Steinitz classes of nonabelian extensions of degree p^3

by

JAMES E. CARTER (Charleston, S.C.)

0. Introduction. Let L/k be a finite extension of algebraic number fields. Let \mathfrak{O}_L and \mathfrak{o} denote the rings of integers in L and k, respectively. As an \mathfrak{o} -module, \mathfrak{O}_L is completely determined by [L:k] and its Steinitz class C(L,k) in the class group C(k) of k (see [3], Theorem 13). Now let G be a finite group. As L varies over all normal extensions of k with $\operatorname{Gal}(L/k) \simeq G$, C(L,k) varies over a subset R(k,G) of C(k). If we consider only tamely ramified such extensions, then this set is denoted by $R_t(k,G)$. An interesting problem is to determine R(k,G) or $R_t(k,G)$ for various k and G. In [7] McCulloh shows that if G is a cyclic group of order n, and k contains the multiplicative group μ_n of nth roots of unity, then $R(k,G) = R_t(k,G) =$ $C(k)^d$ (the subgroup of C(k) consisting of dth powers of elements of C(k)where d is a positive rational integer which depends on n).

From now on, unless otherwise stated, p will denote an odd prime. In [5] it is shown that when k is any algebraic number field and G is cyclic of order p, then $R_t(k, G)$ is again a subgroup of C(k). This result is extended in [6] to include cyclic groups of order p^r , where $r \ge 1$. In [1] we assume k contains μ_p and G is the nonabelian group of order p^3 with exponent p. There is an exact sequence of groups

$$\varSigma: 1 \to A \to G \to B \to 1$$

where B is cyclic of order p. We fix, once and for all, a tamely ramified normal extension E/k with $\operatorname{Gal}(E/k) \simeq B$. As L varies over all tamely ramified normal extensions of k of a particular type which contain E, and such that $\operatorname{Gal}(L/k) \simeq G$, C(L, k) varies over a subset $R_t(E/k, \Sigma)$ of C(k). It is shown that when the ring of integers in E is free as an \mathfrak{o} -module, then $R_t(E/k, \Sigma)$ is a subgroup of C(k). In the present paper, we continue to assume k contains the appropriate roots of unity, and we return to our consideration of the set $R_t(k, G)$. Making essential use of results of [1] and [2], we will show that $R_t(k, G)$ is always a subgroup of C(k) when G is either of the two nonabelian groups of order p^3 . More specifically, we prove

the following theorem:

THEOREM 0.1. Let k be an algebraic number field and let G be a nonabelian group of order $p^3 = mn$ where n is the exponent of G. If $\mu_n \subseteq k$ then

$$R_{\rm t}(k,G) = C(k)^{m(p-1)/2}.$$

For the remainder of the paper, the notation will be as introduced above and in [1] and [2].

1. First inclusion. In this section we prove the following proposition:

PROPOSITION 1.1. Let k be any algebraic number field and let G be a nonabelian group of order $p^3 = mn$ where n is the exponent of G. Then

$$R_{\mathbf{t}}(k,G) \subseteq C(k)^{m(p-1)/2}.$$

Proof. Let L/k be a tamely ramified normal extension with $\operatorname{Gal}(L/k) \simeq G$. Suppose \mathfrak{p} is a prime ideal in k which ramifies in L/k, say

$$\mathfrak{p} = \Big(\prod_{i=1}^g \mathfrak{P}_i\Big)^e$$

where the ramification index $e = e(\mathfrak{P}_i, \mathfrak{p}) > 1$. Let $f = f(\mathfrak{P}_i, \mathfrak{p})$ be the residue class degree and let \mathfrak{D} be the different of L/k. Since \mathfrak{p} is tamely ramified in L/k, $v_{\mathfrak{P}_i}(\mathfrak{D}) = e - 1$ for each *i*. Therefore

$$\mathfrak{p}^{fg(e-1)} \parallel N_{L/k}(\mathfrak{D}) = d_{L/k}.$$

Now suppose \mathfrak{P} is any of the prime ideals in L which divides \mathfrak{p} . Since the tame ramification group of \mathfrak{P} over \mathfrak{p} is cyclic of order e it follows that G contains an element of order e. Therefore $e \mid n$. Since $mn = p^3 = efg$ we have $m \mid fg$. Therefore

$$C(L,k) = cl(d_{L/k}^{1/2}) \in C(k)^{m(p-1)/2}$$

2. Second inclusion. Let k and G be as described in the statement of Theorem 0.1. By Proposition 1.1,

$$R_{\rm t}(k,G) \subseteq C(k)^{m(p-1)/2}.$$

We will now establish the reverse inclusion thereby proving the theorem.

