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0. Introduction. Let L/k be a finite extension of algebraic number
fields. Let OL and o denote the rings of integers in L and k, respectively. As
an o-module, OL is completely determined by [L : k] and its Steinitz class
C(L, k) in the class group C(k) of k (see [3], Theorem 13). Now let G be a
finite group. As L varies over all normal extensions of k with Gal(L/k) ' G,
C(L, k) varies over a subset R(k,G) of C(k). If we consider only tamely
ramified such extensions, then this set is denoted by Rt(k,G). An interesting
problem is to determine R(k,G) or Rt(k,G) for various k and G. In [7]
McCulloh shows that if G is a cyclic group of order n, and k contains the
multiplicative group µn of nth roots of unity, then R(k,G) = Rt(k,G) =
C(k)d (the subgroup of C(k) consisting of dth powers of elements of C(k)
where d is a positive rational integer which depends on n).

From now on, unless otherwise stated, p will denote an odd prime. In
[5] it is shown that when k is any algebraic number field and G is cyclic of
order p, then Rt(k,G) is again a subgroup of C(k). This result is extended
in [6] to include cyclic groups of order pr, where r ≥ 1. In [1] we assume
k contains µp and G is the nonabelian group of order p3 with exponent p.
There is an exact sequence of groups

Σ : 1→ A→ G→ B → 1

where B is cyclic of order p. We fix, once and for all, a tamely ramified
normal extension E/k with Gal(E/k) ' B. As L varies over all tamely
ramified normal extensions of k of a particular type which contain E, and
such that Gal(L/k) ' G, C(L, k) varies over a subset Rt(E/k,Σ) of C(k).
It is shown that when the ring of integers in E is free as an o-module,
then Rt(E/k,Σ) is a subgroup of C(k). In the present paper, we continue
to assume k contains the appropriate roots of unity, and we return to our
consideration of the set Rt(k,G). Making essential use of results of [1] and
[2], we will show that Rt(k,G) is always a subgroup of C(k) when G is
either of the two nonabelian groups of order p3. More specifically, we prove
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the following theorem:

Theorem 0.1. Let k be an algebraic number field and let G be a non-
abelian group of order p3 = mn where n is the exponent of G. If µn ⊆ k
then

Rt(k,G) = C(k)m(p−1)/2.

For the remainder of the paper, the notation will be as introduced above
and in [1] and [2].

1. First inclusion. In this section we prove the following proposition:

Proposition 1.1. Let k be any algebraic number field and let G be a
nonabelian group of order p3 = mn where n is the exponent of G. Then

Rt(k,G) ⊆ C(k)m(p−1)/2.

P r o o f. Let L/k be a tamely ramified normal extension with Gal(L/k) '
G. Suppose p is a prime ideal in k which ramifies in L/k, say

p =
( g∏

i=1

Pi

)e

where the ramification index e = e(Pi, p) > 1. Let f = f(Pi, p) be the
residue class degree and let D be the different of L/k. Since p is tamely
ramified in L/k, vPi(D) = e− 1 for each i. Therefore

pfg(e−1) ‖NL/k(D) = dL/k.

Now suppose P is any of the prime ideals in L which divides p. Since the
tame ramification group of P over p is cyclic of order e it follows that G
contains an element of order e. Therefore e |n. Since mn = p3 = efg we
have m | fg. Therefore

C(L, k) = cl(d1/2
L/k) ∈ C(k)m(p−1)/2.

2. Second inclusion. Let k and G be as described in the statement of
Theorem 0.1. By Proposition 1.1,

Rt(k,G) ⊆ C(k)m(p−1)/2.

We will now establish the reverse inclusion thereby proving the theorem.

Proposition 2.1. Let k and G be as described in the statement of The-
orem 0.1. Then

Rt(k,G) ⊇ C(k)m(p−1)/2.

P r o o f. There are two cases to consider.

C a s e 1. Suppose n = p. Let c be any class in C(k). We construct
a tamely ramified normal extension L/k such that Gal(L/k) ' G and
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C(L, k) = cm(p−1)/2: by Theorem 2 of [7] there exists a tamely ramified
normal extension E/k of degree p such that C(E, k) = c(p−1)/2. In Propo-
sition 5 of [1] let X ∈ WE/k be the trivial class. That proposition gives a
tamely ramified normal extension L/k containing E such that Gal(L/k) ' G
and C(L, k) = (cX)m(p−1)/2 = cm(p−1)/2. Therefore

Rt(k,G) ⊇ C(k)m(p−1)/2.

C a s e 2. Suppose n = p2. In the introduction of [2], the structure of
G is described in terms of generators and relations and the parameters s
and l. According to that description we may assume s = 1 and l = 1. Let
c be any class in C(k). In the following four steps we construct a normal
extension L/k as described in Theorem 6 of [2] such that Gal(L/k) ' G.
We then show in the remaining two steps that L/k is tamely ramified and
C(L, k) = cm(p−1)/2.

