
ACTA ARITHMETICA
LXXIX.1 (1997)

The density of rational points on cubic surfaces

by

D. R. Heath-Brown (Oxford)

For Professor J. W. S. Cassels on his 75th birthday

1. Introduction. Let F (W,X, Y, Z) ∈ Z[W,X, Y, Z] be a cubic form,
and define

NF (P ) = N(P ) = #{x ∈ Z4 : F (x) = 0, |x| ≤ P},
where |x| is the Euclidean length of x. This paper is concerned with the
behaviour of N(P ) as P tends to infinity. It is clear that if the surface
F = 0 contains a rational line, then points on that line will contribute
cP 2+O(P ) to N(P ) for an appropriate constant c > 0. It appears that these
contributions play the dominant rôle in determining the behaviour of N(P ),
and we therefore define N (0)(P ) to be the number of points x counted by
N(P ), for which there is no rational line in the surface F = 0 which contains
x. Of course it is quite possible that the surface F = 0 contains no rational
lines, in which case N (0)(P ) = N(P ). Alternatively it may happen that all
points lie on rational lines. This will certainly be the case whenever F is
degenerate, but also occurs in examples such as F = WX2 − Y Z2. Here a
point (a, b, c, d) with (b, d) 6= (0, 0) lies on the line b2W = d2Y , dX = bZ,
while if b = d = 0, say, then the point is on the line X = Z = 0. In general,
however, we may regard N (0)(P ) as counting “non-trivial” points on F = 0.
Thus, taking

(1) F = W 3 +X3 + Y 3 + Z3,

for example, we will be counting points which are not of the form (a,−a,
b,−b) or a permutation thereof. Manin has given some precise conjectures
concerning the size of N (0)(P ) (see Franke, Manin, and Tschinkel [2], for
example) but we shall be concerned here with the following rather weaker
assertion.

Conjecture. For any fixed F and any ε > 0, we have N (0)(P )� P 1+ε.

[17]
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This has been established in only a few uninteresting cases, such as
those above in which N (0)(P ) = 0, or those in which F = 0 has no non-
zero solutions, or forms of the shape W 3 −XY Z, for example. Indeed, the
estimate N (0)(P )� P 2+ε has yet to be proven in all cases.

We shall be concerned with approximations to the conjecture in which
one allows an exponent somewhat larger than 1+ε. The only form which has
been extensively investigated is the diagonal one given by (1). Suppose that
N (0)(P ) � P θ for this form. Then there will be O(xθ/3) positive integers
n ≤ x with two or more distinct representations as a sum of two cubes of non-
negative integers. Hooley [3] has shown, in effect, that N (0)(P ) � P 5/3+ε.
His method employed a sieve argument, along with bounds for exponential
sums derived from the work of Deligne. When one tries to generalize Hoo-
ley’s method to other forms, it is apparent that one will require the surface
F = 0 to have a rational plane containing 3 concurrent lines. The lines them-
selves need not be rational. It seems possible that Hooley’s method could
be generalized to cover all forms of this type. In the example (1) the plane
W +X = 0 contains the lines given by

W +X = Y + ωjZ = 0, ω = exp(2πi/3), j = 1, 2, 3,

which are concurrent at (1,−1, 0, 0).
An alternative proof of Hooley’s result for the form (1) has recently been

given by Wooley [4], using much more elementary techniques. As we shall
see, Wooley’s method generalizes to forms for which the surface contains 3
rational, non-concurrent, coplanar lines. For the form (1) these are given by

W +X = Y + Z = 0, W + Y = X + Z = 0, W + Z = X + Y = 0,

all of which lie in the plane W + X + Y + Z = 0. The primary goal of
this paper is to improve on the exponent 5/3 of Hooley and Wooley, for the
form (1). Our proof owes much to Wooley’s ideas, and it is therefore natural
to apply it to an arbitrary form for which the surface contains 3 rational
coplanar lines. We hope that investigation of the more general situation will
make clearer the rationale behind the initial transformation that we make
to our form. Moreover, we believe that consideration of the general cubic
surface, and rational lines in such a surface, helps to explain the disposal of
various special cases that arise, as in Lemma 4 below, for example.

