is to prove the following result.

Theorem. Under the assumption (1) the measure PT,w converges weakly
to P1,ϕ as T →∞.

This theorem shows that the limit measure is independent of the weight
function w(τ). For its proof we will apply the method of [1].

First we state a lemma for trigonometric polynomials

pn(s) =
n∑

k=1

a(k)
ks

, pn(s, g) =
n∑

k=1

a(k)g(k)
ks

,

where g(k) is a unimodular completely multiplicative function. Let G be a



34 A. Laurinč ikas

region in C, and

PT,pn,w(A) =
1
U

T\
T0

w(τ)I{τ :pn(s+iτ)∈A} dτ, A ∈ B(H(G)),

P̃T,pn,w(A) =
1
U

T\
T0

w(τ)I{τ :pn(s+iτ,g)∈A} dτ, A ∈ B(H(G)).

Lemma 1. The probability measures PT,pn,w and P̃T,pn,w both converge
weakly to the same measure as T →∞.

P r o o f. This is Lemma 2 of [4].

Now we will prove a similar assertion to Lemma 1 for the function ϕ(s)
in D1. For convenience of the reader we recall some probabilistic results.

Let S be a separable metric space with a metric %, and let Yn, X1n,
X2n, . . . be S-valued random elements defined on (Ω1,F ,P). The following
assertion is Theorem 4.2 of [2].

Lemma 2. Suppose that Xkn
D−→

n→∞
Xk for each k and also Xk

D−→
k→∞

X.

If for every ε > 0,

lim
k→∞

lim sup
n→∞

P(%(Xkn, Yn) ≥ ε) = 0,

then Yn
D−→

n→∞
X.

Now let Pn and P be probability measures on (S,B(S)).

Lemma 3. Pn converges weakly to P as n → ∞ if and only if any sub-
sequence {Pn′} contains another subsequence {Pn′′} such that Pn′′ → P as
n′′ →∞.

P r o o f. This is Theorem 2.3 of [2].

Let S and S1 be two metric spaces, and let h : S → S1 be a measurable
function. Then every probability measure P on (S,B(S)) induces a unique
probability measure Ph−1 on (S1,B(S1)) defined by Ph−1(A) = P (h−1A),
A ∈ B(S1).

Lemma 4. Let h : S → S1 be a continuous function, and let Pn and P
be probability measures on (S,B(S)). Suppose that Pn converges weakly to
P as n→∞. Then Pnh

−1 converges weakly to Ph−1 as n→∞.

P r o o f. This is a particular case of Theorem 5.1 of [2].

For ω ∈ Ω, let

P̃T,w(A) =
1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ,ω)∈A} dτ, A ∈ B(H(D1)).
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Lemma 5. There exists a probability measure Pw on (H(D1),B(H(D1)))
such that the measures PT,w and P̃T,w both converge weakly to Pw as T →∞.

P r o o f. Let

ϕn(s) =
n∑

k=1

b(k)
ks

and, for ω ∈ Ω,

ϕn(s, ω) =
n∑

k=1

b(k)ω(k)
ks

.

Define two probability measures

PT,ϕn,w(A) =
1
U

T\
T0

w(τ)I{τ :ϕn(s+iτ)∈A} dτ, A ∈ B(H(D1)),

P̃T,ϕn,w(A) =
1
U

T\
T0

w(τ)I{τ :ϕn(s+iτ,ω)∈A} dτ, A ∈ B(H(D1)).

Then by Lemma 1 both PT,ϕn,w and P̃T,ϕn,w converge weakly to the same
measure Pϕn,w, say, as T →∞. We will prove that the family {Pϕn,w : n∈N}
of probability measures is tight. Let η be a random variable on (Ω1,F ,P)
with distribution

P(η ∈ A) =
1
U

T\
T0

w(τ)IA dτ, A ∈ B(R).