PROPOSITION 2.1. Let k and G be as described in the statement of Theorem 0.1. Then

$$R_{\mathbf{t}}(k,G) \supseteq C(k)^{m(p-1)/2}.$$

Proof. There are two cases to consider.

Case 1. Suppose n = p. Let \mathfrak{c} be any class in C(k). We construct a tamely ramified normal extension L/k such that $\operatorname{Gal}(L/k) \simeq G$ and $C(L,k) = \mathfrak{c}^{m(p-1)/2}$: by Theorem 2 of [7] there exists a tamely ramified normal extension E/k of degree p such that $C(E,k) = \mathfrak{c}^{(p-1)/2}$. In Proposition 5 of [1] let $X \in W_{E/k}$ be the trivial class. That proposition gives a tamely ramified normal extension L/k containing E such that $\operatorname{Gal}(L/k) \simeq G$ and $C(L,k) = (\mathfrak{c}X)^{m(p-1)/2} = \mathfrak{c}^{m(p-1)/2}$. Therefore

$$R_{\rm t}(k,G) \supseteq C(k)^{m(p-1)/2}.$$

Case 2. Suppose $n = p^2$. In the introduction of [2], the structure of G is described in terms of generators and relations and the parameters s and l. According to that description we may assume s = 1 and l = 1. Let \mathfrak{c} be any class in C(k). In the following four steps we construct a normal extension L/k as described in Theorem 6 of [2] such that $\operatorname{Gal}(L/k) \simeq G$. We then show in the remaining two steps that L/k is tamely ramified and $C(L,k) = \mathfrak{c}^{m(p-1)/2}$.

Step 1. In this step we construct a tamely ramified cyclic extension E/k of degree p such that $C(E, k) = \mathfrak{c}^{(p-1)/2}$.

Let $\mathfrak{m} = (1-\zeta)^{p^2}$. Choose an odd integer s > 3 such that $\mathfrak{c}^s = \mathfrak{c}$. Let \mathfrak{l} be a prime ideal in \mathfrak{c} such that \mathfrak{l} is not a factor of (p). Let $C_k(\mathfrak{m})$ be the ray class group modulo \mathfrak{m} of k, and let $\mathfrak{c}_{\mathfrak{m}}$ be the element of $C_k(\mathfrak{m})$ which contains \mathfrak{l} . Choose distinct prime ideals $\mathfrak{l}_1, \ldots, \mathfrak{l}_s$ in $\mathfrak{c}_{\mathfrak{m}}$. Choose positive integers u_i , $1 \leq i \leq s$, such that $(u_i, p) = 1$ for each i and $\sum_{i=1}^s u_i = p^2 s$ (e.g. $u_i = p^2 - 1$ for $1 \leq i \leq (s+1)/2$, $u_i = p^2 + 1$ for $(s+3)/2 \leq i \leq s-1$, and $u_s = p^2 + 2$). Let \mathfrak{l}_{s+1} be a prime ideal in \mathfrak{c}^{-1} . Then

(2.1)
$$(a) = \left(\prod_{i=1}^{s} \mathfrak{l}_{i}^{u_{i}}\right) \mathfrak{l}_{s+1}^{p^{2}s}$$

where $a \in \mathfrak{o}$ and $a \equiv 1 \pmod{\mathfrak{m}}$. Let $E = k(\alpha)$ where $\alpha^p = a$. Let ζ be a primitive *p*th root of unity. By Kummer theory E/k is cyclic of degree *p* with, say, $\operatorname{Gal}(E/k) \simeq \langle \varrho \rangle$ where $\varrho(\alpha) = \zeta \alpha$. Furthermore, by the proof of Theorem 118 of [4], and by Theorem 119 of [4], the only ramified prime ideals in E/k are the ideals $\mathfrak{l}_1, \ldots, \mathfrak{l}_s$. Hence, E/k is tamely ramified (in fact, by Theorem 119 of [4], the prime divisors of (p) split completely in E/k). It follows that

$$d_{E/k} = \left(\prod_{i=1}^{s} \mathfrak{l}_i\right)^{p-1}$$

Therefore, as in the proof of Lemma 4 of [1], we have

$$C(E,k) = cl(d_{E/k}^{1/2}) = cl\left(\prod_{i=1}^{s} \mathfrak{l}_{i}\right)^{(p-1)/2} = \mathfrak{c}^{s(p-1)/2} = \mathfrak{c}^{(p-1)/2}$$