Our principal result is the following.

Theorem 1. Let F (W,X, Y, Z) ∈ Z[W,X, Y, Z] be a non-singular cubic
form such that the surface F = 0 contains 3 rational , coplanar lines. Then
for any ε > 0 we have

N (0)(P )� P 4/3+ε,

where the implied constant depends only on F and ε.
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In the original version of this paper it was assumed that the 3 lines were
non-concurrent, as will generally be the case. However, the referee kindly
pointed out that, with little extra labour, one can handle the special case
of concurrent lines. Indeed, it seems likely that the result might be further
extended to cover singular surfaces, and hence in particular, the case of
“coincident lines” (that is to say, the case in which F can be transformed
into WX2 − ZQ(W,X, Y, Z), or even W 3 − ZQ(W,X, Y, Z), by a rational
linear change of variables). In spite of these remarks, we hope it will be
apparent to the reader that the main value of Theorem 1 lies in the exponent
obtained, rather than the class of surfaces to which the result applies.

As already remarked there will be the following trivial corollary when
Theorem 1 is applied to the example (1).

Corollary. Let ε > 0 be given. Then there are at most O(x4/9+ε)
positive integers up to x, with two or more distinct representations as a sum
of two cubes of non-negative integers.

It should be pointed out that Hooley [3] has also shown that the num-
ber of integers of the type considered in the corollary is at least of order
x1/3 log x. Thus for the form (1) one has

N (0)(P )� P logP.

We remark at the outset that it suffices for the proof of Theorem 1 to
consider primitive integer vectors (W,X, Y, Z). That is to say, we shall as-
sume that W,X, Y, Z have no common factor. Once Theorem 1 has been
established for the counting function for such vectors the stated result eas-
ily follows. Moreover, it is clear that, for the purposes of the proof of the
theorem, we may replace F by any form equivalent to it over the rationals.
It follows that we may take the plane in which the 3 rational lines lie to be
Z = 0. The lines may then be written in the shape Z = Li(W,X, Y ) = 0 for
i = 1, 2, 3. Here Li are non-zero rational linear forms, no two of which are
proportional. Thus, if F is written as C(W,X, Y )− ZQ(W,X, Y, Z), where
C and Q are cubic and quadratic respectively, then each of the forms Li
must divide C. If the Li are linearly independent they may be taken to be
W , X and Y respectively, by a further change of variable. Alternatively, if
they are linearly dependent, they can be taken to be W , X and W + X.
After re-scaling both the variables and the form F appropriately we now
conclude that F may be assumed to take either the form

(2) F (W,X, Y, Z) = WXY − ZQ(W,X, Y, Z)

or

(3) F (W,X, Y, Z) = WX(W +X)− ZQ(W,X, Y, Z).
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Here Q is an appropriate integral quadratic form. Clearly it suffices to con-
sider N (0)(P ) for one of these new forms. For F given by (1), Wooley [4]
arrives at forms of the first shape above by a strange “slicing argument”
whereas in reality only a linear change of variables is required. To be com-
pletely explicit, one has

2632(W 3 +X3 + Y 3 + Z3) = W ′X ′Y ′ − Z ′(3W ′2 + 3X ′2 + 3Y ′2 + 36Z ′2)

for the form (1), where

W ′ = 6(W+Z−X−Y ), X ′ = 6(X+Z−W−Y ), Y ′ = 6(Y +Z−W−X),

Z ′ = −(W +X + Y + Z).

