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1. Introduction. Let K = Q(
√
−d) be an imaginary quadratic field.

A lot of interesting and deep work has been done on the Galois module
structure of integers in ray class fields of K, notably by Cassou-Noguès and
Taylor [1] and Schertz [9]. Let us recall that the first question in general
Galois module theory is: If E/F is a tame abelian G-Galois extension of
number fields, when is the projective OF [G]-module OE actually free? In
other words, does E/F admit a normal integral basis (NIB for short)? How-
ever, the ray class field extensions considered in [1] and [9] are mostly wild,
and one has to replace OF [G] by a suitable order in F [G] in order to get
freeness results. Moreover, this line of work deals with a very relative situa-
tion, that is, already the base field F is a rather large ray class field over K.
When one insists that E/F be tame, and F be as close as possible to K,
one is naturally led to the question: Does the ray class field K(p) have NIB
over the Hilbert class field K(1) of K? This question, about which not too
much seems to be known, is the subject of this paper. We restrict ourselves
to the case hK = 1, i.e. K(1) = K. This restricts d to the nine-element set
D = {1, 2, 3, 7, 11, 19, 43, 67, 163}.

Gómez Ayala and Schertz [5] have shown that the question in the strict-
ness and generality as just formulated has a negative answer, by means of
exhibiting quadratic subfields of K(p) without normal basis over K. On the
positive side, Gómez Ayala [4] proved the existence of a NIB for p = (2)
for d = 11,19,43,67,163. Here, K(2)/K is a cubic extension. (The four
other values d ∈ D are irrelevant here for various reasons.) Thus one may
optimistically hope that the failure shown in [5] is only due to the existence
of subextensions of degree 2, and one might conjecture a positive result for
odd-degree subextensions. There is also a very reasonable weakened version
of the NIB property, called WNIB (see below; basically one replaces the
group ring of G by its maximal order), and one might conjecture that there
exists at least a WNIB for K(p)/K.

[315]
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We show in this paper that neither of these optimistic conjectures would
be correct. Quite to the contrary: we prove, using subfields of odd prime
degree l, that infinitely often for each d ∈ D, K(p)/K does not even have
WNIB. The crucial tools which we use are Stickelberger ideals and explicit
computations using the system PARI in class groups. While we do not
explicitly use McCulloh’s beautiful theory of realizable classes [7, 8], it is
certainly the main motivation for our constructions. At the end of the paper,
we discuss cubic extensions of K with prime conductor, extending Gómez
Ayala’s affirmative results and complementing them with some negative
ones. We also offer some heuristics concerning the question just how often
K(p)/K might fail to have a WNIB. These heuristics may be unsound, but
our results certainly allow us to say that in general, K(p)/K fails in a serious
and systematic fashion to have normal integral basis. The main results to
this effect are Theorem 1.6 and Theorem 3.3 in this paper.

Let us just give a few examples. For d = 43, K(23)/K has no WNIB; this
is proved using a subextension of degree 11 of K(23) over K. For d = 67,
K(41)/K has no WNIB; this is shown using the degree 7 subextension. The
reader will find some tables in Section 3. We also briefly summarize our
results on cubic extensions: Exclude d = 3 for simplicity, and suppose p is
a prime of K over p, such that either p is inert in K and p ≡ 2 (mod 3), or
p is split in K and p ≡ 1 (mod 3). Let L be the (!) cubic subfield of K(p)
over K. Then first of all, L/K always has weak normal integral basis. If p
is inert, L/K always has NIB; if p is split, L/K has NIB “half of the time”
in a precise sense for d 6= 2, 11, and always for d = 2, 11.

1. Preliminaries, and Kummer descent (I). Let G be abelian
and E/F be a tame G-Galois extension of number fields. Let M be the
maximal order in OF [G]. Define E/F to have weak normal integral basis if
the projective M-module M ⊗OF [G] OE is free. Note that we may identify
M⊗OF [G] OE with MOE ⊂ E. There is a standard short exact sequence

0 → DF (G) → Cl(OF [G]) → Cl(M) → 0,

where one may call DF (G) the kernel group of G over F . For F = Q, one
gets the usual kernel group. M is canonically isomorphic to a direct product
of rings of integers in cyclotomic extensions of F : M ∼=

⊕
χOF (χ), with χ

running through the set of F -conjugacy classes of linear characters of G.
Thus, the class group of M is just

⊕
χ Cl(OF (χ)). On the other hand, the

kernel group tends to be large and hard to calculate.
Now let l be a prime, ζ = ζl ∈ F , and G = 〈σ〉 a cyclic group of order l.

