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1. Introduction. Let k be an algebraic number field and F (x) a polyno-
mial in k[x] with degree ∂(F ) and F (0) 6= 0. In [5] we considered the problem
of estimating the number of irreducible factors of F in k[x] in terms of ∂(F )
and of the height H(F ) of the vector of coefficients of F . As is already clear
from earlier work of Schinzel [6] and Dobrowolski [1], it is natural in prob-
lems of this type to give separate estimates for the number of cyclotomic
factors and for the number of noncyclotomic factors. In the present paper
we estimate the number of irreducible, cyclotomic factors of F in terms of
∂(F ) and of the number N(F ) of monomials which occur in F . In particular,
our bounds do not depend on the coefficients of F and they depend only
minimally on ∂(F ).

Let Φn(x) in Z[x] denote the nth cyclotomic polynomial and assume that
Φn factors in k[x] as

Φn(x) =
δ(k;n)∏
s=1

Φn,s(x).

Here we suppose that each factor Φn,s is monic and irreducible in k[x]. If ζn
is a primitive nth root of unity then each factor Φn,s has degree [k(ζn) : k].
As noted already in [5], equation (1.2), the number of distinct irreducible
factors of Φn in k[x] is

(1.1) δ(k;n) = [k ∩Q(ζn) : Q] ≤ [k′ : Q],

where k′ ⊆ k is the maximum abelian subfield of k. Now suppose that F (x)
factors into irreducible cyclotomic polynomials in k[x] as

(1.2) F (x) =
{ ∞∏
n=1

δ(k;n)∏
s=1

Φn,s(x)e(n,s)
}
G(x).

Here each e(n, s) is a nonnegative integer, e(n, s) = 0 for all but finitely
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many pairs {n, s}, n = 1, 2, . . . , 1 ≤ s ≤ δ(k;n), and G has only noncy-
clotomic factors. Then the number of cyclotomic factors of F counted with
multiplicity is

∑∞
n=1

∑δ(k;n)
s=1 e(n, s), and the number of distinct cyclotomic

factors of F counted without multiplicity is
∑∞
n=1

∑δ(k;n)
s=1 min{1, e(n, s)}.

Let

J = J(k) = min{j ≥ 1 : k′ ⊆ Q(ζj)},
where the integer J is finite by the theorem of Kronecker–Weber, and define

C(k) =
∑

j|J
δ(k; j).

Theorem 1. Let F (x) in k[x] satisfy F (0) 6= 0 and factor in k[x] as in
(1.2). Then for every ε > 0 the multiplicities of the irreducible, cyclotomic
factors of F satisfy

(1.3)
∞∑
n=1

δ(k;n)∑
s=1

e(n, s)�ε C(k)∂(F )εN(F )2,

and

(1.4)
∞∑
n=1

δ(k;n)∑
s=1

min{1, e(n, s)} �ε C(k)∂(F )εN(F ).

Here the constant implied by the Vinogradov symbol �ε depends only
on ε and not on k. By a result of Hajós [2] (see also [4], Lemma 2) we have

e(n, s) ≤ min{1, e(n, s)}N(F ),

and therefore (1.3) follows from (1.4).
It should be noted when counting distinct cyclotomic factors that degree

considerations give us a trivial estimate of the form

∞∑
n=1

δ(k;n)∑
s=1

min{1, e(n, s)} �k ∂(F )1/2.

Thus our bounds are primarily of interest when

N(F )�k,ε ∂(F )1/2−ε.

We observe that our estimates have only polynomial growth in N(F ) as
compared to previous bounds where the growth was essentially exponential.
Notice that a fusion of Theorem 1 and the trivial bound easily gives

∞∑
n=1

δ(k;n)∑
s=1

min{1, e(n, s)} �k ∂(F )1/2
(

logN(F )
log ∂(F )

)1/2

.
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This is of course much weaker than Theorem 1 (it follows from any bound
with only polynomial growth in N(F )). We record it primarily for compar-
ison with an inequality of Schinzel [6] for polynomials in Q[x]:

∞∑
n=1

min{1, e(n, 1)} � ∂(F )1/2
(

logH(F )
log log ∂(F )

)1/2

.

Since logN(F ) ≤ 2 logH(F ) (as in (2.8) of [5]), our result confirms Schinzel’s
prediction that the log log ∂(F ) in his bound could be replaced by log ∂(F ).

To the other part of the prediction, concerning noncyclotomic polyno-
mials we shall return in a later paper.

It would be surprising if our bounds are sharp since, as we shall see
in the next section, (1.4) is really a bound on the number of cyclotomic
polynomials which occur as factors of some polynomial with given exponents
but arbitrary coefficients in k. We conjecture that the bound (1.3) can be
improved to

(1.5)
∞∑
n=1

δ(k;n)∑
s=1

e(n, s)�ε,k ∂(F )εN(F ),

and that the bound (1.4) can be improved to

(1.6)
∞∑
n=1

δ(k;n)∑
s=1

min{1, e(n, s)} �ε,k ∂(F )εN(F )1/2.