We shall describe here the next stage of the argument. For forms of the
type (2), Z = 0 implies that one of W,X or Y is zero. We will therefore be
on a rational line for any such solution. We may argue similarly for forms
of the type (3). Since our goal is to count primitive solutions of F = 0 with
|W |, |X|, |Y |, |Z| ≤ P , we may therefore assume, with no loss of generality,
that 1 ≤ Z ≤ P . We shall show, in Section 4, that we may take W = aU ,
Z = bU for appropriate coprime integer parameters a and b, with b ≥ 1.
Since (W,X, Y, Z) is assumed to be primitive, the vector (U,X, Y ) will also
be primitive. As U 6= 0 we then conclude that q(U,X, Y ) = 0, where q is an
integral ternary quadratic form given by

(4) q(U,X, Y ) = q(U,X, Y ; a, b) = 2aXY − 2bQ(aU,X, Y, bU)

in case (2), or

(5) q(U,X, Y ) = q(U,X, Y ; a, b) = 2aX(aU +X)− 2bQ(aU,X, Y, bU)

in case (3). (Here the factor 2 ensures that the matrix for q has integer
entries.) Our goal is therefore to bound the number of primitive solutions of
q(U,X, Y ) = 0, for each pair (a, b). We see here the main distinction between
our approach and Wooley’s, for the latter considers zeros of a quadratic
polynomial, which is essentially q0(X,Y ) = q(U,X, Y ; a, b), as U , a and b
vary.

Our main tool in handling zeros of ternary quadratic forms is the follow-
ing result.

Theorem 2. Let q be an integral ternary quadratic form with matrix
M. Let ∆ = |det M|, and assume that ∆ 6= 0. Write ∆0 for the highest
common factor of the 2 × 2 minors of M. Then the number of primitive
integer solutions of q(x) = 0 in the box |xi| ≤ Ri is

�
{

1 +
(
R1R2R3∆

2
0

∆

)1/2}
d3(∆).

It is easy to improve the exponent of ∆0 to 3/2. However, this is of no
consequence, since one should think of ∆0 as being bounded in the above
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result, as it will be in our application. It is unfortunate that ∆0 should
occur at all, but the result would be untrue without it, as one easily sees
from consideration of forms of the type q(x) = k(x2

1 +x2
2−x2

3). Of course, for
a fixed form q, one has an asymptotic formula cqP + o(P ), for the number
of primitive solutions in a sphere of radius P , with cq � ∆−1 when ∆0 � 1.
However, the dependence of the error term on q would be too complex to
allow the deduction of a result of the type given by Theorem 2. With more
work one ought to be able to improve the exponent 1/2 to 1/3, which would
be best possible.

It is interesting to contrast Theorem 2 with the corresponding exis-
tence statement. The literature contains several such results. For example,
Cassels [1] has shown that if q is an integral quadratic form in n vari-
ables, then if q(x) has any non-trivial integral zero, it will have one with
|x| �n ‖q‖(n−1)/2, where ‖q‖ is the maximum modulus of the coefficients of
q. We take q to be a diagonal ternary form, with coefficients coprime in pairs,
and all having the same order of magnitude. Then there will be at least one
primitive solution with |x| � ∆1/3. In this case Theorem 2 shows that there
are O(∆ε) such solutions. Thus Theorem 2 is, in one sense, essentially best
possible.

Theorem 2 is ineffective when ∆ is small, and in this case we shall apply
the following generalization of the result used by Wooley.

Theorem 3. Let q be a non-singular integral ternary quadratic form,
with coefficients bounded in modulus by ‖q‖, say. Suppose that the binary
form q(0, x2, x3) is also non-singular. Then for any integer k the equation
q(x) = 0 has only O((‖q‖R)ε) primitive integer solutions in the cube |xi| ≤
R, with x1 = k.

2. Quadratic forms. In this section we shall prove Theorems 2 and 3.
We begin with two simple estimates for the number of zeros. The significance
of these results is that the bounds are completely independent of the form
involved. Indeed, there is no difficulty in establishing the estimates for forms
of arbitrary degree.

Lemma 1. Let f(x) be a non-zero binary form of degree d. Then f(x) = 0
has at most 2d primitive integral solutions.

This is trivial, since all solutions must be scalar multiples of at most d
basic solutions.

