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0. Introduction. Cassels, in [C], has noticed a remarkable analogy be-
tween an algebraic function introduced by Deuring [D] in positive char-
acteristic and the Weierstrass ζ-function in the classical theory of elliptic
functions. The purpose of this note is to take this analogy further. One of
our main goals is to use this function to give a very explicit description of
the universal vectorial extension of elliptic curves, which will give a charac-
teristic p analogue of results of Lang and Katz. Also, Mazur and Tate [MT]
have defined, for an elliptic curve defined over a local field of residue charac-
teristic p with ordinary reduction, an analogue of the Weierstrass σ-function
which is defined on the formal group of the curve. In characteristic p their
construction can be performed for an ordinary curve over any field and it
turns out, as in the classical theory, that the logarithmic derivative of the
Mazur–Tate σ-function is the characteristic p ζ-function.
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1. Quick review of the classical case. Let E be an elliptic curve over
C and ω a non-zero holomorphic differential on E. By integrating ω along
closed paths on E(C) we get the period lattice Λ and E(C) is isomorphic
to C/Λ. If E has a Weierstrass equation y2 = x3 + a4x + a6, and ω =
dx/(2y) then this isomorphism is given by z mod Λ 7→ (℘(z), (1/2)℘′(z)),
and ω = dz, where ℘(z) is the Weierstrass ℘-function attached to the lattice
Λ. It is a periodic meromorphic function with periods Λ, holomorphic in
C \Λ and having expansion ℘(z) = z−2 +O(1) near z = 0. The Weierstrass
ζ-function is, by definition, the unique odd meromorphic function satisfying
dζ/dz = −℘. It is quasi-periodic, i.e., it satisfies ζ(z+λ) = ζ(z)+η(λ), λ ∈ Λ,
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where η is linear in λ. The values η(λ), λ ∈ Λ, are called the quasi-periods.
Finally, it satisfies

ζ(z + w) = ζ(z) + ζ(w) +
℘′(z)− ℘′(w)

2(℘(z)− ℘(w))
.

(See [A], Ch. 7 and [L], Ch. 18.)
The universal extension of E by a vector group is a commutative alge-

braic group E† which sits in a non-split exact sequence 0 → Ga → E† →
E → 0. It can be constructed as the group of isomorphism classes of invert-
ible sheaves on E with an integrable connection. Lang ([L], 18.1) and Katz
([K], appendix C) describe E† in terms of ζ as follows: E†(C) is isomorphic
to C2/Λ′ where Λ′ = {(λ, η(λ)) | λ ∈ Λ} and given (a, v) ∈ C2 it corresponds
to the integrable connection on OE((P )−(0)), where P = (℘(a), (1/2)℘′(a)),
given by the differential (ζ(z − a)− ζ(z) + v) dz.

2. The characteristic p ζ-function. Let K be a field of characteristic
p and E/K an elliptic curve. Let E(p) be the target of Frobenius F : E →
E(p). Let V : E(p) → E be the dual isogeny, i.e., the Verschiebung. Fix a
holomorphic differential ω on E. Choose a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

such that ω = dx/(2y+a1x+a3). If p 6= 2, assume further that a1 = a3 = 0,
put f(x) = x3 + a2x

2 + a4x+ a6, and define polynomials U, T ∈ K[x], with
degU ≤ p− 2, and an element A ∈ K by

yp−1 = f(x)(p−1)/2 = U(x) +Axp−1 + xpT (x).

If p = 2 let A = a1. Then A is the Hasse invariant of E. Let B be the
coefficient of xp−2 of U(x) if p is odd and B = 1 for p = 2.

Lemma. For p odd we have f ′(x)T (x) + 2f(x)T ′(x) = −Ax+B.

P r o o f. Since f(x)(p−1)/2 = U(x) +Axp−1 + xpT (x), it follows that

((p− 1)/2)f(x)(p−3)/2f ′(x) = U ′(x)−Axp−2 + xpT ′(x),

hence

xp(f ′(x)T (x)+2f(x)T ′(x)) = −f ′(x)(U(x)+Axp−1)−2f(x)(U ′(x)−Axp−2).

But the last polynomial has degree at most p+ 1, so comparing coefficients,
the result follows.

