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Remarks on a question of Skolem
about the integer solutions of x1x2 − x3x4 = 1

by

Umberto Zannier (Venezia)

Introduction. We discuss here a problem raised by a remark due to
Skolem, appearing in [Sko], p. 23, Bemerkung 1, concerning the integer so-
lutions of the equation

(1) x1x2 − x3x4 = 1.

He pointed out that it seemed unlikely that all the integral solutions could
be obtained from a fixed polynomial parametrization of (1) by letting the
variables run through all integers (actually Skolem considered the more gen-
eral equation det(xij) = 1, 1 ≤ i, j ≤ n). Observe (cf. [Sz]) that we can find
infinitely many polynomial solutions of (1) with coefficients in Z by consider-
ing the generic continued fractions a0+ 1

a1+ . . . 1
an

where the ai are variables.
As is well known, we can write the value of such fraction as pn/qn, where
pn, qn are polynomials in the ai’s satisfying pn+1qn−qn+1pn = (−1)n. How-
ever, no such formula produces all integral solutions of x1x2 − x3x4 = 1 by
letting the ai run through all integers: in fact, it can be easily shown by in-
duction on n that, if the ai ∈ Z, the rational number pn/qn has a continued
fraction expansion with a number of terms bounded by a function of n only.
(These references and remarks were pointed out to me by A. Schinzel.)

In the present note we shall prove Skolem’s expectation under the as-
sumption (apparently very strong, but see Remarks 3, 4 and Example 1
below) that the polynomials appearing in the parametrization depend on
three variables only (i.e. like the dimension of the quadric defined by (1));
actually, we shall argue over any number field k, with ring of integers Ok.
We have the following

Theorem 1. Given a finite number of polynomial solutions of (1) xi =
p

(j)
i ∈ k[t1, t2, t3], j = 1, . . . , h, there exist numerical solutions of (1),

(a1, a2, a3, a4) ∈ O4
k which cannot be obtained from any of the polynomial

ones by specializations of the ti’s to integers in Ok.

[153]
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We shall deduce Theorem 1 from Theorem 2 below, which leads to similar
statements for more general varieties.

With no restriction on the number of variables in the parametrization, we
have strong evidence that the result should not be true for general fields k;
more precisely, relating the question with Artin’s conjecture on primitive
roots, we shall point out in Remark 3 how the truth of the Generalized Rie-
mann Hypothesis implies the existence of counterexamples to the analogue
for Z[

√
2] of Skolem’s belief, already allowing five variables. (The method

actually works for any k which is neither the rational field nor an imaginary
quadratic field.)

This fact also says that no refinement of our method, which works for
rings of integers of any number field k, can possibly provide a complete
answer to Skolem’s feeling, which, if correct, seems to depend on peculiar
properties of Z compared to general Ok (like e.g. the structure of units).
Actually, it is possible that the example of Remark 3, for the field Q(

√
2)

and five variables, gives as a byproduct an example over the rational field,
in ten variables. We shall briefly explain this in Remark 4, pointing out
the connection of the problem with a simply stated general question on
polynomial ideals.

On the other hand, it would be interesting to sharpen the theorem by
allowing the polynomials to depend on four variables. Of course this would
be conjecturally best possible, in view of the above remarks. We conclude
this section with two examples illustrating what can happen in this respect
for other simple equations.

Example 1. Take V to be the affine cone with equation x2 + y2 = z2.
It is easy to see (using e.g. the well known formulae recalled below), that
V satisfies assumption VW of Theorem 2 below: namely, roughly speaking
there are integral points satisfying any compatible congruence condition.
Also, V is normal and not isomorphic to affine space. Nevertheless, the
formulas x = 2abc, y = (a2−b2)c, z = (a2+b2)c and the similar one obtained
by interchanging x, y, produce all the integral solutions by letting a, b, c
run through Z. This shows that we cannot in general expect results like
Theorem 1 (or Theorem 2) allowing more variables than the dimension. In
this example V is not smooth, however. I do not know to what extent the
existence of singularities can influence the conclusions in the general case.