If these estimates are correct then the exponents on N(F ) would be best
possible. This can be seen by considering the polynomials (xn − 1)L and∏L
l=1(xnl − 1), respectively, for large values of L.
We actually prove a more precise form of Theorem 1 in which the factor

∂(F )ε is expressed explicitly in terms of the number of divisors of differences
of pairs of exponents. The simple example xn − xm suggests the appropri-
ateness of such parameters. We give several bounds in which the complexity
of this term is contrasted against the degree of dependence on N(F ):

Theorem 2. Let F (x) in k[x] satisfy F (0) 6= 0, factor in k[x] as in (1.2),
and let

(1.7) F (x) =
N(F )∑

i=1

aix
ni .

Then the number of distinct cyclotomic factors

(1.8)
∞∑
n=1

δ(k;n)∑
s=1

min{1, e(n, s)}

can be bounded by the following three quantities:
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(i) For any exponent nI , the expression (1.8) is at most

(1.9) C(k)
(N(F )∑

i=1

τ(ni − nI)
)

2π(N(F )),

where π(N(F )) denotes the number of primes less than or equal to N(F ),
and τ(n) is the number of positive divisors of n.

(ii) Alternatively , the expression (1.8) is bounded from above by

(1.10) C(k)
(N(F )∑

i=1

∑

j<i

τ(ni − nj)
)

×
(

0.287 +O

(
1

log logN(F )

))
N(F ) logN(F ).

(iii) If N(F ) ≥ 3 then, for any pair of distinct exponents nI , nJ , the
number of distinct cyclotomic factors (1.8) can also be bounded by

(1.11) C(k)
(N(F )∑

i=1

τ((nI−nJ)2(nI−ni)2(nJ−ni)2)
)

(log logN(F )+O(1)).

Moreover , the factor log logN(F ) may be omitted for any pairs nI , nJ
with aI/aJ not a root of unity.

It is clear that Theorem 1 follows easily from (1.11) and is the most
that can be obtained from these bounds when little is known about the
exponents.

2. Linear forms in roots of unity. In this section we describe the
main technical results of the paper. These extend in various ways the work
of H. B. Mann [3] on vanishing sums of roots of unity. Let L ⊆M ⊆ Z, with
1 ≤ |L| ≤ |M | < ∞. For each irreducible cyclotomic polynomial Φn,s(x) in
k[x] we wish to determine if there exists a vector (ξm)m∈M in k|M | such that

(2.1)
∑

m∈M
ξmζ

m
n = 0 and ξl 6= 0 for all l in L,

where Φn,s(ζn) = 0. If (ξm)m∈M is a vector in k|M | then it is clear that (2.1)
holds for one root of Φn,s(x) if and only if (2.1) holds for all roots of Φn,s(x).
The situation is further clarified by the following result, which we prove in
Section 3.

Lemma 3. Let Φn,s(x) and Φn,t(x) be distinct irreducible cyclotomic
polynomials in k[x]. If there exists a vector (ξ(s)

m )m∈M in k|M | such that
(2.1) is satisfied for each root of Φn,s, then there exists a vector (ξ(t)

m )m∈M
in k|M | such that (2.1) is satisfied for each root of Φn,t.
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We define Z(L;M) ⊆ {1, 2, 3, . . .} to be the set of positive integers n such
that there exists a primitive nth root of unity ζn and a vector (ξm)m∈M in
k|M | such that

(2.2)
∑

m∈M
ξmζ

m
n = 0 and ξl 6= 0 for all l in L.

By Lemma 3 the existence of a vector (ξm)m∈M in k|M | which satisfies (2.2)
depends on n and not on the choice of ζn. It will be convenient to write
Y (M) = Z(M ;M) and

Z(M) =
⋃

L⊆M
L 6=∅

Z(L;M).

Our objective is to describe Z(M) in terms of M and Z(L;M) in terms of
L and M , at least when |L| = 1 or |L| = 2. Toward this end we define

P = P (k, |M |) =
∏

p≤|M |
p - J

p,

where the product on the right is over prime numbers p. We will show that
if n belongs to Z(M) or to Z(L;M) then n factors as

n = (n, J)ab, a |P,
where the integers a and b are further restricted by divisibility conditions
which may depend on L or M . To begin with we have the following gener-
alization of Mann’s result [3] to the number field k.

Theorem 4. Suppose that m1 belongs to M and n belongs to Z({m1};M).
Then there exists an integer m2 in M \ {m1} and a factorization

(2.3) n = (n, J)ab, a |P,
such that b|(m1 −m2).