Lemma 2. Let f(x) be a ternary form of degree d, with no rational linear
factor , and let positive numbers X1 ≤ X2 ≤ X3 be given. Then there will be

Od(1 + (X1X2X3)1/2)

primitive integral solutions of f(x) in the box |xi| ≤ Xi.
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In the quadratic case one ought to be able to reduce the exponent to
1/3 with more work. For the proof we begin by showing that any vector x
in the above box lies on a plane

∑3
i=1 aixi = 0, with integral coefficients

ai � X−1
i

√
X1X2X3 not all zero. This is a simple application of the pigeon-

hole principle. There are � Y 3(X1X2X3)−1 sets of coefficients with |ai| ≤
X−1
i Y , and the corresponding values of

∑3
i=1 aixi are all � Y , so that two

such values must agree if Y 2 � X1X2X3 with a sufficiently large implicit
constant. Each of the planes above contains at most 2d primitive solutions of
f(x) = 0, by the previous lemma. Note that the corresponding binary form
cannot vanish, since f has no rational linear factor. Moreover, the number
of planes is

�
(

1 +
√
X1X2X3

X1

)(
1 +
√
X1X2X3

X2

)(
1 +
√
X1X2X3

X3

)
�
√
X1X2X3,

providing that X1X2 ≥ X3. However, if X1 < 1 then the result follows
from the previous lemma, since we will be considering primitive solutions of
f(0, x2, x3) = 0. It remains to consider the case in which X1X2 < X3 and
X1 ≥ 1. Here each pair of values of x1, x2 produces at most d values of x3,
except when f takes the form

d−1∑

j=0

xj3fj(x1, x2)

and each of the forms fj(x1, x2) vanishes for the numbers x1, x2 in question.
However, this can only happen when x1 = x2 = 0, since the original form
f has no rational linear factor. This case therefore gives rise to at most two
values of x3 for which x is primitive. Thus when X1X2 < X3 we may use
the bound O(X1X2) for the number of solutions of q(x) = 0. The required
result then follows here too, since X1X2 is now at most

√
X1X2X3.

One can of course do better than Lemma 2 if one does not require uni-
formity in f . The following result is well known.

Lemma 3. Let q be a non-singular integral ternary quadratic form. Then
there are Oq(P ) primitive integer solutions of q(x) = 0 lying in the cube
|xi| ≤ P .

In the quadratic case we may regard Lemma 2 as a precursor to Theo-
rem 2. To prove the latter, the key observation is that the equation q(x) = 0
forces x to lie on a certain sublattice of Z3. Thus we shall begin by consid-
ering congruence conditions on x. Let p be an odd prime and suppose that
pe ‖∆ and pf ‖∆0, so that 0 ≤ f ≤ e. We may diagonalize the form q in the
ring Z/peZ, using a unimodular matrix P say. The form q(x) then becomes
Ay2

1 + By2
2 + Cy2

3 , say, where y = Px. Both ∆ and ∆0 are invariant under
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such a change of variables, so that we may assume that

pα‖A, pβ‖B, pγ‖C,
with α ≤ β ≤ γ and α+ β + γ = e, α+ β = f . We now see that if q(x) = 0
then Ay2

1 + By2
2 ≡ 0 (mod pγ). When α and β have opposite parities this

implies that

νp(y1) ≥
[
γ − α+ 1

2

]
, νp(y2) ≥

[
γ − α

2

]
−
[
β − α

2

]
.

Here νp() is the p-adic valuation, as usual. It follows that y must lie on a
sublattice of Z3 of index pg, where

g =
[
γ − α+ 1

2

]
+
[
γ − α

2

]
−
[
β − α

2

]
≥ γ − β.