Step 2. In this step we construct the element κ . Let \mathfrak{q} be a prime ideal in \mathfrak{c}^{-1} such that \mathfrak{q} is not a factor of (p). Note that $(\mathfrak{c}^{-1})^s = (\mathfrak{c}^s)^{-1} = \mathfrak{c}^{-1}$

J. E. Carter

where s is the integer of Step 1. Let $\mathfrak{c}'_{\mathfrak{m}}$ be the class in $C_k(\mathfrak{m})$ which contains \mathfrak{q} and choose distinct prime ideals $\mathfrak{q}_1, \ldots, \mathfrak{q}_s$ in $\mathfrak{c}'_{\mathfrak{m}}$ such that $(\mathfrak{q}_i, \mathfrak{l}_j) = 1$ for $1 \leq i \leq s$ and $1 \leq j \leq s+1$ where the \mathfrak{l}_j are the prime ideals of Step 1. Choose positive integers v_i for $1 \leq i \leq s$ such that $(v_i, p) = 1$ and $\sum_{i=1}^s v_i = ps$. Let \mathfrak{q}_{s+1} be a prime ideal in $(\mathfrak{c}'_{\mathfrak{m}})^{-1}$ such that $(\mathfrak{q}_{s+1}, \mathfrak{l}_j) = 1$ for $1 \leq j \leq s+1$. We have

(2.2)
$$(\kappa) = \left(\prod_{i=1}^{s} \mathfrak{q}_{i}^{v_{i}}\right) \mathfrak{q}_{s+1}^{ps}$$

where $\kappa \in \mathfrak{o}$ and $\kappa \equiv 1 \pmod{\mathfrak{m}}$. Since $((\kappa), d_{E/k}) = 1$ each \mathfrak{q}_i remains prime or splits completely in E/k.

Step 3. In this step we construct the element *e*. In the proof of Proposition 5 of [1], let $X \in W_{E/k}$ be the trivial class, $\mathfrak{b} = (\alpha \kappa)$, and $\mathfrak{m} = (1 - \zeta)^{p^2}$. Construct *e* as outlined in that proof. Then

(2.3)
$$(e) = \left(\prod_{i=1}^{l} \mathfrak{P}_{i}^{b_{i}}\right) \mathfrak{Q}^{pt}$$

as described there.

Step 4. It is straightforward to verify that with the elements constructed in the above three steps, the conditions of Theorem 6 of [2] are satisfied (see, for instance, the paragraph preceding Example 1 of [2]). Consequently, we obtain a normal extension L/k as described in that theorem with $\operatorname{Gal}(L/k) \simeq G$.

Step 5. In this step we show that no prime divisor of (p) ramifies in the extension L/k. Hence, L/k is tamely ramified. In fact, we will show that we can arrange for all prime divisors of (p) to split completely in L/k.

Assume

(2.4)
$$(1-\zeta) = \prod_{i=1}^{g} \mathfrak{p}_i^{w_i}$$

where the \mathfrak{p}_i are distinct prime ideals in k and the w_i are positive integers. Let $\mathfrak{p} = \mathfrak{p}_1$ and $w = w_1$. Thus

$$(2.5) v_{\mathfrak{p}}(1-\zeta) = w$$

Recall from Step 1 that the prime divisors of (p) split completely in E/k. Hence $\mathfrak{p}\mathfrak{O}_E = \mathfrak{P}^N$ where \mathfrak{P} is a prime ideal in E. Since $a \equiv 1 \pmod{\mathfrak{m}}$, (2.5) implies that $a \equiv 1 \pmod{\mathfrak{p}^{wp^2}}$. Hence

$$\mathfrak{p}^{wp+x} | (a-1) = (\alpha^p - 1) = \prod_{k=0}^{p-1} (\alpha - \zeta^k)$$

where x = wp(p-1). It follows that

(2.6)
$$\mathfrak{P}^{wp+x} \mid \prod_{k=0}^{p-1} (\alpha - \zeta^k)$$

and therefore

(2.7)
$$\mathfrak{P}^{w+1} \mid (\alpha - \zeta^i)$$

for some *i*. For $i \neq j$ we have $(\alpha - \zeta^i) - (\alpha - \zeta^j) = \zeta^j (1 - \zeta^{i-j})$. Therefore, by (2.5),