By modifying the proof of Theorem 4 we can further restrict the factor
a in (2.3) but relax the condition imposed on b.

Theorem 5. Suppose that n belongs to Z(M). Then there exist distinct
integers m1 and m2 in M and a factorization

(2.4) n = (n, J)ab, a |P,
such that a ≤ τ(a)|M | and b | (m1 −m2).

If we assume that n belongs to Z({m1,m2};M), we can make more
elaborate restrictions on both a and b.
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Theorem 6. Suppose that 3 ≤ |M |, m1 and m2 are distinct elements of
M , and n belongs to Z({m1,m2};M). Then there exists a factorization

(2.5) n = (n, J)ab, a |P,
for which one of the following holds:

(i) a | b and there exists m3 in M \{m1,m2} with b | (m1−m2)(m2−m3)
× (m3 −m1), or

(ii) a has exactly one odd prime divisor p and there exist p − 2 distinct
elements m3,m4, . . . ,mp in M \{m1,m2} such that b | (m1−m2)(m2−mj)
× (mj −m1) for each j = 3, 4, . . . , p.

Moreover , if (ii) holds then m1,m2, . . . ,mp form a complete set of in-
congruent residue classes in Z/pZ.

Although we have not concerned ourselves here with estimates which
depend on the coefficients, it is worth noting that the awkward case (ii) of
Theorem 6 does not occur except in the special case where ξm1/ξm2 is a
2(n, J)th root of unity in the relation (2.2) assumed for ζn. We comment
further on this in the proof of (1.11).

Next we define

S(L;M) =
∑

n∈Z(L;M)

δ(k;n) and S(M) =
∑

n∈Z(M)

δ(k;n).

In view of Lemma 3, S(L;M) is exactly the number of distinct, irreducible
cyclotomic polynomials Φn,s(x) in k[x] for which there exists a vector
(ξm)m∈M in k|M | satisfying the conditions in (2.2). A similar interpreta-
tion applies to S(M). Since δ(k;n) = δ(k′;n) and k′ ⊆ Q(ζJ), it follows (see
Lemma 8) that δ(k;n) = δ(k; (n, J)). Thus the factorizations given in the
previous theorems lead to estimates for these sums. Let

∂(M) = max{|m1 −m2| : m1 ∈M, m2 ∈M}
denote the diameter of M .

Corollary 7. Suppose that m1 and m2 are distinct elements of M .
Then for every ε > 0 we have

(2.6) S({m1,m2};M)�ε C(k)∂(M)ε|M |,
and

(2.7) S(M)�ε C(k)∂(M)ε|M |7/3.
We note that (2.6) also provides an estimate for S({m1};M). For clearly,

(2.8) S({m1};M) ≤
∑

m2∈M
m2 6=m1

S({m1,m2};M).
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It is obvious that Corollary 7 implies Theorem 1. For suppose that F (x)
in k[x] satisfies F (0) 6= 0. Then we can write

F (x) =
∑

m∈M
ξmx

m,

where {0, ∂(F )} ⊆ M ⊆ Z, ξm 6= 0 for each m in M , ∂(F ) = ∂(M), and
N(F ) = |M |. Now (2.6) plainly implies (1.4), and by our previous remarks
we get (1.3) as well.

3. Preliminary lemmas. Let M ⊆ Z be a finite subset, p a prime and
r1, . . . , rl a collection of residue classes in Z/pZ. Then we define

M(r1, . . . , rl; p) = {m ∈M : m ≡ ri mod p for some i, 1 ≤ i ≤ l}.
We shall need a simple lemma describing the degrees of various cyclotomic
extensions over the number field k.

Lemma 8. For each prime p and coprime integer m

[k(ζmpi+1) : k(ζmpi)] =




p− 1 if p - J and i = 0,
p if p - J and i ≥ 1,
p if pα||J and i ≥ α ≥ 1.

P r o o f. We first observe that K = Q(ζn)∩Q(ζm) = Q(ζ(n,m)). This fol-
lows directly from the familiar fact that [Q(ζn) : Q] = φ(n), the more easily
seen relation Q(ζn, ζm) = Q(ζ[n,m]) and, since the extensions are Galois,

[K : Q(ζ(n,m))] =
φ(n)

φ((n,m))[Q(ζn) : K]

=
φ(n)

φ((n,m))[Q(ζ[n,m]) : Q(ζm)]
=

φ(n)φ(m)
φ((n,m))φ([n,m])

= 1.

Now for each n we have

[k(ζn) : k] =
φ(n)
δ(k;n)

where, by the definition of J ,

δ(k;n) = [k ∩Q(ζn) : Q] = [k ∩Q(ζJ ) ∩Q(ζn) : Q]
= [k ∩Q(ζ(n,J)) : Q] = δ(k; (n, J)).