Example 2. In contrast with Example 1, we sketch a proof that, for the
variety V defined by z2 = 1 + xy, its points over Z cannot be obtained from
any number of parametrizations defined over Q (1), even if we allow three
variables. The argument (like Remark 3!) is related to the lack of units of Z.

(1) This restriction can be eliminated.
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Assume the contrary and let φ := (φ1, φ2, φ3) be one of the relevant
parametrizations, where the φi ∈ Q[t1, t2, t3]. Considering the equation
(φ3 − 1)(φ3 + 1) = φ1φ2 we easily see that, for some α, β, δ, η ∈ Q[t1, t2, t3]
such that αη − βδ = 2, we have φ1 = αδ, φ2 = βη, φ3 = βδ + 1 (2). Choose
now rational integers r, s, d, e with re− sd = 2. Then (rd, se, sd+ 1) lies on
V(Z), so it is in φ(Z) for some φ as above, taken from a finite set. Comparing
with the above equations it is now easy to see that, for some integer a, taken
from a finite set (3), (r, s, d, e) lies in the image on Z3 of (aα, aβ, a−1δ, a−1η).
So all the integer solutions of xy − zw = 2 could be obtained from a finite
number of polynomial parametrizations in three variables, in contradiction
with the obvious analogue of Theorem 1 (which follows in the same way
from Theorem 2, and has not been stated for simplicity).

Proofs. Before stating Theorem 2 we introduce some notation and a
couple of definitions. For k a number field, we let Σk be the set of its places.
For v ∈ Σk, kv will denote, as usual, the completion of k with respect to v.
We will denote with Ov = Ok,v the valuation ring of kv. For an affine variety
V ⊂ An and a ring R, we shall denote by V(R) the set of points of V with
coordinates in R.

Definition 1. Let V be an affine variety defined over a number field k.
We say that V has the weak approximation property for a finite set S of
places if V(Ok) is dense in

∏
v∈S V(Ov). We say that V has the very weak

approximation property (denoted by VW) if there exists a finite set S0 of
places of k such that V has the weak approximation property for every finite
set S disjoint from S0.

This definition is essentially copied from Def. 3.5.6, p. 29 of [Se], which
however refers to projective (instead of affine) varieties and rational (instead
of integral) points. From [Se], p. 19, we recall another definition.

Definition 2. A subset A ⊂ V(k) is of type (C1) if it is not Zariski
dense in V, of type (C2) if there is a variety V ′ with dimV ′ = dimV and a
generically surjective morphism π : V ′ → V of degree ≥ 2 with A ⊂ π(V ′(k)).
Finally, A is called thin if it is contained in a finite union of sets of type
(C1) or (C2).

We have the following result (which could be stated in a more general
form with Ad replaced by another d-dimensional affine variety).

Theorem 2. Let V ⊂ An be an affine normal variety of dimension d,
defined over k and satisfying VW. Let Φ1, . . . , Φh : Ad → V be morphisms.

(2) E.g. put δ := gcd(φ1, φ3 − 1) etc.
(3) Here we use the fact that Z has finitely many units.
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Suppose that V(Ok) is contained in the union of Φj(Odk), 1 ≤ j ≤ h. Then
some Φj is an isomorphism defined over k.

Note that normality is relevant: without that assumption, the data k =
Q, V = {(x, y) : y2 = x3}, Φ1 : A1 → V, Φ1(t) = (t2, t3), provide a coun-
terexample, as is easy to verify.

We let Q be the affine quadric defined by (1). It is a nonsingular, whence
normal, variety. Hence Theorem 1 follows at once from Theorem 2 and the
next two lemmas. The content of Lemma 1 is certainly known, but, lacking
a reference, we give the very short proof.

Lemma 1. Q satisfies VW.

P r o o f. We take S0 to be the set of archimedean places of k. Then,
in view of the Chinese theorem, it plainly suffices to prove the follow-
ing: Let a, b, c, d,M ∈ Ok and let ab− cd ≡ 1 (mod M). Then there exists
(a∗, b∗, c∗, d∗) ∈ Q(Ok) such that (a∗, b∗, c∗, d∗) ≡ (a, b, c, d) (mod M). To
see this we first observe that (a, c,M)Ok = 1, so, replacing if necessary a
with a + tM (for a suitable t ∈ Ok), we may in fact assume (a, c)Ok = 1.
Put ab − cd = 1 + qM , q ∈ Ok and find x, y ∈ Ok with ax − cy = q. Then
a(b− xM)− c(d− yM) = 1, proving what is needed.