We set XT,ϕn(s) = ϕn(s+ iη). Then

(2) XT,ϕn
D−→

T→∞
Xϕn ,

where Xϕn is an H(D1)-valued random element with distribution Pϕn,w.
Since, for σ > α+β+1, the Dirichlet series for ϕ(s) is absolutely convergent,
it follows that

sup
n≥1

lim sup
T→∞

1
U

T\
T0

w(τ) sup
s∈Kl

|ϕn(s+ iτ)| dτ ≤ Rl <∞,

where {Kl} is a sequence of compact subsets of D1 such that D1 =
⋃∞
l=1Kl,

Kl ⊂ Kl+1, l = 1, 2, . . . , and if K is a compact set and K ⊂ D1 then K ⊆ Kl

for some l. Let ε > 0. Then, setting Ml = Rl2lε−1, we find that

(3) lim sup
T→∞

P( sup
s∈Kl

|XT,ϕn(s)| > Ml)

≤ 1
Ml

sup
n≥1

lim sup
T→∞

1
U

T\
T0

w(τ) sup
s∈Kl

|ϕn(s+ iτ)| dτ ≤ ε/2l
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for all l ∈ N. Define h : H(D1)→ R by

h(f) = sup
s∈Kl

|f(s)|, f ∈ H(D1).

Then h is continuous, and thus by (2) and Lemma 4,

sup
s∈Kl

|XT,ϕn(s)| D−→
T→∞

sup
s∈Kl

|Xϕn(s)|.

This together with (3) yields

(4) P( sup
s∈Kl

|Xϕn(s)| > Ml) ≤ ε/2l

for all l ∈ N. Define

Hε = {f ∈ H(D1) : sup
s∈Kl

|f(s)| ≤Ml, l ≥ 1}.

Then Hε is a set of functions analytic on D1 and uniformly bounded on
every compact K ⊂ D1, and therefore, by the compactness principle, it is a
compact subset of H(D1). The inequality (4) implies P(Xϕn(s) ∈ Hε) ≥ 1−ε
for all n ≥ 1, or, since Pϕn,w is the distribution of Xϕn , Pϕn,w(Hε) ≥ 1− ε
for all n ≥ 1. So we have proved that the family {Pϕn,w} is tight. Hence by
the Prokhorov theorem it is relatively compact.

Let

%1(f1, f2) =
∞∑

l=1

2−l
%1,l(f1, f2)

1 + %1,l(f1, f2)
,

where

%1,l(f1, f2) = sup
s∈Kl

|f1(s)− f2(s)|, f1, f2 ∈ H(D1).

Then %1(f1, f2) is a metric on H(D1). Since ϕn(s) → ϕ(s) as n → ∞
uniformly on compact subsets of D1, we have, for every ε > 0,

(5) lim
n→∞

lim sup
T→∞

1
U

T\
T0

w(τ)I{τ :%1(ϕ(s+iτ),ϕn(s+iτ))≥ε} dτ

≤ lim
n→∞

lim sup
T→∞

1
εU

T\
T0

w(τ)%1(ϕ(s+ iτ), ϕn(s+ iτ)) dτ = 0.

Now set

XT (s) = ϕ(s+ iη).

Then (5) can be written as

(6) lim
n→∞

lim sup
T→∞

P(%1(XT,ϕn(s), XT (s)) ≥ ε) = 0.
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Since the family {Pϕn,w} is relatively compact, there exists a subsequence
{Pϕn′ ,w} which converges weakly to Pw, say, as n→∞. Then, obviously,

Xϕn′
D−→

n′→∞
Pw.

Hence and from (6) and (2), using Lemma 2, we obtain

(7) XT
D−→

T→∞
Pw.

This means that there is a probability measure Pw on (H(D1),B(H(D1)))
such that PT,w converges weakly to Pw as T → ∞. Moreover, (7) shows
that Pw is independent of the choice of the subsequence {Pn′,w}. Thus by
Lemma 3,

(8) Xϕn
D−→

n→∞
Pw.

Now, for ω ∈ Ω, let

X̃T,ϕn(s, ω) = ϕn(s+ iη, ω), X̃T (s, ω) = ϕ(s+ iη, ω).

Then, reasoning as above and using (8), we conclude that the measure P̃T,w
also converges weakly to Pw as T →∞.