In all the above cases we have (mpi+1, J) = (mpi, J). Hence δ(k;mpi+1)
= δ(k; pi),

[k(ζmpi+1) : k(ζmpi)] =
φ(pi+1)
φ(pi)

,

and the result is clear.

Our proofs of Theorems 4 and 5 require the following lemma.
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Lemma 9. Suppose that n belongs to Y (M) and p is a prime divisor of
n/(n, J).

(A) If p - J and p2 -n then one of the following holds:

(i) For each r in Z/pZ the subset M(r; p) satisfies |M(r; p)| 6= 1.
If |M(r; p)| ≥ 2 then n/p belongs to Y (M(r; p)).

(ii) For each r in Z/pZ the subset M(r; p) satisfies |M(r; p)| ≥ 1.
If r1 6≡ r2 mod p then n/p belongs to Y (M(r1, r2; p)). Also, p
satisfies p ≤ |M |.

(B) If p | J or if p2 |n then

(iii) for each r in Z/pZ the subset M(r; p) satisfies |M(r; p)| 6= 1.
If |M(r; p)| ≥ 2 then n/p belongs to Y (p−1(M(r; p)− r)).

P r o o f. For each m in M let ξm be nonzero elements of k such that

(3.1)
∑

m∈M
ξmζ

m
n = 0

for some primitive nth root of unity ζn. Assume that p - J and p2 -n and
then write n = n′p. Select a primitive n′th root of unity ζn′ and a primitive
pth root of unity ζp such that ζn = ζn′ζp. Now (3.1) can be written as

(3.2)
p−1∑
r=0

{ ∑

m∈M(r;p)

ξmζ
m
n′

}
ζrp = 0.

We have k(ζn) = k(ζn′ , ζp) and, using p - J and p2 -n, we see from Lemma 8
that

[k(ζn) : k(ζn′)] = p− 1,
in particular the minimal polynomial for ζp over k(ζp) is simply Φp(x). It
follows then from (3.2) that

(3.3) r →
∑

m∈M(r;p)

ξmζ
m
n′

is constant for r in Z/pZ. If (3.3) is constantly zero for r in Z/pZ then the
conclusion (i) follows immediately. If (3.3) is a nonzero constant for all r in
Z/pZ then clearly |M(r; p)| ≥ 1 for all r. If r1 6≡ r2 mod p then

∑

m∈M(r1;p)

ξmζ
m
n′ −

∑

m∈M(r2;p)

ξmζ
m
n′ = 0

and therefore n/p = n′ belongs to Y (M(r1, r2; p)). Also, we have

|M | =
p−1∑
r=0

|M(r; p)| ≥ p,

and this verifies the conclusion (ii).
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Next we assume that either p | J or p2 |n, and again we write n = n′p.
We change our previous notation and set ζn′ = ζpn because ζpn is a primitive
n′th root of unity in this case. Then (3.2) can be written as

(3.4)
p−1∑
r=0

{ ∑

m∈M(r;p)

ξmζ
(m−rp )
n′

}
ζrn = 0.

Using p | J or p2 |n we find that

[k(ζn) : k(ζn′)] = p.

It follows from (3.4) that
∑

m∈M(r;p)

ξmζ
(m−rp )
n′ = 0

for all r in Z/pZ. This establishes the conclusion (iii).

If n belongs to Y (M) then prime divisors p of n/(n, J) which satisfy p -J
and p2 -n will be called type A prime divisors. The remaining prime divisors
which must satisfy p | J or p2 |n will be called type B prime divisors.

Lemma 10. Suppose that 3 ≤ |M |, m1 and m2 are distinct elements of
M , and n belongs to Y (M). Let L ≥ 0 be the number of distinct type A
prime divisors of n/(n, J) and write q0 = 1. If L ≥ 1 let p1, . . . , pL be the
distinct type A prime divisors of n/(n, J) and write

ql = p1 . . . pl, 1 ≤ l ≤ L.
Then there exists a nested collection of L+ 1 subsets

M = M0 ⊇M1 ⊇ . . . ⊇ML ⊇ {m1,m2}
such that

(iv) n/ql belongs to Y (Ml) for each l, 0 ≤ l ≤ L, and
(v) ql | (m1 − m2)(m2 − m)(m − m1) for each m in Ml and each l,

0 ≤ l ≤ L.

Moreover , if 2 = |Ml| < |Ml−1| for some l, 1 ≤ l ≤ L, then 3 ≤ pl ≤
|Ml−1|, m1 6≡ m2 mod pl, and Ml−1 contains a complete set of incongruent
residue classes modulo pl.