(2.8)
$$\mathfrak{P}^w \parallel (\alpha - \zeta^i) - (\alpha - \zeta^j)$$

Thus, by (2.7) and (2.8), $\mathfrak{P}^w \parallel (\alpha - \zeta^j)$ whenever $j \neq i$. Therefore,

$$v_{\mathfrak{P}}\Big(\prod_{j\neq i}(\alpha-\zeta^j)\Big)=(p-1)w.$$

By (2.6) we have

$$v_{\mathfrak{P}}\Big(\prod_{k=0}^{p-1} (\alpha - \zeta^k)\Big) \ge wp + x.$$

Hence

$$v_{\mathfrak{P}}\Big(\prod_{k=0}^{p-1} (\alpha - \zeta^k)\Big) = v_{\mathfrak{P}}\Big(\prod_{j \neq i} (\alpha - \zeta^j)\Big) + v_{\mathfrak{P}}(\alpha - \zeta^i)$$
$$= (p-1)w + v_{\mathfrak{P}}(\alpha - \zeta^i) \ge wp + x.$$

It follows that $v_{\mathfrak{P}}(\alpha - \zeta^i) \geq w + x$. Therefore

$$\mathfrak{P}^{w+x} | (\alpha - \zeta^i)$$

Hence, $\alpha \equiv \zeta^i \pmod{\mathfrak{P}^{w+x}}$. Since $\kappa \equiv 1 \pmod{\mathfrak{m}}$, $e^{-N} \equiv 1 \pmod{\mathfrak{m}}$, and $e^{\theta} \equiv 1 \pmod{\mathfrak{m}}$, (2.4) implies that $\kappa \equiv 1 \pmod{\mathfrak{P}^{wp^2}}$, $e^{-N} \equiv 1 \pmod{\mathfrak{P}^{wp^2}}$, and $e^{\theta} \equiv 1 \pmod{\mathfrak{P}^{wp^2}}$. Since $wp^2 \ge wp + 1$ and $w + x = w + wp(p-1) \ge wp + 1$, we obtain $c \equiv \zeta^i \pmod{\mathfrak{P}^{wp+1}}$ and $b \equiv \zeta \pmod{\mathfrak{P}^{wp+1}}$. Since $\zeta \equiv 1 \pmod{E^p}$, \mathfrak{P} splits completely in M/E and K/E by Theorem 119 of [4]. By the Galois theory of prime decomposition in algebraic number fields, it follows that \mathfrak{p} splits completely in L/k. Therefore, every prime divisor of (p) splits completely in L/k. In particular, no prime divisor of (p) ramifies in L/k. Therefore L/k is tamely ramified.

Step 6. We now show that $C(L,k) = \mathfrak{c}^{m(p-1)/2}$. From Step 1 the prime factors \mathfrak{l}_i of (a), $1 \leq i \leq s$, are distinct and are contained in the class \mathfrak{c} of C(k). Furthermore, each \mathfrak{l}_i totally ramifies in E/k. Let $\mathfrak{l}_i \mathfrak{O}_E = \mathfrak{L}_i^p$ where \mathfrak{L}_i is a prime ideal in E. From Step 2 the prime factors \mathfrak{q}_i of (κ) , $1 \leq i \leq s$, are distinct and are contained in the class \mathfrak{c}^{-1} of C(k). Furthermore, each \mathfrak{q}_i either remains prime or splits completely in E/k. Assume \mathfrak{q}_i remains prime J. E. Carter

in E/k for $1 \leq i \leq r \leq s$, say, $\mathfrak{q}_i \mathfrak{O}_E = \mathfrak{Q}_i$, and \mathfrak{q}_j splits completely in E/kfor $r+1 \leq j \leq s$, say, $\mathfrak{q}_j \mathfrak{O}_E = \mathfrak{Q}_j^N$, where \mathfrak{Q}_j is some prime ideal in E. From Step 3 the prime factors \mathfrak{P}_i of (e) are distinct and split completely in E/k, say, $\mathfrak{p}_i \mathfrak{O}_E = \mathfrak{P}_i^N$. Moreover, \mathfrak{p}_i is a prime ideal in k which is contained in the trivial class $X \in W_{E/k}$, and such that $i \neq j$ implies $\mathfrak{p}_i \neq \mathfrak{p}_j$. Finally, by construction, the ideals $(a), (\kappa)$, and (e) are pairwise relatively prime, and they are each prime to (p). We can now describe $d_{L/E}$. We have $K = E(\beta)$ where $\beta^p = b = \zeta e^{-N}$. Since

$$(b) = \Big(\prod_{i=1}^{t} \mathfrak{P}_i^{-b_i N}\Big)\mathfrak{Q}^{ptN}$$

where $(b_i, p) = 1$ for each $1 \leq i \leq t$, it follows by the proof of Theorem 118 of [4] that the prime ideals in E which ramify in K/E are precisely the prime factors of the ideals \mathfrak{P}_i^N for $1 \leq i \leq t$. Therefore, by the first part of the proof of Proposition 3 of [1],