For i ∈ Z let E(i) = {x ∈ E : σ(x) = ζix} the ith Kummer eigenspace; of
course, E(i) only depends on i mod l. We have E = E(0) ⊕ . . . ⊕ E(l−1).
Define Ai = OE ∩ E(i); then Ai is projective of rank 1 over OF . Note that
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A0 = OF . The maximal order M in F [G] is now
⊕l−1

i=0OF εi, where εi acts
as ith projection E → E(i) ⊂ E.

Lemma 1.1. (a) εi(OE) = l−1Ai for i = 0, . . . , l − 1.
(b) MOE is free over M iff A1, . . . , Al−1 are OF -free.

P r o o f. Part (a) implies part (b) since MOE =
⊕l−1

i=0 εiOE . So let us
prove (a); we do this by localizing at an arbitrary prime p of F . If p is
not over l, then OE,p =

⊕
i Ai,p and εiOE,p = Ai,p = (l−1Ai)p, as claimed.

Suppose now p divides l. Then Ep/Fp is unramified (since E/F was tame),
so there exists (see Childs [2]) an element x ∈ A1,p with xl ∈ O∗F,p such that
OE,p has an OF,p basis 1, z, . . . , zl−1 where we let z = (x− 1)/λ, λ = 1− ζ.
This shows that εi(OE,p) = OF,px

i/λl−1 = l−1OF,px
i. On the other hand,

we have OF,px
i = Ai,p because x is a unit of OE,p, and (a) follows.

Now let Ai = Al
i; for any i, this is a nonzero ideal in OF . From the

definition of Ai it easily follows that Ai is l-power free, i.e. not divisible by
the lth power of a proper ideal. Since E/F is tame, the Ai are all prime
to l. By localizing one also sees easily that a prime p of F ramifies in E iff
it divides one of the Ai. Recall in this context that the index i runs mod l,
and A0 = OF . From the definition it is clear that Aj

i ⊂ Aij for any i and j,
and therefore Aj

i equals the product of Aij with the lth power of some ideal
of F . Let us put this on record:

Lemma 1.2. For any i, j ∈ Z/l, Aij equals the l-power free part of Aj
i .

We now turn to descent theory. Suppose K is a number field disjoint with
Q(ζl); let F = K(ζl) and ∆ = Gal(F/K). As usual, we fix the isomorphism
(Z/l)∗ ∼→ ∆ by mapping j to σj which is characterized by σj(ζl) = ζj

l .
Suppose L/K is a G-extension with G cyclic of order l as before; put E =
FL. Thus, the action of ∆ on F extends to an action of ∆ on E inducing
the trivial action on L. The following observation is well known.

Lemma 1.3. For all j ∈ (Z/l)∗, i ∈ Z/l we have σjAi = Aij , and also
σjAi = Aij.

P r o o f. From the definition of Ei and the formula σjζ = ζj one finds
that σjE

(i) = E(ij); the first formula of the lemma follows, and the second
formula is an immediate consequence obtained by raising to the lth power.

Let us now impose the additional hypothesis that L/K is tame, and
ramified exactly in the prime p. (We make the latter assumption to keep
things simple.) From global class field theory one sees that the absolute
norm of p is congruent 1 mod l, otherwise L could not exist; this implies
that p is totally split in F . Let us write

pOF = P1 · . . . ·Pl−1,
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where Pj = σ−1
j P1. Then we can write

Ai = P
ai,1
1 · . . . ·Pai,l−1

l−1 ,

with ai,k ∈ {0, 1, . . . , l − 1}.
Lemma 1.2 gives, on comparing prime decompositions, that aij,k =

[jai,k], where [·] denotes the smallest nonnegative residue modulo l. But
Lemma 1.3 also gives that aij,k, the exponent of Pk in Aij , equals ai,jk, the
exponent of σ−1

j Pk in Ai. Therefore ai,k = [ika1,1] for all i, k ∈ Z/l. This
shows that a1,1 cannot be zero (otherwise all Ai would be the unit ideal
which contradicts the condition that E/F does ramify), and after changing
our numbering of the Pk, we may even assume that a1,1 = 1. Let us rewrite
this slightly:

Proposition 1.4. With the above notation and hypotheses we have

A1 = P1 ·P2
2 · . . . ·Pl−1

l−1 = Plθ
1 ,

where lθ =
∑l−1

i=1 i · σ−1
i ∈ Z[∆] is the “standard lth Stickelberger element

without denominator”. For any i we have Ai = Pσilθ
1 .

Corollary 1.5. We have Ai
1 = Ai · P

(i−σi)lθ
1 , and therefore Ai

1 =
Ai · P(i−σi)θ

1 . (Note here that (i − σi)θ really is in Z[∆], so the last ex-
pression makes sense.)

The following theorem is the main tool in settling the existence of a
WNIB in a given situation.