This sublattice therefore has determinant at least pγ−β .
The alternative case, in which α and β have the same parity, needs

slightly more work. It is convenient to put β − α = 2h. Either pκ | y1, with

κ =
[

1 + γ − α
2

]
,

or pk ‖ y1 for some k with h ≤ k < κ. In the former case pκ
′ | y2 with

κ′ =
[

1 + γ − β
2

]
,

so that y lies on a sublattice of Z3 of index pj , where j = κ + κ′ ≥ γ − β.
In the other case we have pk−h | y2, and

{(y2p
h−k)(y1p

−k)−1}2 ≡ −(Ap−α)(Bp−β)−1 (mod pγ−α−2k).

Since the number on the right is coprime to p there will be at most 2 possible
values for

(y2p
h−k)(y1p

−k)−1

modulo pγ−α−2k. Taken together with the fact that pk | y1 and pk−h | y2,
each of these values specifies a sublattice of Z3 of index pγ−α−h ≥ pγ−β , in
which y must lie.

Now comparing the above results, we see that y must lie in one of at
most 1 + 2(κ− h) integer lattices, each of determinant a power of p at least
pγ−β in size. We note here that 1 + 2(κ−h) ≤ 2 + γ−β ≤ d3(pγ) for γ > 0.
Now, since x and y are related by a unimodular transformation modulo pe,
it follows that x is restricted similarly to one of at most d3(pγ) such lattices.
Of course this statement is trivial when γ = 0.

Finally, we must consider the situation when p = 2. Here 4q can be
diagonalized, as Ay2

1+By2
2+Cy2

3 , say, using an integer matrix of determinant
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4. Then ABC = 4∆, and if

2α ‖A, 2β ‖B, 2γ ‖C,
with α ≤ β ≤ γ, then α+ β + γ = e+ 2, where 2e ‖∆, and |α+ β − f | ≤ 4,
where 2f ‖∆0. Proceeding as before we find that y lies in one of at most
2d3(2γ) integer lattices whose determinant is a power of 2, of size 2γ−β or
more. Thus x lies in a corresponding integer lattice whose determinant is a
power of 2, at least 2γ−β−2.

We can now combine all these conditions, for the various prime divisors
of ∆, using the Chinese Remainder Theorem. To do this we remark that
γ−β ≥ e−2f for each odd prime, and γ−β−2 ≥ e−2f −8 for p = 2. This
shows that x must lie in one of at most 2d3(∆) lattices Λ, of determinant
at least ∆/(28∆2

0).
We now rescale the variables by writing x = Rt, where R is the matrix

Diag(R1, R2, R3). Thus the region |xi| ≤ Ri becomes the cube |ti| ≤ 1, and
the lattice Λ becomes Λ′ with determinant at least ∆(28∆2

0R1R2R3)−1. We
shall write

m1 ≤ m2 ≤ m3

for the successive minima of Λ′ with respect to the unit cube, so that

m1m2m3 � ∆(∆2
0R1R2R3)−1.

If m3 > 1, then the lattice points will be restricted to the plane defined by
the vectors giving the first and second successive minima. Correspondingly,
the relevent solutions of q(x) = 0 will be restricted to a plane, so that it
suffices to consider zeros of a certain binary quadratic q′(z), say. However, in
this case Lemma 1 shows that there are at most 4 primitive solutions. Note
that the form q′ cannot vanish identically as q does not factorize. If m3 ≤ 1,
the lattice Λ′ will have generators ti for i = 1, 2, 3 such that yi � m−1

i

whenever t = y1t1 + y2t2 + y3t3 is in the unit cube. It follows that all
primitive solutions of q(x) = 0 in the box |xi| ≤ Ri correspond to primitive
zeros of q̃(y) = 0 in the region yi � m−1

i . Here q̃ is the non-singular integral
quadratic form obtained from q by using the vectors Rti as a basis. Since

(m1m2m3)−1/2 �
{
∆2

0R1R2R3

∆

}1/2

,

the bound required for Theorem 2 is now an immediate consequence of
Lemma 2.