P r o o f. We argue by induction on l. As n belongs to Y (M0) and q0 = 1,
both (iv) and (v) are trivial when l = 0. Therefore we assume that 1 ≤ l ≤ L,
and that a nested collection of subsets

M = M0 ⊇M1 ⊇ . . . ⊇Ml−1 ⊇ {m1,m2}
has been determined which satisfies the conclusion of the lemma. If |Ml−1|
= 2 then Ml−1 = {m1,m2} and we must select Ml = {m1,m2}. Then (iv)
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follows from Lemma 9(A) and, of course, (v) is trivial. Thus we may assume
throughout the remainder of the proof that 3 ≤ |Ml−1|.

If m1 6≡ m2 mod pl or m1 ≡ m2 mod pl and Ml−1(m1; pl) = Ml−1 we
set

Ml = Ml−1(m1,m2; pl).

If m1 ≡ m2 mod pl and Ml−1(m1; pl) 6= Ml−1 we select a residue class sl in
Z/plZ, sl 6≡ m1 mod pl, so that 3 ≤ |Ml−1(m1, sl; pl)| and then set

Ml = Ml−1(m1, sl; pl).

In either case it is obvious that

pl | (m1 −m2)(m2 −m)(m−m1)

for each m in Ml. As

ql−1 | (m1 −m2)(m2 −m)(m−m1)

for each m in Ml, it follows that (v) holds also at l.
Now pl is a type A prime divisor of n/ql−1 and by the inductive hy-

pothesis n/ql−1 belongs to Y (Ml−1). Therefore we can apply Lemma 9. In
case (i) we have |Ml−1(r; pl)| 6= 1 for all r in Z/plZ. In particular,

2 ≤ |Ml−1(m1; pl)| and 2 ≤ |Ml−1(m2; pl)|.
If m1 6≡ m2 mod pl then 4 ≤ |Ml| and it is clear that n/ql belongs to Y (Ml).
If m1 ≡ m2 mod pl then 3 ≤ |Ml|, and again we find that n/ql belongs to
Y (Ml). In case (ii) we conclude that 1 ≤ |Ml−1(r; pl)| for all r in Z/plZ
and so n/ql belongs to Y (Ml). In case (ii), however, it may happen that
|Ml| = 2. Plainly this requires that m1 6≡ m2 mod pl, Ml−1(m1; pl) = {m1}
and Ml−1(m2; pl) = {m2}. As Ml−1 = Ml−1(0, 1; 2), we must have 3 ≤ pl
and in case (ii) we also have pl ≤ |Ml−1|. Since 1 ≤ |Ml−1(r; pl)| for all r
in Z/plZ, it is obvious that Ml−1 contains a complete set of incongruent
residue classes modulo pl.

P r o o f o f L e m m a 3. Let ζn be any primitive nth root of unity.
Then k(ζn)/k is a Galois extension. For each σ in G = Gal{k(ζn)/k} there
exists a unique i = i(σ) in the multiplicative group (Z/nZ)∗ such that
σ(ζn) = ζ

i(σ)
n . Clearly i(σ) does not depend on our choice of ζn. It follows

easily that σ → i(σ) is an isomorphism from G onto a subgroup of (Z/nZ)∗.
Let U(ζn) = (ζi(σ)m

n ) denote the |G| × |M | matrix in which σ in G indexes
rows andm inM indexes columns. The determinant of any square submatrix
of U(ζn) is a polynomial with integer coefficients evaluated at ζn. Therefore

(3.5) ζn → rank U(ζn)

is constant on the set of primitive nth roots of unity. Let ψ1, . . . , ψ|G| be a
basis for k(ζn)/k and write Ψ = (σ(ψj)) for the corresponding nonsingular
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|G| × |G| matrix in which σ in G indexes rows and j = 1, . . . , |G| indexes
columns. Then we have

ζmn =
|G|∑

j=1

vn(j,m)ψj ,

where V (ζn) = (vn(j,m)) is an |G|× |M | matrix with entries in k. From the
matrix identity

(3.6) U(ζn) = ΨV (ζn)

we conclude that

(3.7) ζn → rank V (ζn)

is constant on primitive nth roots of unity.
Let X(n, s;M) denote the k-subspace of k|M | containing all vectors x

such that

(3.8)
∑

m∈M
xmζ

m
n = 0,

where Φn,s(ζn) = 0. Applying σ in G to (3.8) we see that X(n, s;M) is the
null space of U(ζn) and so also the null space of V (ζn). As V (ζn) has entries
in k, (3.6) implies that

(3.9) s→ dim{X(n, s;M)}
is constant for 0 ≤ s ≤ δ(k;n). If the right hand side of (3.9) is zero the
result is trivial, hence we may assume that this dimension is positive. For
each l in L let Xl(n, s;M) be the subspace of vectors x in k|M | such that