Theorem 1.6. Assume that L/K is tame, cyclic of degree l, and ramified
exactly in the prime p of K. Let P be a prime over p in F = K(ζl). If L/K
has WNIB , then the class [P] ∈ Cl(OF ) is annihilated by the Stickelberger
ideal J = Z∆ ∩ θ(Z∆). The converse implication holds if l does not divide
hF .

P r o o f. Recall E = FL. Using OE = OFOL we see that if L/K
has WNIB, then so has E/F . (Similarly for NIB, as is very well known.)
Suppose L/K has WNIB. Applying the preceding remarks and Lemma 1.1,
we find that A1, . . . , Al−1 are free over OF . Hence A1 = Al

1 is a principal
OF -ideal. By Proposition 1.4, A1 = Plθ

1 , and P is a conjugate of P1, so Plθ

is principal. By Corollary 1.5, all P(i−σi)θ are principal as well. Now J is
generated by lθ and the elements (i− σi)θ as a Z∆-module, and hence Pα

is principal for all α ∈ J .
Suppose for the converse that J annihilates [P]. Then for one thing, Plθ

1

is principal. Write A1 = Ax where A is some fractional ideal of F . Then
Al is principal since it is isomorphic to A1 = Al

1 = Plθ
1 . Since hF is by

hypothesis not divisible by l, we see that A is principal, and hence A1 is
free. Then all Ai are free since Ai = P

(σi−i)lθ
1 A1 and the first factor on the
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right hand side is principal since the exponent (σi− i)lθ is in J . By Lemma
1.1, we conclude that E/F has WNIB, and it remains to descend to L/K.

Let M be the maximal order in K[G], M′ the maximal order in F [G].
The augmentation epimorphism induces splittings M = OK×M0 and M′ =
OF × M′

0. The classes [MOL] ∈ Cl(M) (respectively, [M′OE ] ∈ Cl(M′))
are automatically already in Cl0(M) = ker(Cl(M) → Cl(OK)) = Cl(M0)
(respectively, in Cl0(M′) = Cl(M′

0)). We thus know from the last paragraph
that the class of M′OE is zero in Cl0(M′). Consider the canonical embedding
ι0 : Cl0(M) → Cl0(M′). Using OE = OFOL, one sees that Cl(ι0) maps
[MOL] to [M′OE ]. Observe now that the algebra inclusion M0 → M′

0 is
split. (In fact, M0 is isomorphic to OF , and M′

0 is isomorphic to a product
of l − 1 copies of OF .) Hence ι0 is a (split) monomorphism, which finally
shows that the class of MOL is trivial, as we wanted to show.

2. Kummer descent (II). In this section we keep the general scenario,
this time with l = 3, and we now discuss finer criteria, i.e. we are interested
in the existence of NIB’s, not only WNIB’s. To a great extent, we build on
the work of Gómez Ayala [3, 4]. We have the following result ([3], Thm. 2.1,
[4], Prop. 1.4):

Theorem 2.1 (Gómez Ayala). Suppose ζ = ζ3 ∈ F and E/F is a tame
cyclic cubic extension. Then E/F has NIB if and only if there exist ideals
b, c in OF , a generator x of bc2 with x ≡ 1 (mod 3

√
−3), and a generator

y of c with y ≡ 1 (mod 3) such that with α3 = x one has the following
OF -basis for OE :

1,
1− α√
−3

,
1 + α + y−1α2

3
;

in this case, the third of these three basis elements also gives a generator of
an normal integral basis. Furthermore, b and c are square-free and coprime.

We shall combine this result with descent theory. Observe first that
exactly the divisors of b or c ramify in E/F ; in particular, b and c are prime
to 3. In the notation set up in Section 1, we also have A0 = OF (as always),
A1 = αOF , A2 = y−1α2OF ; consequently, A1 = bc2 and A2 = b2c. The last
two formulas determine two coprime square-free ideals b, c uniquely, for any
cyclic cubic tame extension E/F . More precisely, from Lemma 1.2 we know
that p occurs once in the prime decomposition of A1 iff it occurs twice in
A2 and vice versa; thus b is the product of all primes dividing A1 exactly
once, and c is the product of all primes dividing A1 exactly twice. We will
call b and c the characteristic ideals of the cyclic cubic extension E/F .

Now suppose F = K(ζ3) 6= K; we want to understand when exactly a
tame cubic cyclic extension E/F descends, i.e. can be written E = LF with
L/K cyclic cubic (and automatically tame). It is easy and well known that
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this is the case iff the nontrivial automorphism τ of F/K can be extended
to an involutory automorphism, also written τ , of E, the field L then being
just the fixed field of τ . Some cases of our next result are already implicit
in [4]; see also Greither and Miranda [6].