Step 1. In this step we construct a tamely ramified cyclic extension E/k
of degree p such that C(E, k) = c(p−1)/2.

Let m = (1−ζ)p
2
. Choose an odd integer s > 3 such that cs = c. Let l be

a prime ideal in c such that l is not a factor of (p). Let Ck(m) be the ray class
group modulo m of k, and let cm be the element of Ck(m) which contains
l. Choose distinct prime ideals l1, . . . , ls in cm. Choose positive integers ui,
1 ≤ i ≤ s, such that (ui, p) = 1 for each i and

∑s
i=1 ui = p2s (e.g. ui = p2−1

for 1 ≤ i ≤ (s+ 1)/2, ui = p2 + 1 for (s+ 3)/2 ≤ i ≤ s−1, and us = p2 + 2).
Let ls+1 be a prime ideal in c−1. Then

(2.1) (a) =
( s∏

i=1

luii

)
lp

2s
s+1

where a ∈ o and a ≡ 1 (mod m). Let E = k(α) where αp = a. Let ζ be
a primitive pth root of unity. By Kummer theory E/k is cyclic of degree
p with, say, Gal(E/k) ' 〈%〉 where %(α) = ζα. Furthermore, by the proof
of Theorem 118 of [4], and by Theorem 119 of [4], the only ramified prime
ideals in E/k are the ideals l1, . . . , ls. Hence, E/k is tamely ramified (in fact,
by Theorem 119 of [4], the prime divisors of (p) split completely in E/k). It
follows that

dE/k =
( s∏

i=1

li

)p−1
.

Therefore, as in the proof of Lemma 4 of [1], we have

C(E, k) = cl(d1/2
E/k) = cl

( s∏

i=1

li

)(p−1)/2
= cs(p−1)/2 = c(p−1)/2.

Step 2. In this step we construct the element κ. Let q be a prime ideal
in c−1 such that q is not a factor of (p). Note that (c−1)s = (cs)−1 = c−1
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where s is the integer of Step 1. Let c′m be the class in Ck(m) which contains
q and choose distinct prime ideals q1, . . . , qs in c′m such that (qi, lj) = 1
for 1 ≤ i ≤ s and 1 ≤ j ≤ s + 1 where the lj are the prime ideals of
Step 1. Choose positive integers vi for 1 ≤ i ≤ s such that (vi, p) = 1 and∑s
i=1 vi = ps. Let qs+1 be a prime ideal in (c′m)−1 such that (qs+1, lj) = 1

for 1 ≤ j ≤ s+ 1. We have

(2.2) (κ) =
( s∏

i=1

qvii

)
qpss+1

where κ ∈ o and κ ≡ 1 (mod m). Since ((κ), dE/k) = 1 each qi remains
prime or splits completely in E/k.

Step 3. In this step we construct the element e. In the proof of Proposition
5 of [1], let X ∈ WE/k be the trivial class, b = (ακ), and m = (1 − ζ)p

2
.

Construct e as outlined in that proof. Then

(2.3) (e) =
( t∏

i=1

Pbi
i

)
Qpt

as described there.

Step 4. It is straightforward to verify that with the elements constructed
in the above three steps, the conditions of Theorem 6 of [2] are satis-
fied (see, for instance, the paragraph preceding Example 1 of [2]). Con-
sequently, we obtain a normal extension L/k as described in that theorem
with Gal(L/k) ' G.

Step 5. In this step we show that no prime divisor of (p) ramifies in the
extension L/k. Hence, L/k is tamely ramified. In fact, we will show that we
can arrange for all prime divisors of (p) to split completely in L/k.

Assume

(2.4) (1− ζ) =
g∏

i=1

pwii

where the pi are distinct prime ideals in k and the wi are positive integers.
Let p = p1 and w = w1. Thus

(2.5) vp(1− ζ) = w.

Recall from Step 1 that the prime divisors of (p) split completely in E/k.
Hence pOE = PN where P is a prime ideal in E. Since a ≡ 1 (mod m),
(2.5) implies that a ≡ 1 (mod pwp

2
). Hence

pwp+x | (a− 1) = (αp − 1) =
p−1∏

k=0

(α− ζk)
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where x = wp(p− 1). It follows that

(2.6) Pwp+x
∣∣
p−1∏

k=0

(α− ζk)

and therefore

(2.7) Pw+1 | (α− ζi)
for some i. For i 6= j we have (α− ζi)− (α− ζj) = ζj(1− ζi−j). Therefore,
by (2.5),

(2.8) Pw ‖ (α− ζi)− (α− ζj).
Thus, by (2.7) and (2.8), Pw ‖ (α− ζj) whenever j 6= i. Therefore,

vP

(∏

j 6=i
(α− ζj)

)
= (p− 1)w.