Lemma 2. The affine quadric Q defined by (1) is not isomorphic to affine
3-space, even over C.

This is probably well known (in any dimension, for affine quadrics equiv-
alent to

∑n
i=1 x

2
i = 1), but I have no reference for a direct proof. Here are

two simple arguments.
Assume the contrary. Then there exists a morphism f : A3 → Q such

that its inverse g is a regular function on Q, namely given by polynomials
in the coordinates x1, . . . , x4. Now, this amounts to the fact that certain
equations in the coefficients of the relevant polynomials have a complex
solution. By the Nullstellensatz, these equations have already a solution over
some number field k. If p is a large prime number and π is a prime ideal
in Ok lying above p, we can reduce the coefficients modulo π, producing an
isomorphism of Q with affine space, defined over some finite field Fq, say.
Now we use a suggestion of D. Zagier: the existence of that isomorphism
would imply in particular that the two relevant varieties have the same
number of points over Fq, so it suffices to prove this is not true (we are
using the zeta function as an invariant). Formulas can be computed at once
in our case. Affine 3-space has q3 points over Fq. As to Q, we have plainly

#Q(Fq) = #SL2(Fq) =
1

q − 1
#GL2(Fq) = (q2 − 1)q,

proving what is needed.
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For the second argument (which will be useful in connection with Re-
mark 2), observe first that by a linear transformation with complex coeffi-
cients the equation for Q may be brought in the form x2

1 + . . . + x2
4 = 1.

Consider the differential form on Q

ω :=
dx1 ∧ dx2 ∧ dx3

x4
.

Observe that ω is regular throughout on Q. In fact, differentiating the
defining equation we have x1dx1 + . . . + x4dx4 = 0 whence, for all j,
ω = ±(1/xj)

∧
i6=j dxi. Since Q is plainly covered by its intersection with

the sets where xj 6= 0 we get the assertion.
Since ω has maximal dimension (as a holomorphic form), it is certainly

closed. If on the other hand it were exact, its integral over the real part of
Q, namely over the sphere S3, would be zero, in view of the Stokes theorem;
we shall now show that this is not the case. In particular this will prove that
Q is not homeomorphic to affine 3-space. Also, the argument automatically
proves that S3 has nontrivial homology class in H3(Q) (4).

We can transform ω by using the rational parametrization of Q obtained
by intersecting it with the pencil of lines through the point P := (0, 0, 0, 1).
The parametrization takes the form

xi = − 2wi
σ + 1

for i < 4, x4 =
σ − 1
σ + 1

where σ := w2
1 + w2

2 + w2
3. The inverse, defined on Q \ {P}, is given by

wi = xi/(x4 − 1). In particular, this provides a 1-1 C∞ map from R3 to
S3 \ {P}, which can be used for the computation of the above mentioned
integral. We find, after some computations,

dx1 ∧ dx2 ∧ dx3 = x4

(
2

σ + 1

)3

dw1 ∧ dw2 ∧ dw3.

Using the above parametrization we therefore find

\
S3

ω =
\
R3

(
2

σ + 1

)3

dw1 ∧ dw2 ∧ dw3 6= 0

as wanted (5).

Before proving Theorem 2 we need another lemma.

(4) This fact in turn implies that e.g. there is no morphism φ : A4 → Q which is the
identity on Q: otherwise Q would be a retract of affine 4-space, whence would have trivial
homology. Of course the existence of such a morphism would produce a parametrization
of all integral points.

(5) It seems not obvious how to prove algebraically that ω is not exact.
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Lemma 3. Let A be a thin subset of V(k) and let S0 be a finite set of
places of k. Then there exists a finite set S ⊂ Σk, disjoint from S0, such
that the image of A in

∏
v∈S V(Ov) is not dense.

This is Theorem 3.5.3, p. 28 of [Se], except that kv has been replaced
by Ov. Actually, the proof described in [Se], through Propositions 3.5.1 and
3.5.2, gives the present statement.