∑

m∈M
xmζ

m
n = 0, xl = 0,

where Φn,s(ζn) = 0. In a similar manner we find that

(3.10) s→ dim{Xl(n, s;M)}
is constant for 0 ≤ s ≤ δ(k;n). Now observe that

(3.11) X(n, s;M) \
⋃

l∈L
Xl(n, s;M)

is exactly the set of vectors x in k|M | such that∑

m∈M
xmζ

m
n = 0 and xl 6= 0 for all l in L,

where Φn,s(ζn) = 0. Recall that an infinite vector space cannot be a finite
union of proper subspaces. If (3.11) is empty for some s′ then there exists
l′ in L such that

(3.12) dim{X(n, s′;M)} = dim{Xl′(n, s′;M)}.
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We conclude from (3.9) and (3.10) that

dim{X(n, s;M)} = dim{Xl′(n, s;M)}
for all s, 1 ≤ s ≤ δ(k;n). Thus (3.11) is empty for one s if and only if it is
empty for all s, 1 ≤ s ≤ δ(k;n), and this verifies the lemma.

4. Proof of Theorems 4 and 5. Let Ω(n) denote the number of prime
divisors of n counted with multiplicity. We begin by proving Theorem 4 un-
der the stronger hypothesis that n belongs to Y (M). We argue by induction
on Ω(n/(n, J)). If Ω(n/(n, J)) = 0 then the result is obvious with a = b = 1.
Assume then that p is a prime divisor of n/(n, J) and write n = n′p. We
note that (n′, J) = (n, J).

As n belongs to Y (M) we can apply Lemma 9. In case (i) we have m1

in M(m1; p) and therefore n′ belongs to Y (M(m1; p)). It follows from the
inductive hypothesis that there exists m2 in M(m1; p) \ {m1} such that n′

factors as

n′ = (n′, J)a′b′, a′ |P,
and b′ | (m1 −m2). Obviously p | (m1 −m2) and so the desired factorization
(2.3) holds with a = a′ and b = b′p.

In case (ii) we can select m0 in M \ {m1} so that m0 6≡ m1 mod p. Then
n′ belongs to Y (M(m0,m1; p)) and by the inductive hypothesis there exists
m2 in M(m0,m1; p) so that n′ factors as

n′ = (n′, J)a′b′, a′ |P,
with b′ | (m1−m2). Clearly p - a′ and in case (ii) we have p ≤ |M |. Thus the
factorization (2.3) holds with a = a′p and b = b′.

In case (iii), n′ belongs to Y (p−1(M(m1, p)−m1)). Therefore we apply
the inductive hypothesis to the set p−1(M(m1; p)−m1) and the element 0,
which plainly occurs in this set. We conclude that there exists p−1(m2−m1)
in p−1(M(m1; p)−m1) \ {0} such that n′ factors as

n′ = (n′, J)a′b′, a′ |P,
with b′ | p−1(m1 −m2). Again this shows that n satisfies (2.3) with a = a′

and b = b′p.
Finally, if n belongs to Z({m1};M) then there exists a subset M ′ such

that {m1} ⊆ M ′ ⊆ M and n belongs to Y (M ′). The desired factorization
of n now follows from the special case of the theorem which was already
proved.

The proof of Theorem 5 is identical to the proof of Theorem 4 except
in the treatment of case (ii). We assume that n belongs to Y (M) and that
p is a prime divisor of n/(n, J). Then we apply Lemma 9. In case (ii) we
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see that n′ = n/p belongs to Y (M(r1, r2; p)) whenever r1 6≡ r2 mod p. We
select r1 and r2 in Z/pZ so that r1 6≡ r2 mod p and so that

|M(r1, r2; p)| = |M(r1; p)|+ |M(r2; p)|
is minimized. As

2(p− 1)|M | =
p−1∑
s=0

p−1∑
t=0
t 6=s

{|M(s; p)|+ |M(t; p)|}

≥ (p2 − p){|M(r1; p)|+ |M(r2; p)|}
we conclude that

(4.1) 2|M | ≥ p|M(r1, r2; p)|.
By the inductive hypothesis there exist distinct elements m1 and m2 in
M(r1, r2; p) and a factorization

n′ = (n′, J)a′b′, a′ |P,
such that a′ ≤ τ(a′)|M(r1, r2; p)| and b′ | (m1 − m2). Using (4.1) we have
a′p ≤ 2τ(a′)|M |. In case (ii) the prime p does not divide a′. It follows that
n factors as (2.4) with a = a′p and b = b′.

5. Proof of Theorem 6. First we prove Theorem 6 under the stronger
hypothesis that n belongs to Y (M). Let L ≥ 0 be the number of distinct,
type A prime divisors of n/(n, J) and write q0 = 1. If L ≥ 1 let p1, . . . , pL
be the distinct, type A prime divisors of n/(n, J) and write

ql = p1 . . . pl, 1 ≤ l ≤ L.
Then let

M = M0 ⊇M1 ⊇ . . . ⊇ML ⊇ {m1,m2}
be the nested collection of L + 1 subsets determined as in Lemma 10. We
consider two cases.