We conclude this section by establishing Theorem 3. Since q(0, x2, x3) is
non-singular there is an invertible rational matrix M, with first row (1, 0, 0),
such that q(x) = d(Mx), for some diagonal form d. Moreover, we can choose
M so that the numerators and denominators of the entries are all O(‖q‖A)
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for some fixed exponent A. The equation q(k, x2, x3) = 0 then becomes

αL1(k, x2, x3)2 + βL2(k, x2, x3)2 = γk2,

with non-zero coefficients α, β, γ, and linear forms Li such that L1(0, x2, x3)
and L2(0, x2, x3) are linearly independent. We can clear the denominators of
all the rational numbers involved to arrive at an equation of the same shape,
with all the coefficients of order ‖q‖A, possibly with a new constant value of
A. When k 6= 0, standard facts about representations by binary quadratic
forms now show that L1 and L2 can take at most O(‖q‖εRε) values in
the box Li � R‖q‖A. This yields a satisfactory bound for the number of
pairs x2, x3. When k = 0 the required result follows from Lemma 1. This
completes the proof of Theorem 3.

3. Proof of Theorem 1—three special cases. The first special case
to be considered arises from those pairs (a, b) for which the form q, given by
(4) or (5), is singular. Here we shall prove the following.

Lemma 4. Suppose the ternary form q(U,X, Y ; a, b) is singular. Then
either q(U,X, Y ) = 0 has only two primitive solutions (U,X, Y ), or any
such solution corresponds, via the substitutions W = aU , Z = bU , to a
point on the surface F (W,X, Y, Z) = 0 lying on a rational line.

Since q is singular it will be of the shape q′(L1, L2) for some integral
binary form q′. Here L1, L2 are appropriate linearly independent rational
linear forms in U , X and Y . There are three cases to consider. Firstly q′ may
have rank 2, and fail to factorize over the rationals. In this case q(U,X, Y ) =
0 implies L1 = L2 = 0, so that (U,X, Y ) must be a multiple of some non-zero
vector x0 ∈ Q3. Since we require (U,X, Y ) to be primitive there are just
two possible solutions. In the second case q′ has rank 1 or 2 and factorizes
over the rationals, giving

q(U,X, Y ) = q′(L1, L2) = L3L4,

say, with non-zero rational linear forms L3, L4. Then L3(U,X, Y ) = 0, say,
implies q(U,X, Y ) = 0. Now b was taken to be strictly positive at the outset
of our discussion. Thus

(6) L3(b−1Z,X, Y ) = 0

implies q(U,X, Y ) = 0 and hence F (W,X, Y, Z) = 0. So for given values of
a and b, we have F (W,X, Y, Z) = 0 whenever bW = aZ and (6) holds. This
therefore produces a rational line in our surface, containing the solution in
question. Finally, in the case in which q′ vanishes identically, our solution
would lie in a plane bW = aZ contained in the surface F = 0. This is
impossible, since the original form F cannot factorize. This completes the
proof of the lemma.
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The second special case we shall consider is that in which Theorem 3 is
inapplicable, that is to say that the form

q′(X,Y ) = q(0, X, Y ) = 2aXY − 2bQ(0, X, Y, 0) or 2aX2 − 2bQ(0, X, Y, 0)

is singular. We shall write Qij for the coefficients of the form Q. Thus the
condition for q′ to be singular is that D(a, b), say, vanishes, where

D(a, b) = 4b2Q22Q33 − (a− 2bQ23)2 or 4b(bQ22 − a)Q33 − 4b2Q2
23.

The first of these quadratic forms cannot vanish identically. If the second
were to vanish identically we would have Q33 = 0, in which case (0, 0, 1, 0)
is a singular point for the form F as given by (3). Since this contradicts our
original assumption we may conclude that D(a, b) cannot vanish identically.
Then Lemma 1 shows that q′ can be singular for at most 4 coprime pairs a,
b, with a, b�F 1 in each case. For such pairs, either Lemma 4 will apply, or
the form q is non-singular, in which case there are O(P ) primitive solutions
(U,X, Y ), by Lemma 3.