We will consider the function field of E as a subfield of the function field
of E(p) via V .

Definition. The characteristic p Weierstrass ζ-function is the rational
function z on E(p) satisfying zp−Az = −yT (x) for p 6= 2 and z2−Az = x+a2

for p = 2 and, if E is ordinary, such that z + (y/x) vanishes at 0.
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It is easy to check that, in the ordinary case, the equation defining
z describes a cyclic, étale cover of E of degree p, which has to be E(p)

(see [D], p. 254 or [V], Lemma 1.1).
Let ω(p) the differential on E(p) obtained from ω on E by transport of

structure.

Proposition 1 (Cassels [C], §5, 6). If E is ordinary , then the function
z satisfies z(P +P0) = z(P ) + η(P0) for all P0 ∈ kerV , where η is linear in
P0 and satisfies η(P0)p −Aη(P0) = 0. Furthermore, if p 6= 2, then z is odd
and dz/ω = −x+B/A.

P r o o f (sketch). Since zp−Az is invariant under translation by points of
kerV , the first part follows, except for the linearity, which is straightforward.
From the definition of z, Adz = d(yT (x)) = (−Ax+B)ω, by the Lemma.

The values η(P0), P0 ∈ kerV , are the analogues of the quasi-periods.
The derivation d/ω corresponds to d/dz in the complex case, so z satisfies
a similar differential equation as ζ. We will discuss the discrepancy coming
from the constant B/A in the next section. The analogue of Proposition 1 in
the supersingular case is the equation dz = −Bpω(p), which is easily verified.
Superficially, this result is analogous to the differential equation satisfied by
z in the ordinary case, but is also an analogue of the quasi-periodicity of z.
Namely, over a ring with nilpotents, the map P 7→ z(Q+P )− z(Q) induces
an isomorphism η between kerV and αp such that the differential dv on αp
(if v is a coordinate on αp) corresponds to dz = −Bpω(p).

The following result gives an addition theorem for z.

Proposition 2. We have

z(P +Q) = z(P ) + z(Q) +
y(Q)− y(P )
x(Q)− x(P )

.

P r o o f. Assume first that E is ordinary. Let Q be a fixed arbitrary point
of E(p) and consider z(P +Q)− z(P )− z(Q) as a function of P . It is clearly
invariant under translations by points of kerV and is therefore a function
on E. As z has simple poles on the points of kerV and no others, it follows
that z(P +Q)− z(P )− z(Q), as a function on E, has simple poles at 0 and
−V (Q) and no others, thus

z(P +Q)− z(P )− z(Q) = c(Q)
y(Q)− y(P )
x(Q)− x(P )

+ d(Q),

where c(Q) and d(Q) are some constants depending on Q. But interchanging
the roles of P and Q, it follows that c(Q) = c and d(Q) = d are absolute
constants. (I learned this trick from A. Broumas in an analogous context.)
One can then easily check that c = 1 and d = 0 by making P,Q → 0 and
looking at the formal group or by taking d/ω and using the addition formula
for x. An alternate proof can be given using the addition formula for the
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ζ function and Proposition 3 of the next section. The supersingular case
follows from the generic case by specialization.

3. The Mazur–Tate σ-function. Let K be an algebraically closed field
of characteristic p and E/K an ordinary elliptic curve. Let E(pn) be the im-
age of the nth iterate of Frobenius Fn : E → E(pn). Let Vn : E(pn) → E be
the dual isogeny, so that Vn is separable, by hypothesis. We will consider the
function field of E as a subfield of the function field of E(pn) via Vn. We will
also identify the formal groups of E and E(pn) via Vn. Assume p 6= 2 and
choose a function sn on E(pn) with divisor

∑
P∈kerVn(P ) − pn(0). Choose

a local parameter t at 0 so that ω = (1 + O(t))dt near 0. Mazur and Tate
define the σ-function to be the power series in t given by σ = limn→∞ tp

n

sn
after normalizing sn = tp

n−1 + O(tp
n

). We refer to [MT] for the many
interesting properties of this function. Let, just as in the classical theory,
ζ = σ−1dσ/ω.

Proposition 3. With the above definitions, ζ = z.