Theorem 2.2. Let E/F be a tame cyclic cubic extension with charac-
teristic ideals b and c; let α ∈ E(1) be an arbitrary Kummer generator ,
0 6= x = α3 ∈ F . Suppose in (b) and (c) that 3 does not ramify in K.

(a) The extension E/F descends to K iff c = bτ and there exists z ∈ F
with z2+τ = x−1.

(b) If E/F has NIB , and descends to an extension L/K, then the de-
scended extension L/K has NIB , too.

(c) If we fix b and c such that c = bτ , then the following two statements
are equivalent : (i) There exists E/F having characteristic invariants b and
c and satisfying (a) and (b); (ii) c has a generator y ≡ 1 (mod 3).

P r o o f. (a) Suppose τ can be extended to an involutory automorphism of
E. Since τ interchanges the eigenspaces A1 and A2 by virtue of Lemma 1.3,
we can write τ(α) = zα2 with some z ∈ F ∗. The property τ2 = id evaluated
in α gives the condition α = τ(zα2) = z2+τα4, or equivalently z2+τ = x−1.
If on the other hand this formula holds, setting τ(α) = zα2 gives a well-
defined involutory automorphism extending τ ∈ Gal(F/K).

(b) We take a Kummer generator α as in Theorem 2.1. Then (a) holds
for this particular choice, so x = z−2−τ . Recall that xOF = bc2 = c2+τ .
From this it follows easily that z−1OF = c. (The endomorphism 2 + τ of
the ideal group of OF is injective, for example because (2 + τ)(2− τ) = 3.)

Sublemma. For u ∈ OF we have:
u ≡ 1 (mod 3) ⇔ u2+τ ≡ 1 (mod 3

√
−3).

P r o o f. Note first that aτ ≡ a (mod
√
−3) for all a∈OF , and τ(

√
−3)=

−
√
−3. Suppose u = 1 + 3a. Then u2+τ ≡ 1 + 3(2a + aτ ) (mod 3

√
−3),

and 2a + aτ ≡ 3a ≡ 0 (mod
√
−3), which gives one implication. For the

other, let v = u2+τ = 1+3
√
−3b. Then u3 = v2−τ ≡ 1+3

√
−3(2b+ bτ ) ≡ 1

(mod 9). The implication u3 ≡ 1 (mod 9) ⇒ u ≡ 1 (mod 3) is well known.

Back to the proof of (b): Since we chose α according to Theorem 2.1, we
know that x = α3 is congruent to 1 modulo 3

√
−3, and now the sublemma

tells us that z−1 ≡ 1 (mod 3). We may therefore replace y by z−1 in the
basis element 1

3 (1 + α + y−1α2) in Theorem 2.1, so we obtain the following
generator of an normal integral basis for E/F :

T = 1
3 (1 + α + zα2).

One checks immediately that τ(T ) = T ; therefore T ∈ OL, and T also
generates an normal integral basis of L/K, just by faithfully flat descent
and since OE = OFOL.
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(c) We have already seen in the sublemma that (a) and (b) imply condi-
tion (ii). Conversely, if y ≡ 1 (mod 3) generates c, define x = y2+τ . Again
by the sublemma, x ≡ 1 (mod 3

√
−3), and the extension E = K( 3

√
x) has

all the required properties.

R e m a r k 2.3. The preceding theorem is particularly useful if hF is
prime to three. For in this case, the characteristic ideals determine E/F
uniquely. This can be seen as follows: Two extensions E and E′ with
the same characteristic ideals give rise to two elements x and x′ of OF ,
generating the same ideal, and congruent modulo 3

√
−3. The quotient

u = x/x′ would therefore be a unit congruent 1 modulo 3
√
−3, so F ( 3

√
u)

would be cyclic cubic and unramified over F unless u is already a cube, but
in that case E equals E′. Moreover, we do not have to worry about the
order in which we write the two characteristic ideals: changing the roles of
b and c just amounts to replacing the original choice of the generator σ by
σ2, and the extension E/F just considered as a field (without fixing the
G-action) does not change.

Corollary 2.4. Suppose K is imaginary quadratic, dK 6= −3 and 3
does not divide hF . Let p be a prime of K such that 3 |N(p)−1. Then K(p)
contains exactly one cubic subfield L, and L/K has an NIB iff the primes
P1, P2 over p in F are principal with generator congruent to 1 modulo 3.

P r o o f. If L/K has NIB, then so has E/F . By looking at the ramifi-
cation we see that the characteristic ideals of E/F are P1 and P2 for some
numbering. Furthermore E/F descends, so by Theorem 2.2(c), P2 has a
generator ≡ 1 (mod 3). If conversely P2 has a generator ≡ 1 (mod 3),
then there exists by Theorem 2.2(c) some E′/F which descends to L′/K
with NIB, and which has the right characteristic ideals. By Remark 2.3, the
compositum E = FL is the unique tame cyclic cubic extension of F with
characteristic ideals b = P1 and c = P2. Therefore E′ = E and L′ = L,
which shows what we want.