P r o o f o f T h e o r e m 2. Renumbering indices if necessary, we may
assume that Φ1, . . . , Φr are defined over k and generically surjective, while,
for each j > r, either Φj is not defined over k or its image is contained in
some proper closed subvariety of Q. Let Φ := (φ1, . . . , φn) be some Φj , not
defined over k. Here the φi are polynomials in d variables, not all of whose
coefficients lie in k. So we see that {x ∈ kd : Φ(x) ∈ kn} is contained in a
proper algebraic subset of Ad. In particular Φ(Odk)∩V(Ok) is contained in an
algebraic subset of V of dimension ≤ d− 1. Hence there exists an algebraic
subset W ⊂ V, of dimension < d, such that

(2) (V \W)(Ok) ⊂
⋃

j≤r
Φj(Odk).

Renumbering again the first r indices if necessary we may assume that
Φ1, . . . , Φs are birational isomorphisms, while Φj has degree ≥ 2 for all j
with s < j ≤ r. By adding to W a proper closed subset of V if necessary,
we may assume that, for j = 1, . . . , s, the inverse of Φj (a rational function
on V) is defined on V \W, so, in particular, each point on (V \W)(C) is the
image under Φj of a unique point on Ad(C).

In view of Definition 2 the set A :=
⋃
s<j≤r Φj(Odk)∪W(Ok) is thin, and

we have, by (2)

(3) V(Ok) \A ⊂
⋃

j≤s
Φj(Odk).

If some Φj , j ≤ s, is an isomorphism we are done, so assume the contrary
to derive a contradiction. Let t1, . . . , td be the coordinate functions on Ad.
Under each of the Φ−1

j , j ≤ s, we may view the ti as rational functions
on V. Since no such Φj is an isomorphism, for each j ≤ s we may find i = ij
such that ti lies in k(V) \ k[V]. We denote by gj such a function. Since V
is normal, the only rational functions on Q with trivial divisor of poles are
the regular ones (by e.g. [Hart, Prop. 6.3A, p. 132]) and we can thus write,
for a suitable prime divisor Dj on V (say defined over k),

gj = ξj/ηj , 1 ≤ j ≤ s,
where ξj , ηj ∈ k[V], ξj is a unit at Dj while ηj has positive order at Dj .

Denote by Pj the (d − 1)-dimensional quasi-affine variety obtained by
removing from Dj the set of zeros of ξj . Let xj be a point on Pj having co-
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ordinates which are algebraic over k and let L be the number field generated
over k by all such coordinates, with ring of integers OL.

Also, let S0 be a finite set of places of k such that V(Ok) is dense in∏
v∈S V(Ov) for all finite S ⊂ Σk disjoint from S0. Select now distinct prime

numbers l1, . . . , ls splitting completely in L and not lying below places in S0,
and choose places µ1, . . . , µs ⊂ ΣL, lying resp. above l1, . . . , ls. By choosing
the lj large we may assume that the coefficients of the Φj and the coordinates
of the xj are µj-integers. We have Lµj = Qlj for each j ≤ s. Finally, let
S1 := {v1, . . . , vs} be the set of places of k lying resp. below µ1, . . . , µs.
Plainly OL,µj = Ok,vj = Zlj .

By Lemma 3 we may find a set S2 ⊂ Σk, disjoint from S0∪S1, such that
the image of A in

∏
v∈S2

V(Ov) is not dense. Let Ω be an open subset of∏
v∈S2

V(Ov) disjoint from the image of A.
Observe that, for each j ≤ s, there exists a neighborhood Ij of xj in

V(OL,µj ) (we remark that xj ∈ V(OL,µj )) such that, for x ∈ Ij , gj(x) is not
a µj-integer whenever it is defined: this is true because ηj(xj) = 0, while
ξj(xj) 6= 0. Since OL,µj = Ok,vj = Ovj , Ij is a neighborhood of xj in V(Ovj ).
By the defining property of S0 we may find a point α ∈ V(Ok) such that its
image in

∏
v∈S1∪S2

V(Ov) lies in (
∏
j≤s Ij)×Ω. We contend that any such

point provides the desired contradiction. In fact, first of all, α cannot lie in
A, by our choice of Ω. In particular, α cannot lie on W, so Φ−1

j is defined
at α for j ≤ s and we have α = Φj(βj), for a uniquely determined βj ∈ Ad.
Now, gj(α) is equal to some coordinate of βj and is not a vj-integer. Hence
α cannot be in the image of Φj on Odk and, since α does not lie in A, we
have a contradiction with (3).