P r o o f. Let ζn = s−1
n dsn/ω. Then ζ = lim ζn. Note that ζn is odd and

has simple poles at the points of kerVn and no others and that the residue
of ζnω at each pole is 1. Clearly, these properties uniquely determine ζn as a
function on E(pn). But ζ1, as a function on E(pn), has these properties too,
so ζ1 = ζn for all n. Finally, z was shown to have these same properties (for
n = 1) in [V], Lemma 1.1. However, in [V], there is an inaccuracy, in that the
differential dx/y was used when it should have been dx/(2y), which leads to
a factor of −2 being missing throughout the paper. This was pointed out to
me by A. Broumas. Also, what is denoted by z in [V] is denoted here by −z.
Anyhow, this completes the proof.

This result leads to an alternative definition of the quasi-periods,
as follows. Given P ∈ kerV , let f be the function on E(p) with divisor
p((P ) − (0)). Then η(P ) = −df/fω. To see this, let τ be the operator
τh(Q) = h(Q+ P ) on functions h on E(p). Then

η(P )ω = (τz − z)ω = τzω − zω = τ(ds1/s1)− ds1/s1

= d(τs1/s1)/(τs1/s1).

Now, it is clear that (τs1/s1) has divisor p(0 − (−P )), and therefore
f(τs1/s1) = hp for some function h on E(p) and the result follows.

Note that the function x in the Weierstrass equation for E is deter-
mined by ω up to the addition of a constant. Mazur and Tate then noted
that a choice for x can be made by letting x = −dζ/ω and called this
a canonical eks-function (sic). It now follows from Propositions 1 and 3
that this canonical eks-function is characterized, in characteristic p > 2,
by B = 0.
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If K is a local field and E has split multiplicative reduction then E is
a Tate curve, so it admits a parametrization E = Gm/qZ, where q is in
the maximal ideal of the valuation ring of K and, if u is the parameter on
Gm and we choose ω = du/u, then σ has the following product expansion
(see [MT] or [L], Ch. 18):

σ(u) = (u1/2 − u−1/2)
∞∏
n=1

(1− qnu)(1− qnu−1)
(1− qn)2 .

By direct substitution one gets the functional equation

σ(qu) = −(q1/2u)−1σ(u).

Logarithmic differentiation of these formulas leads to a series expansion for
ζ, namely,

ζ(u) =
u+ u−1 + 2
2(u− u−1)

+
∞∑
n=1

(
qn

u− qn −
qnu

1− qnu
)
,

and to the equation ζ(qu) = ζ(u) − 1. Now, E(p) is the Tate curve with
multiplicative period qp, and the Verschiebung is induced by the identity
on Gm. Therefore q represents a point in E(p) which generates kerV and
the last formula then reads η(q) = −1, giving the quasi-periods of the Tate
curve in characteristic p.

4. The universal vectorial extension. The universal extension of
E by a vector group is a commutative algebraic group E† which sits in a
non-split exact sequence 0 → Ga → E† → E → 0. It can be constructed
as the group of isomorphism classes of invertible sheaves of degree zero
on E with an integrable connection. In characteristic p > 0 it is known
([R], p. 704) that E† splits up to isogeny and that the maximal abelian
subvariety of E† is E(p). The next result makes these facts explicit.

Theorem. E† is isomorphic to the quotient of E(p)×Ga by the subgroup-
scheme given by the graph of the homomorphism η : kerV → Ga. The
isomorphism is obtained by associating with each point (P, v) ∈ E(p) × Ga
the connection on OE((V (P )) − (0)) given by the differential (fP + v)ω,
where fP (Q) = z(Q−P )− z(Q) is a function on E that has simple poles at
V (P ) and 0 and the residues of fPω at these points are 1,−1 respectively.

P r o o f. Clearly fP is invariant by the action of kerV so defines a func-
tion on E and the statement about the poles and residues follows from the
corresponding properties of z. Thus we have a map from E(p) × Ga to E†,
which is clearly surjective. Since fP+P ′(Q) = fP ′(Q + P ) + fP (Q) it fol-
lows that this map is a homomorphism. Finally, its kernel corresponds to
P ∈ kerV , so that fP = −η(P ), and v = −fP = η(P ), as desired.
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