3. Applications I: Ray class fields without WNIB. Let K =
Q(
√
−d), d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. Let 3 < l ≡ 3 (mod 4) be a

fixed prime. We are interested in finding primes p of K with l dividing
N(p) − 1 such that the unique subfield L of degree l of the ray class field
K(p) does not have WNIB over K. Note two things: first, L exists and is
unique by global class field theory; second, K(p) will not have WNIB over
K either if L does not. We impose the mild restriction that p and l are
unramified in K/Q.

Let p be the rational prime over which p lies. We have seen in Section 1
that p is totally split in F = K(ζl), whether p is inert or split in K. Note,
however, that the case p inert, p ≡ +1 (mod l) is uninteresting since then
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L is equal to the composite of K with the unique degree l subfield of Q(ζp),
so it certainly admits NIB. Let us therefore assume henceforward: If p is
inert in K, then p ≡ −1 (mod l). (In the case p split in K, we only have
the one possibility p ≡ 1 (mod l).)

Write Gal(F/K) = ∆ = {σ1, . . . , σl−1} and pOF = P1 · . . . ·Pl−1 as in
Section 1. Recall that J is the Stickelberger ideal in Z∆. By Theorem 1.6
we have the criterion:

If the class [P1] ∈ Cl(OF ) is not annihilated by J , then L, and conse-
quently K(p), does not have a weak normal integral basis over K.

Before embarking on calculations, we discuss some technical reduction
steps which make it easy to use this criterion. Let C3(M) be the 3-primary
part of Cl(M) for any number field M . Denote the projection of [A] ∈ Cl(M)
to C3(M) by [A]3. The automorphism j = σ−1 acts semi-simply on C3(F ),
and C3(F ) = C+

3 (F )⊕C−
3 (F ), where j acts as ±1 on C±

3 (F ). The following
is motivated by the well-known principle that “the Stickelberger ideal lives
mainly in the minus part”. Denote the projection of [A]3 ∈ C3(F ) to C−

3 (F )
by [A]−3 . The abelian group C−

3 (F ) is in a canonical way a module over Z3∆,
and also over the minus quotient (Z3∆)− = Z3∆/(1 + j). We then have an
obvious lemma:

Lemma 3.1. If [P1]−3 ∈ C−
3 (F ) is nontrivial , and if the image of Z3⊗Z J

in (Z3∆)− is the unit ideal , then [P1] ∈ Cl(F ) is not annihilated by J .

The point of this lemma is that we have an easy handle on the Stickel-
berger ideal in the minus quotient of the 3-completion. By Theorem 6.2 in
[10], the image of Z3 ⊗Z J in (Z3∆)− is all of (Z3∆)− iff 3 does not divide
h−l = h−(Q(ζl)). (Comment: In using this result, we have identified (Z3∆)−
with (Z3∆)−, and the image of Z3 ⊗Z J with Z3 ⊗Z J−. We are working
3-adically, not 2-adically, just in order to be able to make these canonical
identifications.)

We can give a still simpler criterion for the first condition in Lemma 3.1
to hold, using quadratic fields. Observe that p splits in F0 = Q(

√
ld).

(Distinguish the two cases p inert/split in K and correspondingly p ≡
+1/− 1 (mod l).) Let pOF0 = qq′.

Proposition 3.2. Keep the notation of Lemma 3.1 and suppose that the
order of [q] in Cl(F0) is divisible by 3. Then

(a) x = [P1]−3 is nontrivial in C−
3 (F ).

(b) Let ∆+ = Gal(F/K(
√
−l)). Then ∆+ =

{
σi : 0 < i < l,

(
i
l

)
=

+1
}
. Let ν =

∑
σ∈∆+ σ. Then xν is nontrivial in C−

3 (F ) provided l is not
congruent to 1 modulo 3.
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P r o o f. (a) The norm map N from Cl(F ) to Cl(F0) induces first of all
a homomorphism N3 : C3(F ) → C3(F0). Since j induces the nontrivial
automorphism τ of F0/Q, and since τ acts as −1 on C3(F0), it follows that
for any [A]3 ∈ C3(F ), the images of [A]3 and [A]−3 under N3 are the same.
Furthermore, N([P1]) gives (up to exchanging q with q′) either [q] or its
square, depending on whether p is split or inert in K. Thus, N3([P1]−3 )
gives [q]3 or the square of this; by hypothesis, these are nonzero elements of
C3(F0), and part (a) of the proposition follows.