Assume that |ML| ≥ 3. Then n/qL belongs to Y (ML) and

(5.1) qL | (m1 −m2)(m2 −m)(m−m1)

for all m in ML. By Theorem 4 there exists m′2 in ML \ {m1} and a factor-
ization

n

qL
=
(
n

qL
, J

)
a′b′, a′ |P,

such that

(5.2) b′ | (m1 −m′2).
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Since (n/qL)/(n/qL, J) has no type A prime divisors it follows easily that
a′ | b′. Now set a = a′ and b = b′qL. Then n factors as

(5.3) n = (n, J)ab, a |P,
and a | b. If m′2 6= m2 we set m3 = m′2. Then (5.1) and (5.2) imply that
b | (m1 −m2)(m2 −m3)(m3 −m1). If m′2 = m2 we select m3 arbitrarily in
ML\{m1,m2}. Again (5.1) and (5.2) imply that b | (m1−m2)(m2−m3)(m3−
m1). Thus the factorization (5.3) satisfies condition (i) in the statement of
the theorem.

Next we assume that |ML| = 2 and then there exists l, 1 ≤ l ≤ L, such
that 2 = |Ml| < |Ml−1|. From Lemma 10 we conclude that n/ql belongs to
Y (Ml), that

(5.4) ql−1 | (m1 −m2)(m2 −m)(m−m1)

for all m in Ml−1, and also that 3 ≤ pl ≤ |Ml−1|. In this case Ml = {m1,m2}
and so by Theorem 4 there exists a factorization

n

ql
=
(
n

ql
, J

)
a′b′, a′ | 2,

such that b′ | (m1 −m2). Set a = a′pl and b = b′ql−1. Then n factors as

n = (n, J)ab, a |P,
and a has exactly one odd prime factor pl. Using (5.4) and (b′, ql−1) = 1,
we find that

b | (m1 −m2)(m2 −m)(m−m1)

for each m in Ml−1. Since m1 6≡ m2 mod pl and Ml−1 contains a complete
set of incongruent residue class representatives in Z/plZ, the conclusion (ii)
in the statement of the theorem is verified.

If n belongs to Z({m1,m2};M) then there exists a subset M ′ such that
{m1,m2} ⊆ M ′ ⊆ M and n belongs to Y (M ′). As before the theorem
follows from the special case already proved.

6. Proof of Corollary 7 and Theorem 2. Let τ(n) denote the number
of positive divisors of n and ω(n) the number of distinct prime divisors of n.
It will be convenient to set τ(0) = 0 and τ(−n) = τ(n). If |M | = 2 then
Corollary 7 is a trivial consequence of Theorem 4. Thus we may assume that
3 ≤ |M | and then estimate the number of integers n which factor as in (2.5).

Let m1,m2 and m3 be distinct elements of M and write m = (m1 −
m2)(m2 −m3)(m3 −m1). Then we have
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∑

b|m

∑

a|P
a|b

1 ≤
∑

b|m
2ω(b) = τ(m2)

≤ τ(m1 −m2)2τ(m2 −m3)2τ(m3 −m1)2 �ε ∂(M)ε.

Thus the number of positive integers that can be written as ab, where a |P
and a and b satisfy condition (i) of Theorem 6 is at most

∑

m3∈M

∑

b|m

∑

a|P
a|b

1�ε ∂(M)ε|M |.

The number of positive integers that can be written as ab, where a |P and
a and b satisfy condition (ii) of Theorem 6 is at most

(6.1)
∑

3≤p≤|M |
(p− 2)−1

∑

m3∈M
τ{(m1 −m2)(m2 −m3)(m3 −m1)}

�ε ∂(M)ε|M |.
It follows that

S({m1,m2};M) =
∑

n∈Z({m1,m2};M)

δ(k; (n, J))�ε

{∑

j|J
δ(k; j)

}
∂(M)ε|M |,

which is (2.6).
For a positive integer U we define the set

ZU (M) =
⋃

|L|≥U
Z(L;M).

Then for U ≥ 2 we have
∑

n∈ZU (M)

δ(k; (n, J)) ≤ 1
U(U − 1)

∑

m1∈M

∑

m2∈M
m2 6=m1

S({m1,m2};M)

�ε C(k)∂(M)ε|M |3U−2.

To estimate the remaining integers in Z(M) we appeal to Theorem 5. We
find that ∑

n∈Z(M)\ZU (M)

δ(k; (n, J)) ≤
∑

j|J
δ(k; j)

∑

a≤τ(a)U

1
∑

b|(mi−mj)
1

�ε C(k)U1+ε
∑

m1∈M

∑

m2∈M
τ(m1 −m2)

�ε C(k)U1+ε∂(M)ε|M |2.
The bound (2.7) follows by choosing U = |M |1/3.