The final special case is that in which a = 0. Here we must have b = 1,
since a and b are coprime. Now, as above, either Lemma 4 applies, or q
is non-singular, so that Lemma 3 gives a bound O(P ) for the number of
primitive solutions (U,X, Y ).

4. Completion of the proof of Theorem 1. We begin this section by
showing how the parameters a, b and U are determined. We write, temporar-
ily, L1 = W , L2 = X, L3 = Y in case (2), and L1 = W , L2 = X, L3 = W+X
in case (3). It then follows that Z must factorize as Z = a1a2a3, where ai |Li
for i = 1, 2, 3. We proceed to show that there is some index i for which

(7) Z/ai, Li/ai � P 2/3.

Suppose, for the sake of argument, that a1 ≥ a2 ≥ a3 ≥ 1. Then

Z/a1 = a2a3 ≤ (a1a2a3)2/3 = Z2/3 ≤ P 2/3.

Thus if |L1|/a1 ≤ P 2/3 we may take i = 1. On the other hand, if |L1|/a1 ≥
P 2/3, then

a1 = L1(L1/a1)−1 � P 1/3,

since Li � P for each i. In this case we therefore have

Z/ai ≤ Z/a3 = a1a2 ≤ a2
1 � P 2/3

for every index i. However, since(
L1

a1

)(
L2

a2

)(
L3

a3

)
=
L1L2L3

Z
= Q(W,X, Y, Z)� P 2,

there is always at least one value of i for which Li/ai � P 2/3. This completes
the proof of (7).
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For forms of the type (2) we may now rename the variables so that
Li = W , for the index i in (7). Similarly, for forms of the type (3), if Li = X
we need merely interchange W and X, while if Li = W + X we substitute
W ′ = W +X, X ′ = −X to obtain a form of the same type, with Li = W ′.
In view of (7) we may now set W = aU , Z = bU with

(8) a, b� P 2/3,

by writing U = ai. We can assume that (a, b) = 1, by incorporating any
common factor into U . This will not affect the bound (8). We note also that
the vector (U,X, Y ) will be primitive, since (W,X, Y, Z) is.

We proceed to count solutions of q(U,X, Y ) = 0 for each pair a, b. In
view of (8) we see that Lemma 4 contributes O(P 4/3) to N (0)(P ), as does
the first term in Theorem 2, since there will be O(P 4/3) possible pairs a, b.
Moreover, cases in which q(0, X, Y ; a, b) is singular, or a = 0, will contribute
only O(P ), as in Section 3. We therefore turn our attention to the remaining
terms.

In order to apply Theorem 2 effectively we shall require the following
lemma.

Lemma 5. For the quadratic form q = q(U,X, Y ; a, b) we have ∆0 �F 1,
providing that a and b are coprime.

We write M for the matrix of q, and we proceed to consider the 2 × 2
minors of M. The ij minor will be a certain integer form Mij(a, b), say.
Elimination theory then shows that if m(x, y) is the highest common factor
of all the forms Mij(x, y) then there are positive integers K and d, depending
only on F , such that ∆0 divides both Km(a, b)ad and Km(a, b)bd. Since a
and b are coprime it follows that ∆0 |Km(a, b). This establishes the lemma,
providing that m(x, y) is constant.

We therefore consider the possibility that each minor Mij(x, y) is divis-
ible by some linear factor βx − αy, where α and β are algebraic numbers,
not both zero. In this case we see that all the 2×2 minors of q(U,X, Y ;α, β)
must vanish, so that the form will have rank at most 1. We can therefore
write

q(U,X, Y ;α, β) = L(U,X, Y )2,

for an appropriate linear form L, with algebraic coefficients. It follows that

2F (αU,X, Y, βU) = Uq(U,X, Y ;α, β) = UL(U,X, Y )2.

Then, if α 6= 0 for example, we have

2F (W,X, Y, Z) = α−1WL(α−1W,X, Y )2 + (Z − α−1βW )Q′(W,X, Y, Z)

identically, for a suitable quadratic form Q′. However, a form F of the above



28 D. R. Heath-Brown

shape has a singularity where

L(α−1W,X, Y ) = Z − α−1βW = Q′(W,X, Y, Z) = 0,

and this contradicts our original assumption. A precisely analogous argu-
ment applies when β 6= 0.