(b) The operator ν acts invertibly (more precisely: as multiplication by
(l−1)/2) on C3(F0) since l−1 is coprime to 3. Thus the proof goes through
as in (a) after replacing x by xν and [q] by [q]ν ; the point is that the latter
is still nontrivial.

Now we can state:

Theorem 3.3. Let K and l be as above, and p a prime with either p ≡
1 (mod l) and p split in K, or p ≡ −1 (mod l) and p inert in K. Sup-
pose that :

(i) the classes of the primes over p in Cl(Q(
√

ld)) have order divisible
by three; and

(ii) either 3 does not divide h−l , or l ≡ 2 (mod 3) and 3 does not divide
h(−l). (Here h(−l) denotes the class number of Q(

√
−l). Note that “ 3 does

not divide h−l ” implies “ 3 does not divide h(−l)”, which means that we get
by with a weaker hypothesis in the case l ≡ 2 (mod 3).)

Then K(p) does not even have WNIB over K, where p is any prime over
p in K.

P r o o f. If the first clause in (ii) holds, then we get the conclusion im-
mediately on combining Lemma 3.1, Proposition 3.2(a), and the criterion
stated at the beginning of the section. If we only know that 3 does not
divide h(−l) and we are in the case l ≡ 2 (mod 3), a little argument is
needed. By the criterion it suffices to show Jx 6= 0 (we switch to additive
notation); we know νx 6= 0 by Proposition 3.2(b). Therefore if we can show
that ν · (Z3⊗Z J)− equals ν · (Z3∆)−, we are done. This will be established
with the help of the following claim:

νθ = l−1ν(R + Nσ−1),
where R (resp. N) is the sum of all quadratic residues (resp. nonresidues)
modulo l among 1, . . . , l − 1. Proof of this claim: Let P (resp. Q) denote
the set of residues (nonresidues) modulo l among {1, . . . , l − 1}. Then lθ =∑

a∈P aσ−1
a +

∑
a∈Q aσ−1

a . Observe now that ai∈P ⇔ σa∈=∆+, and that
a∈Q ⇔ σa∈σ−1∆

+. Thus, νlθ=
∑

a∈P aν +
∑

a∈Q aνσ−1 = ν(R + Nσ−1).
From the claim we obtain (νθ)− = ν · (R − N)/l, and it is well known

that (R −N)/l = h(−l), so (R −N)/l is a 3-adic unit if 3 does not divide
h(−l).
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The following examples in which the hypotheses of the preceding theorem
are all satisfied were obtained using some tables and the number theory
program system PARI. One thing is clear: If we have one example (K, l, p0)
with (i) and (ii), then there will be infinitely many values p which work
instead of p0. Reason: By the generalized Dirichlet theorem, one finds
infinitely many p such that q (a degree one prime over p in Q(

√
ld)) is in

the same class as q0 (a degree one prime over p0); this assures (i), and (ii)
does not depend on p at all. Therefore the point is to find values of l for
given K; it is nice but quite unessential to have a long list of values p for
given K and l.

The procedure is obvious: we fix d ∈ D and find primes l ≡ 3 (mod 4)
such that 3 |h(Q(

√
ld)), i.e. there exist primes p satisfying (i); one finds

such values p just by exhaustive search up to some arbitrary limit; before
doing so, one makes sure there is no “obstacle”, i.e. (ii) is satisfied. This
happened rarely in our calculations. However, for l ≥ 521 (that is, l is not
covered by the table of Lehmer and Masley) and l ≡ 1 (mod 3) one has to
work a bit. Of course we did not calculate the number h−l , we just wrote a
program to check whether h−l ≡ 0 (mod 3), using the Stickelberger element
modulo 3.

We begin with d = 11 because this was the case we considered first, and
where we calculated most. In the leftmost column of Table 1, we give all
primes l < 1100 with l ≡ 3 (mod 4) such that 3 divides h(11 · l). The second
column tells whether condition (ii) holds or not. The final column contains
all the values of p satisfying (i), inert in K, p ≡ −1 (mod 11), up to the
limit 10000 (first row), 25000 (second row), and 50000 (all other rows). As
indicated above, it is easy to find many more p; we did some tests to see
whether the density of p which work was close to the density predicted by
Dirichlet, and indeed it was.

It is gratefully acknowledged here that the main tool in the calculation,
apart from some class number tables, was the number theory package PARI,
developed by H. Cohen and collaborators at Bordeaux.