The bounds (1.9)–(1.11) in Theorem 2 follow easily from Theorems 4–6
respectively, on counting the number of a and b satisfying the given condi-
tions. In (1.11) the estimates are almost identical to those in the proof of
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Corollary 7 except we use the more precise estimate
∑

3≤p≤N(F ) 1/(p−2) =
log logN(F ) + O(1) in (6.1). We also make the observation that case (ii)
of Theorem 6, and hence the necessity of the log logN(F ) in (1.11), never
occurs unless aI/aJ is a root of unity. To see this observe that the induction
process employed in Lemmas 9 and 10 constructs a relation of the form (2.2)
for ζn/p from the assumed relation for ζn using a subset of the coefficients
altered by at most a sign change. In particular, case (ii) of Theorem 6 will
not arise unless the induction terminates in a two-term relation

aIζ
nI
m ± aJζnJm = 0,

for some integer m. It is perhaps also worth remarking that the proof of
Theorem 6(i) actually shows that a | (m1 −m2) or (m1 −m3), so that the
squares are not required on all the factors in (1.11).

For (1.10) we also need the following lemma to estimate the number of
square-free a with a ≤ τ(a)|M |.

Lemma 11. For all x ≥ 3 we have

(6.2) S(x) =
∑

n/τ(n)≤x
|µ(n)| =

(
1 +O

(
1

log log x

))
Cx log x,

where
C =

∏
p

(1− 3p−2 + 2p−3) < 0.287,

and
∏
p indicates a product over all primes p.

P r o o f. We first recall some elementary properties of the divisor function
τ(n). We have

τ(n) ≤ ec logn/ log log 3n

for some constant c > 0, and

(6.3)
∑

M≤n≤N

τ(n)
n

=
1
2

log
(
N

M

)
log(NM) +O

(
log
(

2N
M

))
.

Here (6.3) is a straightforward consequence of the estimate
∑
n≤x τ(n) =

x log x+O(x) and partial summation.
Next we use the estimate log n= log x(1+O(1/ log log x)), which holds for

all n such that x/ log x≤n≤xτ(n). Using p to denote primes, we can write(
1 +O

(
1

log log x

))
S(x) log x

=
∑

n/τ(n)≤x
|µ(n)| logn =

∑

n/τ(n)≤x
|µ(n)|

∑

p|n
log p

=
∑
p

log p
∑

n≤τ(n)x
p|n

|µ(n)| =
∑
p

log p
∑

pm≤τ(pm)x
p -m

|µ(pm)|
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=
∑
p

log p
∑

pm≤2τ(m)x
p -m

|µ(m)| =
∑

m≤τ(m)x

|µ(m)|
∑

p≤2xτ(m)/m
p -m

log p

= S1 + S2 − S3,

where

S1 =
∑

n≤x/ log x

|µ(n)|ϑ(2xτ(n)n−1),

S2 =
∑

x/ log x<n≤τ(n)x

|µ(n)|
∑

p≤2xτ(n)/n
p -n

log p,

and

S3 =
∑

n≤x/ log x

|µ(n)|
∑

p≤2xτ(n)/n
p|n

log p.

Now using a weak form of the prime number theorem

ϑ(x) =
∑

p≤x
log p = x+O(x/ log x),

we have

S1 =
∑

n≤x/ log x

|µ(n)|ϑ(2xτ(n)n−1)

= 2x
(

1 +O

(
1

log log x

)) ∑

n≤x/ log x

|µ(n)|τ(n)
n

,

with

0 ≤ S2 ≤
∑

x/ log x<n≤xτ(n)

ϑ(2xτ(n)n−1)

� x
∑

x/ log x<n≤xec
log x

log log x

τ(n)
n
� x

(log x)2

log log x
,

and

0 ≤ S3 ≤
∑

n≤x/ log x

∑

p|n
log p ≤

∑

n≤x/ log x

log n� x.

Finally, to evaluate the remaining sum, we write

|µ(n)|τ(n) =
∑

m|n
τ(m)a(n/m)
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where a(n) is the multiplicative function generated by

A(s) =
∞∑
n=1

a(n)n−s =
( ∞∑
n=1

|µ(n)|τ(n)n−s
)
ζ(s)−2 =

∏
p

(1−3p−2s+2p−3s).

Notice that A(s) converges absolutely for Re s > 1/2. Hence
∑

n≤x
|µ(n)|τ(n)

n
=
∑

l≤x

a(l)
l

∑

m≤x/l

τ(m)
m

=
1
2

(log x)2
(∑

l≤x

a(l)
l

)
+O

(
log x

∑

l≤x

|a(l)| log l
l

)

=
1
2

(log x)2
( ∞∑

l=1

a(l)
l

)
+O(log x),

and the result follows with C = A(1).
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