R e m a r k 1. It is possible to prove Theorem 1 in an ad hoc manner,
using the ordinary version of the Hilbert Irreducibility Theorem (see e.g.
[La], [Sch] or [Se]) in place of Lemma 3. (In fact, the concept of very-weak
approximation and the above Lemma 3 are related to Hilbert’s theorem and
indeed lead to a version of it; this is due to J.-L. Colliot-Thélène [CT] and
T. Ekedahl [Ek]; see [Se, Thm. 3.5.7, p. 30] and [Se, Prop. 3.3.1, p. 23]).

We may roughly describe such a proof as consisting of two parts. First
a rationality part, based on H.I.T.: we forget integrality conditions and
simply show that, for certain points α on V, the corresponding possible
values of the coordinates ti on Ad, for points in the inverse image relative to
some Φj , cannot be even rational (this happens when degΦj ≥ 2). Second,
an integrality part, equal to the above: we show that those values of the
parameters which could be possibly rational, cannot in fact all be integral
(this has to do with the Φj having degree 1). The first part is related to
Hilbert’s theorem, while the argument for the second one consists essentially
in a crude form of Weil’s Decomposition Theorem (see [We] or [La, p. 263]),
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stating roughly that the factorization of the divisor of a rational function
implies a corresponding factorization of its values at algebraic points.

R e m a r k 2. It is possible to prove a sharper version of Theorem 1;
namely, even letting the variables ti run through the ring O of all algebraic
integers in place of Ok, we cannot obtain all solutions in Ok; this sharper
result requires a corresponding sharpening of the above Lemma 2. Namely
we need the following statement: there does not exist a finite morphism from
affine 3-space to Q. A proof of this result may be obtained as in our second
argument for the present Lemma 2: if such a morphism existed the form ω
would induce a regular closed form ω∗ on A3, which would be exact. Now,
taking the trace of an equation ω∗ = dη, say, we expect to show that ω itself
would be exact, a fact which we have proved to be false. However, that the
trace sends regular forms into regular ones seems to me not so automatic.
I have now found a proof, written in a forthcoming paper [Za]; in fact, I
have found no references for the needed result. Alternatively, C. Deninger
has pointed out to me that a proof of the improved lemma may be ob-
tained (in any characteristic 6= 2) using étale cohomology of quadrics and
the pushforward map.

To derive the above contention from the sharpened Lemma 2, we may
prove an analogue of Theorem 2, assuming now that V(Ok) ⊂ ⋃j≤h Φj(Od),
to conclude that some Φj is a finite morphism defined over k. The proof
runs like the above one, but now it is necessary to consider, in addition
to the gj , the rational functions on V obtained as follows. Let Φj be a
generically surjective one among the given morphisms. Then we may view
the function field of Ad as a finite extension of the function field of V. So
the coordinate functions ti on Ad satisfy monic irreducible equations over
k(V). By [Se], Prop. 3.3.1, p. 23, such equations remain irreducible over k if
we specialize the coefficients to points in V(Ok), except for a thin set. If for
given j all the coefficients of such equations are regular functions on V, we
see that Φj is finite and we are done. Otherwise some such coefficient will
have nontrivial divisor of poles. We must take into account precisely the set
of such coefficients (which includes the set of the gj , considered in the above
proof). The rest of the argument is exactly the same as above.

R e m a r k 3. As announced in the introduction we shall sketch (condi-
tional) arguments which show that the analogue of Theorem 1 is hardly true
if five variables are allowed.