We precede the proof of the Theorem by some remarks on ergodic theory.
Let P denote the set of all prime numbers, and let aτ = {p−iτ : p ∈ P}

for τ ∈ R. Then {aτ : τ ∈ R} is a one-parameter group. Define a one-
parameter family {gτ : τ ∈ R} of measurable transformations of Ω by
gτ (ω) = aτω for ω ∈ Ω. A set A ∈ B(Ω) is called invariant with respect to
the group {gτ : τ ∈ R} if for each τ the sets A and Aτ = gτ (A) differ by
a set of zero m-measure. In other words, m(A M Aτ ) = 0, where M denotes
a symmetric difference. All invariant sets form a σ-field. A one-parameter
group {gτ : τ ∈ R} is called ergodic if its σ-field of invariant sets consists
only of sets having m-measure equal to 0 or 1.

Lemma 6. The one-parameter group {gτ : τ ∈ R} is ergodic.

P r o o f. This is Lemma 3.4.2 of [1].

P r o o f o f T h e o r e m. By Lemma 5 the measures PT,w and P̃T,w con-
verge weakly to the same measure Pw as T → ∞. It remains to prove that
Pw = P1,ϕ.

Let A ∈ B(H(D1)) be a continuity set of Pw. Then, by Lemma 5,

(9) lim
T→∞

1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ,ω)∈A} dτ = Pw(A).
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Fix A and define a random variable θ on (Ω,B(Ω)) by

θ(ω) =
{

1 if ϕ(s, ω) ∈ A,
0 if ϕ(s, ω) 6∈ A.

Clearly,

(10) E(θ) =
\
Ω

θ dm = m{ω : ϕ(s, ω) ∈ A} = P1,ϕ(A) <∞.

It follows from Lemma 6 that θ(gτ (ω)) is an ergodic process. Therefore,
by (1)

(11) lim
T→∞

1
U

T\
T0

w(τ)θ(gτ (ω)) dτ = E(θ)

for almost all ω ∈ Ω. On the other hand,

1
U

T\
T0

w(τ)θ(gτ (ω)) dτ =
1
U

T\
T0

w(τ)I{τ :ϕ(s,gτ (ω))∈A} dτ

=
1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ,ω)∈A} dτ.

From this, (10), and (11) we obtain

lim
T→∞

1
U

T\
T0

w(τ)I{τ :ϕ(s+iτ,ω)∈A} dτ = P1,ϕ(A)

for almost all ω ∈ Ω. Thus in view of (9), Pw(A) = P1,ϕ(A) for any con-
tinuity set of the measure Pw. This implies that Pw(A) = P1,ϕ(A) for all
A ∈ B(H(D1)), since the continuity sets constitute a determining class. The
Theorem is proved.

Now let P denote the limit measure in the theorem of Matsumoto [5],
i.e., for σ0 > α + β + 1, limT→∞(1/T ) meas {t ∈ [0, T ] : logϕ(σ0 + it) ∈
A} = P (A) for all continuity sets A of P . Our Theorem allows us to identify
the measure P .

Corollary. We have, for σ0 > α+ β + 1,

P (A) = m(logϕ(σ0, ω) ∈ A), A ∈ B(C).

P r o o f. Let h : H(D1) → C be given by h(f) = log f(σ0) for
f ∈ H(D1). Then the weak convergence of the measure PT,w to P1,ϕ (in
this case w(τ) ≡ 1) together with Lemma 4 implies the weak convergence
of PT,1h−1 to P1,ϕh

−1. This proves the Corollary.
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[4] A. Laur in č ikas and G. Misev i č ius, On limit distribution of the Riemann zeta-

function, Acta Arith. 76 (1996), 317–334.
[5] K. Matsumoto, Value-distribution of zeta functions, in: Lecture Notes in Math.

1434, Springer, 1990, 178–187.
[6] —, On the magnitude of asymptotic probability measures of Dedekind zeta-functions

and other Euler products, Acta Arith. 60 (1991), 125–147.

Department of Mathematics
Vilnius University
Naugarduko, 24
2006 Vilnius, Lithuania
E-mail: antanas.laurincikas@maf.vu.lt

Received on 12.9.1995
and in revised form on 30.11.1995 (2860)