Table 1

l (ii)? Values of p inert in K satisfying (i)

43 yes 601, 1117, 1289, 2837, 3181, 4127, 4729, 8513, 8599
191 yes 10313, 17189, 20627, 21391
271 yes 36313, 37397, 39023
619 yes 22283, 30949, 40853, 48281
647 yes 15527, 21997, 29761, 42701, 45289
659 yes 30313, 34267
691 yes 1381, 8291, 12437, 42841
743 no —

1091 yes 4303, 10909, 24001, 45821
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This example is typical, so we will be brief about the other seven values
of d 6= 3, and the cases where p splits in K. Sticking with the case p
inert for a moment, we give Table 2, where the second column contains the
first value of l satisfying (ii) and “3 divides h(Q(

√
ld))”; the third column

contains some values of p (inert in K) satisfying (i).

Table 2

d First l p inert in K = Q(
√

−d) satisfying (i)

1 79 631, 947, 1579
2 71 709
7 67 937

19 103 4943, 7621
43 11 131
67 7 41

163 167 2671

Note the rather small numbers in the example (d, l, p) = (67, 7, 41). So we
are saying here that the abelian extension of K = Q(

√
−67) with degree 7

and conductor 41 does not have WNIB.
In the same way one obtains values p which are split in K and satisfy

(ii) starting with one of the eight values d ∈ D, d 6= 3, and a value l already
obtained for d. We just give a few values:

Table 3

d First l p split in K = Q(
√

−d) satisfying (i)

11 43 947, 1549, 1727
43 11 23, 67
67 7 29, 71

Thus we obtain two more examples with fairly small numbers: (d, l, p) =
(43, 11, 23) or (67, 7, 29). Let us remark that the value l = 7 is in the present
approach the lowest you can hope for, since 5 is not congruent 3 mod 4, and
l = 3 will not work, see Section 4. This does not at all exclude the existence
of quintic examples, but a different approach would be needed.

As the reader has noticed, we have been excluding d = 3. This has a
very good reason: Using Scholz’ theorem, one can show that 3 |h(3l) implies
3 |h(−l) and hence 3 |h−l , so (ii) will always be violated. The solution here
is to do the same as in a famous recent paper by A. Wiles: we replace 3 by 5
consistently in Lemma 3.1 and Proposition 3.2. One finds the prime l = 547
with the property 5 |h(3 · 547), and 5 does not divide h−547; furthermore the
prime p = 13127 has the property that the order of the classes above p in
Q(
√

3 · 547) is a multiple of (in fact, equal to) 5. Exactly as in 3.1–3.3, one
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shows that this implies: The degree 547 subfield of K(13127) has no WNIB
over K = Q(

√
−3). Again, there are infinitely many other values of p.

The natural question arises: Given d, are there infinitely many values of
l which work? This should be true, but it seems very hard to prove. In fact,
there is a close link with the Cohen–Lenstra heuristics, but if we insist on
including the case l ≡ 1 (mod 3), the situation is worse here since we also
need a nondivisibility statement for minus class numbers of full cyclotomic
fields, not quadratic fields. (We already mentioned that if 3 divides h(−l),
then it divides h−l ; the converse is not true, the smallest example being
l = 131, but such instances of l seem to be relatively rare. In fact, we
checked all primes l ≡ 3 (mod 4), l < 5500, and we found only six such
cases, and there are 133 values l in this interval with 3 |h(−l).) We were
led to the following speculative hypothesis: When p →∞ (always p inert in
K), then the probability that K(p)/K has WNIB should actually converge
to 0. However, the convergence to 0 should be so slow that it is quite out
of the question to test this guess by numerical experiments.

How did we arrive at this hypothesis? For p →∞, the number of prime
divisors l ≡ 3 (mod 4) of p + 1 should also go to infinity, perhaps like
log log p. For any l | p + 1 one can ask whether Theorem 3.3 applies or not
to disprove WNIB for K(p)/K. If one is willing to accept that Theorem 3.3
applies with a certain positive probability c (the more sceptical reader should
perhaps impose the extra condition l ≡ 2 (mod 3)), and also that the prime
divisors l ≡ 3 (mod 4) of p + 1 are “random”, then one is led to the above
speculative hypothesis.

4. Applications II: The cubic case. In this section we will be
concerned with integral normal bases in the original sense, not in the weak
sense. Gómez Ayala proved in [4] that K(2)/K does have a NIB for the five
fields K = Q(

√
−d), d ∈ D, for which K(2)/K is cubic and tame. We are

going to generalize this and try to understand the underlying principle.
Note first of all: Any tame cubic extension of K = Q(

√
−d), d ∈ D, has

a WNIB, since the maximal order in K[Z/3] is OK ×OF with F = K(ζ3),
and one checks that for all nine values of d, the field F has class number
one. What might therefore happen is that a tame cubic extension of K has
WNIB but no NIB, and we shall see that this does occur.

In the sequel we exclude d = 3, since we know thanks to [3], 2.14, that
all tame cubic extensions of Q(

√
−3) have NIB.