We start with the parametrization of Q coming from the general simple
continued fraction with five partial quotients, namely the fraction

a0 +
1
a1+

1
a2+

1
a3+

1
a4
.
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If p3/q3 and p4/q4 are the last two convergents, we see, putting x1 = p3, x2 =
q4, x3 = p4, x4 = q3, that x1, x2, x3, x4 are polynomials in a0, . . . , a4 satisfy-
ing (1). Also, we find that, identically,

(4)
a0 =

(1 + a3a4)x1 − a3x3

(1 + a3a4)x4 − a3x2
, a1 = (1 + a3a4)x4 − a3x2,

a2 =
x2 − a4x4 − 1

(1 + a3a4)x4 − a3x2
.

Let now P ∗ := (x∗1, x
∗
2, x
∗
3, x
∗
4) ∈ Q(Ok). We substitute x∗i for xi in (4) and

try to choose a3, a4 ∈ Ok to make a1 = (1 + a3a4)x∗4 − a3x
∗
2 a unit u ∈ O∗k.

If this may be done, then even a0, a2 will lie in Ok, so the point P ∗ will be
obtained integrally from the parametrization.

Our equation is u = (1 + a3a4)x∗4 − a3x
∗
2 = x∗4 + a3(a4x

∗
4 − x∗2). Hence

it suffices if a4 ∈ Ok may be found with x∗4 ≡ u (mod x∗2 − a4x
∗
4). Our

problem will be solved provided it is possible to choose a4 ∈ Ok such that
π := x∗2 − a4x

∗
4 is a prime element in Ok with the property that the cyclic

group (Ok/(π))∗ is in fact equal to the reduction (mod π) of the unit group:
this condition is plainly sufficient for the above congruence to be solvable
in u.

To fix ideas, let k = Q(
√

2), so Ok = Z[
√

2]. Now each unit is of the
form ±εm, where ε = 1+

√
2. To reach the above goal we must first produce

prime elements π ≡ x∗2 (mod x∗4). This can be achieved by the generalized
Dirichlet theorem, since (x∗2, x

∗
4) = 1 for any P ∗ ∈ Q(Ok), but we have

the much stronger restriction that ε has to be an (almost) primitive root
mod π. We are faced with an analogue of Artin’s well known conjecture
for primitive roots. Even in the case of the rational field this remains un-
solved; however, C. Hooley [Ho] has proved that, if the generalized Riemann
conjecture is true for Dedekind zeta functions of suitable fields, there are
primes π ∈ N (and actually they have the “right” density) for which a given
nonsquare integer e 6= −1 is a primitive root. Hooley starts by observing
that e is a primitive root mod π iff for any prime l |π − 1 the congruence
xl ≡ e (mod π) is not solvable. Reversing the procedure, he then starts
from all such congruences and sieves out the bad primes. Hooley’s method
has been followed by J. P. Weinberger [Wei], who showed (again under Rie-
mann hypothesis) that UFD is euclidean, for rings of integers of number
fields containing nontrivial units. He proves our contention when x∗4 is a
prime element, but his argument works generally. One proceeds as in [Ho],
but considering only primes π in the generalized progression x∗2 mod x∗4
(of course associate primes give rise to the same condition). Again one is
led to the congruences xl ≡ ε (mod π), where l divides |Nk

Q(π)| − 1. These
congruences represent the essentially new part, compared to Hooley: for the
existence of primes π with the required properties it is of course necessary
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that each such congruence is not solvable for some of the primes in the rele-
vant progression, a fact which is not so obvious, since lying in the progression
could possibly influence the solvability (e.g. x2 ≡ 5 (mod p) is solvable for
all primes p = 5m±1). This is not so in our case and a proof may be found in
Vol. II of H. Hasse’s Bericht über neuere Untersuchungen und Probleme aus
der Theorie der algebraischen Zahlkörper, 1930, reprinted 1965. Of course
one needs quantitative results on the densities and remainder terms to carry
out the above procedure, and it is here that Riemann’s conjecture is needed.

We conclude this remark by recalling that partial, but unconditional,
results towards Artin’s conjecture were obtained by R. Gupta and M. Ram
Murty [G-RM] and D. R. Heath-Brown [HB] for the classical case k = Q
and by W. Narkiewicz for certain cyclotomic fields k. To my knowledge,
however, no generalization of the original Gupta–Ram Murty method to
number fields is already available for our application, even when k has large
degree.