We may therefore conclude that the minors Mij(x, y) can have no com-
mon algebraic factor, and the lemma follows.

In order to apply Theorem 2 we shall also need to know how ∆ varies,
for the form q. It is easy to see that ∆ = |G(a, b)| for an appropriate integral
form G of degree 5. We now employ the following lemma.

Lemma 6. Let G be a non-zero form of degree n and let G0 ≥ 1. Suppose
further that A,B ≥ 1 are given. Then one of the following two cases holds.

(i) |G(a, b)| � min(A,B)n for all pairs of integers (a, b) with A ≤ |a| ≤
2A and B ≤ |b| ≤ 2B.

(ii) A� B � A and the number of pairs of integers a, b for which

A ≤ |a| ≤ 2A, B ≤ |b| ≤ 2B

and |G(a, b)| ≤ G0, is O(G1/n
0 A).

For the proof we begin by observing that if A and B are not of the same
order of magnitude, with A, say, being the larger, then the size of G will be
determined by the term in G(a, b) in which the exponent of a is maximal.
Thus |G(a, b)| � AkBn−k � Bn, for some k. This gives us case (i). In the
alternative case we can factorize G, and some factor µa − νb must be of
order G1/n

0 . Here at least one of µ and ν is non-zero, µ, say. Then for each
of O(A) values of b there will correspond O(G1/n

0 ) possible values of a, and
the result follows in case (ii).

We are now ready to start counting solutions of q(U,X, Y ) = 0, with q
given by (4) or (5), as described earlier. Here we shall use Theorem 2, in
which we have already dealt with the first term. To account for the second
term we observe that the corresponding values of Ri are P/max(|a|, b), P
and P . Thus it remains to account for a contribution

(9) � P 3/2+ε{∆max(|a|, b)}−1/2

for each pair a, b. We divide the ranges for

min(|a|, b), max(|a|, b) and ∆

into intervals (T1, 2T1], (T2, 2T2] and (T3, 2T3] respectively, so that (9) can be
estimated as O(P 3/2+ε(T2T3)−1/2). Note that, by (8), we have 1� T1, T2 �
P 2/3.
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We may derive an alternative estimate by applying Theorem 3 to each
individual value of U . Here we note that

U = W/a = Z/b� P/T2,

leading to a contribution O(P 1+εT−1
2 ).

We begin by examining the situation in which T1 and T2 have different
orders of magnitude, corresponding to case (i) of Lemma 6. The lemma then
yields T3 � T 5

1 , so that our two alternative bounds are

O(P 3/2+ε(T 5
1 T2)−1/2) and O(P 1+εT−1

2 ).

It follows that we may estimate the contribution in this case as

� {P 3/2+ε(T 5
1 T2)−1/2}2/5{P 1+εT−1

2 }3/5 = P 6/5+εT−1
1 T

−4/5
2

for each pair a, b. Since there are O(T1T2) such pairs this gives a total

� P 6/5+εT
1/5
2 � P 4/3+ε,

which is satisfactory.
We now turn to the situation in which T1 and T2 have the same order

of magnitude, corresponding to case (ii) of Lemma 6. This time our two
alternative estimates become

O(P 3/2+ε(T2T3)−1/2) and O(P 1+εT−1
2 ).

This leads to a contribution

� {P 3/2+εT
−1/2
2 T

−1/2
3 }2/5{P 1+εT−1

2 }3/5 = P 6/5+εT
−4/5
2 T

−1/5
3

for each pair a, b. This time case (ii) of Lemma 6 shows that there are
O(T2T

1/5
3 ) possible pairs, giving a total

� P 6/5+εT
1/5
2 � P 4/3+ε,

again. This completes the proof of Theorem 1, on summing over the appro-
priate values of T1, T2 and T3.
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