Now let p be a prime of K whose norm is 1 modulo 3, and L the cubic
subfield of K(p). Let p be the rational prime under p. If p splits in K,
then p ≡ 1 (mod 3). If p is inert, then p ≡ ±1 (mod 3), but in the case
p ≡ +1 (mod 3) we know that L/K has NIB (see beginning of Section 3),
so we exclude this case. In any case we have pOF = P1P2. For any
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integral ideal A of F , let S(A) be the ray class group modulo A, that is,
S(A) = (OF /A)∗/Im(O∗F ). This is the correct definition since hF = 1.
Every ideal b of F gives an element of S(A), to wit, the class of some (and
therefore any) generator of b. Corollary 2.4 tells us:

L/K has NIB iff the class of P1 in S(3) is trivial.

We will exploit this criterion now.

Lemma 4.1. The canonical epimorphism S(3) → S(
√
−3) is an isomor-

phism, and S(
√
−3) is trivial if 3 splits in K, and of order two with 1+

√
−d

representing the nontrivial element if 3 is inert in K.

P r o o f. For the first statement one has to show that if a ∈ OF , then
there exists a unit u ∈ OF with u ≡ 1+a

√
−3 (mod 3). There are 9 residue

classes 1+a
√
−3 modulo 3OF . Let ε = η4, where η is the fundamental unit

of F . (For d ≥ 11, see [4], p. 378; for d = 1, 2, 7 we have η = 2 + i
√
−3,

5 + 2
√
−2
√
−3, and 1

2 (5 +
√
−7
√
−3) respectively.) Modulo 3, one has

ε = 1 + b
√
−d
√
−3 with b ∈ Z and b ≡ ±1 (mod 3) in all cases. This shows

that the nine units εrζs
3 (0 ≤ r, s < 3) are all different mod 3OF , and all of

the form 1 + a
√
−3, so we are done.

The group S(
√
−3) equals (F∗3 × F∗3)/〈−1, η̄〉 if 3 splits, and it equals

F∗9/〈−1, η̄〉 if 3 is inert in K. In the first case one sees that the image η̄
of η is ±(+1,−1), so S(

√
−3) is trivial. In the other case, η̄ is the class

of ±
√
−d, an element of order 4 in F∗9 = (OF /(

√
−3))∗, and the class of

1 +
√
−d is a generator of F∗9. This proves the lemma.

Corollary 4.2. If d = 2 or d = 11, then L, the cubic subfield of K(p),
always has NIB.

P r o o f. By Lemma 4.1 we clearly have that S(3) is trivial. Apply the
criterion stated just above.

Proposition 4.3. If p is inert in K, i.e. p = pOF , then L/K always
has NIB. (Note that this gives the result of [4] when one sets p = 2.)

P r o o f. As said earlier, we may assume p ≡ −1 (mod 3). Thus, P1

is induced from an ideal of the real quadratic field F0 = Q(
√

3d), because
p splits already in that field. Hence P1 has a generator of the form y =
1
2 (a + b

√
−d
√
−3) with a, b ∈ Z (the factor 1

2 being needed only in case
3d ≡ 1 (mod 4)), and obviously a is prime to 3. In other words, y ≡
±1 (mod

√
−3)), so the class of P1 in S(

√
−3) is trivial. By Lemma 4.1,

and our criterion, the proposition follows.

The only case which remains is: 3 is inert in K, and p is split in K,
hence totally split in F . Here the situation is different:
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Proposition 4.4. Under the conditions just stated , let

P = {p prime in K of degree 1 with N(p) ≡ 1 (mod 3)};

L(p) the cubic subfield of K(p); P+ = {p ∈ P : L(p) has NIB over K}, and
finally P− = P \ P+. Then P+ and P− have the same Dirichlet density
(equal to 1/4). In particular , both sets are infinite.

P r o o f. We know that P is exactly the set of degree one primes which
split in F/K. Thus, the norm defines a 2-to-1 map P ′ → P , where P ′ is
the set of degree one primes in F . If P goes to p ∈ P , then p is in P+ iff
P gives the trivial element of the ray class group S(3), by our criterion. By
Lemma 4.1 and the generalized Dirichlet theorem, the proposition follows.

Example. Let d = 19. If we take P = zOF , with

z =
1
4
((−5 +

√
−19) + (3 +

√
−19)

√
−3),

then p = NF/KP is a prime in K with norm 7, and P represents the
nontrivial class in S(3) since z ≡ 1 +

√
−19 modulo

√
−3. Thus, p belongs

to P−. On the other hand, if we replace z by
√
−19+(7+

√
−19)

√
−3, then

p is this time a prime with norm 38557, and it belongs to P+.
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