R e m a r k 4. As announced before, we describe a possibility for obtain-
ing an example over Z, starting from the one coming from Remark 3, and
formulate a general problem on polynomial ideals which arises in this con-
nection.

We assume (as in Remark 3) the existence of polynomials P1, . . . , P4

∈ Z[t1, . . . , t5], with P1P2 − P3P4 = 1 and such that, for each solution
(a1, . . . , a4) ∈ Z[

√
2]4 of (1), there exist b1, . . . , b5 ∈ Z[

√
2] such that

Pi(b1, . . . , b5) = ai for 1 ≤ i ≤ 4.
Write ti = ui +

√
2vi, for indeterminates ui, vi. Then we may write

Pi(t1, . . . , t5) = Qi +
√

2Ri
for polynomials Qi, Ri ∈ Z[u1, . . . , u5, v1, . . . , v5]. Now assume (a1, . . . , a4) ∈
Z4 is a solution of (1) in rational integers, and pick b1, . . . , b5 as above. We
may put bi = u∗i +

√
v∗i for rational integers u∗i , v

∗
i and consequently we get,

in an obvious notation,

(5) Qi(u∗,v∗) = ai, Ri(u∗,v∗) = 0

for all i. Define R := Z[u1, . . . , u5, v1, . . . , v5]. Now we make the following

Assumption. There exist polynomials F,G in the ideal I generated by
R1, . . . , R4 in R, such that Q1 + F,Q3 +G generate the unit ideal in R.

Observe that the assumption is certainly satisfied if we replace the ring
R with the ring R[

√
2] = Z[

√
2][u1, . . . , u5, v1, . . . , v5] (we may take F =√

2R1, G =
√

2R3). Also, the polynomials Pi coming from Remark 3 may
be easily explicitly computed, so it may be that F , G can be found without
appealing to any general assertion leading to the above assumption. How-
ever, we have not succeeded in doing so at the moment, nor to disprove the
assumption for the polynomials in question.
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Let then F,G be as in the assumption, so we have an equation

(6) X(Q1 + F ) + Y (Q3 +G) = 1

for suitable X,Y ∈ Z[u1, . . . , u5, v1, . . . , v5].
Since P1, . . . , P4 satisfy (1) we have in particular

(7) Q1Q2 −Q3Q4 + 2R1R2 − 2R3R4 = 1.

Multiply both terms of (6) by ∆ := 2R1R2− 2R3R4−FQ2 +GQ4 ∈ I. We
get, using (7),

(∆X)(Q1 + F )− (∆Y )(Q3 +G) = 2R1R2 − 2R3R4 − FQ2 +GQ4

= 1−Q1Q2 +Q3Q4 − FQ2 +GQ4,

which may be rewritten as

(Q1 + F )(Q2 +∆X)− (Q3 +G)(Q4 +∆Y ) = 1,

namely the four polynomials S1 := Q1 + F, S2 := Q2 + ∆X,S3 := Q3 +
G,S4 := Q4 + ∆Y give a solution of (1) and lie in Z[u1, . . . , u5, v1, . . . , v5].
Take now a solution a1, . . . , a4 of (1) in rational integers, and find rational
integers u∗i , v

∗
i as above, so (5) is verified. From (5) we see that, for every

polynomial Γ ∈ I, we have Γ (u∗1, . . . , u
∗
5, v
∗
1 , . . . , v

∗
5) = 0. Since F,G,∆ ∈ I

we finally obtain, using again (5),

Si(u∗1, . . . , u
∗
5, v
∗
1 , . . . , v

∗
5) = ai, i = 1, 2, 3, 4,

so the polynomials Si would produce the desired example over Z.

We conclude by mentioning a simply stated problem on polynomial ide-
als, somewhat relevant in connection with the above “Assumption”:

Problem. Let a, b, c ∈ Ω := k[x1, . . . , xn] generate the unit ideal. Is it
necessarily true that there always exist u, v ∈ Ω such that a + uc, b + vc
generate the unit ideal?

At first sight I would expect a negative answer, but have no counterex-
ample. We omit natural generalizations and modifications of the problem
(e.g. does the answer depend on k, or can one find a decision algorithm,
given a, b, c?), also in view of the fact that they fall too far from the main
topic of the paper.
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