By (2.6) we have

vP

( p−1∏

k=0

(α− ζk)
)
≥ wp+ x.

Hence

vP

( p−1∏

k=0

(α− ζk)
)

= vP

(∏

j 6=i
(α− ζj)

)
+ vP(α− ζi)

= (p− 1)w + vP(α− ζi) ≥ wp+ x.

It follows that vP(α− ζi) ≥ w + x. Therefore

Pw+x | (α− ζi).
Hence, α ≡ ζi (mod Pw+x). Since κ ≡ 1 (mod m), e−N ≡ 1 (mod m),
and eθ ≡ 1 (mod m), (2.4) implies that κ ≡ 1 (mod Pwp2

), e−N ≡ 1
(mod Pwp2

), and eθ ≡ 1 (mod Pwp2
). Since wp2 ≥ wp + 1 and w + x =

w + wp(p − 1) ≥ wp + 1, we obtain c ≡ ζi (mod Pwp+1) and b ≡ ζ
(mod Pwp+1). Since ζ ≡ 1 (mod Ep), P splits completely in M/E and
K/E by Theorem 119 of [4]. By the Galois theory of prime decomposition
in algebraic number fields, it follows that p splits completely in L/k. There-
fore, every prime divisor of (p) splits completely in L/k. In particular, no
prime divisor of (p) ramifies in L/k. Therefore L/k is tamely ramified.

Step 6. We now show that C(L, k) = cm(p−1)/2. From Step 1 the prime
factors li of (a), 1 ≤ i ≤ s, are distinct and are contained in the class c of
C(k). Furthermore, each li totally ramifies in E/k. Let liOE = Lpi where Li
is a prime ideal in E. From Step 2 the prime factors qi of (κ), 1 ≤ i ≤ s,
are distinct and are contained in the class c−1 of C(k). Furthermore, each qi
either remains prime or splits completely in E/k. Assume qi remains prime
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in E/k for 1 ≤ i ≤ r ≤ s, say, qiOE = Qi, and qj splits completely in E/k
for r+1 ≤ j ≤ s, say, qjOE = QN

j , where Qj is some prime ideal in E. From
Step 3 the prime factors Pi of (e) are distinct and split completely in E/k,
say, piOE = PN

i . Moreover, pi is a prime ideal in k which is contained in
the trivial class X ∈WE/k, and such that i 6= j implies pi 6= pj . Finally, by
construction, the ideals (a), (κ), and (e) are pairwise relatively prime, and
they are each prime to (p). We can now describe dL/E . We have K = E(β)
where βp = b = ζe−N . Since

(b) =
( t∏

i=1

P−biNi

)
QptN

where (bi, p) = 1 for each 1 ≤ i ≤ t, it follows by the proof of Theorem
118 of [4] that the prime ideals in E which ramify in K/E are precisely the
prime factors of the ideals PN

i for 1 ≤ i ≤ t. Therefore, by the first part of
the proof of Proposition 3 of [1],

(2.9)
( t∏

i=1

P
p(p−1)N
i

) ∥∥ dL/E .

Furthermore, the only other possible prime factors of dL/E are prime ideals
in E which ramify in M/E. By Theorem 118 of [4] these will be among
the prime factors of (c) where c = καeθ. Since the prime factors of (eθ)
are included in the set of prime factors of (b) = (e−N ), which all ramify in
L/E, their contribution to dL/E is given by (2.9). It remains to determine
the contribution made to dL/E from (κ) and (α). Arguing as in the case of
the extension K/E, we obtain

(2.10)
( s∏

i=1

L
p(p−1)
i

) ∥∥ dL/E

and

(2.11)
( r∏

i=1

Q
p(p−1)
i

)( s∏

i=r+1

Q
p(p−1)N
i

) ∥∥ dL/E .

Taking the product of the factors appearing in (2.9)–(2.11) we obtain dL/E .
Since NE/k(Li) = li, NE/k(Qi) = qpi for 1 ≤ i ≤ r, NE/k(QN

i ) = qpi for
r + 1 ≤ i ≤ s, and NE/k(PN

i ) = ppi , we have, letting δ = (p− 1)/2,

C(L, k) = C(E, k)[L:E]NE/k(C(L,E)) = cp
2δNE/k(cl(d1/2

L/E))

= cp
2δ cl(NE/k(d1/2

L/E)) = cp
2δcspδc−sp

2δXtp2δ

= cp
2δcpδc−p

2δXp2δ = cpδ = cm(p−1)/2.

Hence, Rt(k,G) ⊇ C(k)m(p−1)/2.
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