
ACTA ARITHMETICA
LXXVIII.4 (1997)

The Diophantine equation x4 −Dy2 = 1, II

by

J. H. E. Cohn (London)

Over fifty years ago, Ljunggren [7] showed that the equation of the title
has at most two solutions in positive integers for any fixed D, without loss
of generality assumed square free. The method was purely algebraic, but
rather complicated. He furthermore stated that D = 1785 was the only case
known to him when there were actually two solutions, and also claimed
to be able to find the solutions when they existed by a finite algorithm;
this statement whilst technically true is not as useful as might appear, for
although when there are two solutions these can be found by his method,
the method apparently provided no general way in which when there are
not two solutions the fact could be demonstrated.

Progress since then has been in two directions. On the one hand, at-
tempts have been made to find simpler, indeed technically elementary, meth-
ods of attacking the problem; these have to date yielded results only for
special, albeit infinite, sets of values of D. Thus it has been shown ([1]–[3])
that there are no solutions if either of the equation X2 − DY 2 = ±4 has
solutions with X and Y both odd with the exceptions D = 5 and 29, nor [4]
excluding D = 6, if either of the equation X2 −DY 2 = ±2 has solutions.

In a quite different direction, analytical methods of great depth have
recently been used to prove that provided D is sufficiently large, there is at
most one solution. The best result of which I am aware appears to be that
of [5] which proves that there is at most one solution if D ≥ 9.379 · 108.

Combining an idea of [5] with Ljunggren’s result we prove the

Theorem. Let the fundamental solution of the equation v2 − Du2 = 1
be a+ b

√
D. Then the only possible solutions of the equation of the title are

given by x2 = a and x2 = 2a2 − 1; both solutions occur in only one case,
D = 1785.

P r o o f. Let α = a + b
√
d and β = a − b

√
d. Then for a solution we

must have for some positive integer m, x2 = 1
2 (αm + βm) = vm, say. Since

α + β = 2a, αβ = 1, the sequence {vm} satisfies the recurrence vm+2 =

[401]
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2avm+1 − vm with initial values v0 = 1 and v1 = a. We show that the only
possible solutions of our problem occur with m = 1 or 2.

It is easily seen that we cannot have 4 |m. For if m = 4k then v4k =
8v4
k − 8v2

k + 1 , and as is shown in [4] the equation x2 = 8y4 − 8y2 + 1 can
only be satisfied with x = 1, which does not give a solution to our problem.

For n odd, let wn = vn/a, which is also an integer. Then wn+4 +wn+2 =
2vn+3 and wn+2 + wn = 2vn+1. Thus

wn+4 + 2wn+2 + wn = 2(vn+3 + vn+1) = 4avn+2 ≡ 0 (mod 4a),

and so since w1 = 1 and w3 ≡ −3 (mod 4a), it follows that for all odd n,

(1) wn ≡ (−)(n−1)/2n (mod 4a)

and

(2) wn ≡ 1 (mod 4).

In particular, solutions are possible for m odd only if a = 22αa1 where α ≥ 0
and a1 is odd, and then if (a, n) = 1

(3) (wn | a1) = ((−)(n−1)/2n | a1) = (a1 |n) = (a |n).

Next we prove by induction on nN that for all odd coprime integers n
and N the Legendre–Jacobi symbol (wn |wN ) = +1. This holds if nN = 1;
suppose it is true for all values less than the one we consider. n = N is
impossible unless n = N = 1 since n and N were supposed coprime; without
loss of generality we may assume n > N , since by (2) quadratic reciprocity
gives (wn|wN ) = (wN |wn). Then it is easily found that wn ≡ −wn−2N

(mod wN ), and again n− 2N and N are coprime. If here n− 2N is positive
the induction is completed with the aid of (2); on the other hand, if n−2N is
negative then we use wn−2N = −w2N−n and (2) to complete the induction,
since if N < n < 2N , then 0 < 2N − n < N .

Suppose first that m is odd. Ljunggren showed that there was at most
one solution in this case, and we show that if it occurs it must occur for
m = 1. For suppose that we have a solution with m > 1. Let n denote any
odd integer coprime to am. Then

1 = (wm |wn) = (a |wn) = (22αa1 |wn) = (wn | a1) = (a |n),

by (2) and (3), and this implies that a must be a perfect square, since
otherwise, we may choose n to be congruent to 1 modulo 4 and also a
quadratic non-residue modulo a. But a = v1 and this would contradict
Ljunggren’s result.

The proof for the case m ≡ 2 (mod 4) follows in exactly the same way
working with α2 = A+B

√
D instead of α.

Combining this result with the result of [6] or [8] that the equation
y2 = 2x4 − 1 has only the solutions in positive integers given by x = 1
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and 13, we see that for both m = 1 and m = 2 to be solutions we should
have x2

1 = a and x2
2 = 2a2 − 1, and then x2

2 = 2x4
1 − 1 whence a = 1 or

132; a = 1 gives no solution and a = 132 gives Db2 = 1785 · 42, i.e. only
D = 1785.

Table 1 gives all solutions for D squarefree and under 150000:

Table 1

D x D x D x D x D x

5 3 915 11 10421 35 28230 97 68295 28
6 7 985 577 12155 21 29039 143 69729 65

15 2 1111 10 13015 37 33215 27 72041 243
29 99 1295 6 13271 24 36411 107 76245 47
39 5 1785 13&239 14430 31 38415 14 108335 48

145 17 2031 26 16913 51 41943 32 112910 127
210 41 3603 49 17490 23 44205 29 127551 50
255 4 3815 251 18530 33 54795 53 129610 161
410 9 4199 18 20735 12 60639 1393 142071 70
455 8 7215 38 22327 82 61535 63 144590 39
791 15 8547 43 24414 25 63546 55
905 19 8555 117 26390 57 65535 16
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