(2.9)
$$\left(\prod_{i=1}^{t} \mathfrak{P}_{i}^{p(p-1)N}\right) \parallel d_{L/E}$$

Furthermore, the only other possible prime factors of $d_{L/E}$ are prime ideals in E which ramify in M/E. By Theorem 118 of [4] these will be among the prime factors of (c) where $c = \kappa \alpha e^{\theta}$. Since the prime factors of (e^{θ}) are included in the set of prime factors of $(b) = (e^{-N})$, which all ramify in L/E, their contribution to $d_{L/E}$ is given by (2.9). It remains to determine the contribution made to $d_{L/E}$ from (κ) and (α). Arguing as in the case of the extension K/E, we obtain

(2.10)
$$\left(\prod_{i=1}^{s} \mathfrak{L}_{i}^{p(p-1)}\right) \parallel d_{L/E}$$

and

(2.11)
$$\left(\prod_{i=1}^{r} \mathfrak{Q}_{i}^{p(p-1)}\right) \left(\prod_{i=r+1}^{s} \mathfrak{Q}_{i}^{p(p-1)N}\right) \parallel d_{L/E}.$$

Taking the product of the factors appearing in (2.9)–(2.11) we obtain $d_{L/E}$. Since $N_{E/k}(\mathfrak{L}_i) = \mathfrak{l}_i, N_{E/k}(\mathfrak{Q}_i) = \mathfrak{q}_i^p$ for $1 \leq i \leq r, N_{E/k}(\mathfrak{Q}_i^N) = \mathfrak{q}_i^p$ for $r+1 \leq i \leq s$, and $N_{E/k}(\mathfrak{P}_i^N) = \mathfrak{p}_i^p$, we have, letting $\delta = (p-1)/2$,

$$C(L,k) = C(E,k)^{[L:E]} \mathfrak{N}_{E/k}(C(L,E)) = \mathfrak{c}^{p^2\delta} \mathfrak{N}_{E/k}(\operatorname{cl}(d_{L/E}^{1/2}))$$
$$= \mathfrak{c}^{p^2\delta} \operatorname{cl}(N_{E/k}(d_{L/E}^{1/2})) = \mathfrak{c}^{p^2\delta} \mathfrak{c}^{sp\delta} \mathfrak{c}^{-sp^2\delta} X^{tp^2\delta}$$
$$= \mathfrak{c}^{p^2\delta} \mathfrak{c}^{p\delta} \mathfrak{c}^{-p^2\delta} X^{p^2\delta} = \mathfrak{c}^{p\delta} = \mathfrak{c}^{m(p-1)/2}.$$

Hence, $R_t(k, G) \supseteq C(k)^{m(p-1)/2}$.

Acknowledgements. This work appears as part of the author's Ph.D. thesis. He would like to thank Professors Leon R. McCulloh and Stephen V. Ullom for their comments and suggestions.

References

- J. E. Carter, Steinitz classes of a nonabelian extension of degree p³, Colloq. Math. 71 (1996), 297–303.
- [2] —, Characterization of Galois extensions of prime cubed degree, Bull. Austral. Math. Soc. 55 (1997), 99–112.
- [3] A. Fröhlich and M. J. Taylor, *Algebraic Number Theory*, Cambridge University Press, 1991.
- [4] E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer, 1981.
- [5] R. L. Long, Steinitz classes of cyclic extensions of prime degree, J. Reine Angew. Math. 250 (1971), 87–98.
- [6] —, Steinitz classes of cyclic extensions of degree l^r, Proc. Amer. Math. Soc. 49 (1975), 297–304.
- [7] L. R. McCulloh, Cyclic extensions without integral bases, ibid. 17 (1966), 1191– 1194.

Department of Mathematics College of Charleston 66 George Street Charleston, South Carolina 29424-0001 U.S.A. E-mail: carter@math.cofc.edu

Received on 5.6.1996

(2997)