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1. Introduction. In [6] Euler asks for a classification of those pairs of
distinct non-zero integers M and N for which there are integer solutions
(x, y, t, z) with xy 6= 0 to

(1) x2 +My2 = t2 and x2 +Ny2 = z2.

This is known as Euler’s concordant forms problem, and when M = −N
Euler’s problem is the congruent number problem. Tunnell gave a conditional
solution to the congruent number problem using elliptic curves and modular
forms. Using these ideas, we consider Euler’s problem which reduces to a
study of the elliptic curve over Q :

EQ(M,N) : y2 = x3 + (M +N)x2 +MNx.

If EQ(M,N) has positive rank, then there are infinitely many primitive
integer solutions to (1); but if EQ(M,N) has rank 0, then there may be a
non-trivial solution. Such a solution exists if and only if the torsion group
is Z2 × Z8 or Z2 × Z6. We classify all such cases, thereby reducing Euler’s
problem to a question of ranks. In some cases, the ranks of quadratic twists
of EQ(M,N) are described by the representations of integers by ternary
quadratic forms. Consequently, we obtain results regarding Euler’s problem,
and the existence of solutions to a pair of Pell’s equations. Moreover, we give
a new and elementary method, using the theory of lacunary modular forms,
which establishes that there are infinitely many rank 0 quadratic twists of
EQ(M,N) by discriminants in arithmetic progressions.

2. Results. A solution to (1) is primitive if x, y, t, and z are positive
integers and gcd(x, y) = 1. In [1] E. T. Bell parametrized the solutions of (1)
in terms of polynomials in 41 variables, a solution that is difficult to absorb.
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In [17] T. Ono mentions various cases of (1) where it is known that there
are infinitely many solutions. For example, if M = 1 and N = 2n2 − 1 with
n 6= 0, 1, and 2, then there are infinitely many primitive solutions.

By multiplying the two equations in (1) together, and then multiplying
by x2/y6, we get

(2)
x2t2z2

y6 =
x6

y6 + (M +N)
(
x4

y4

)
+MN

(
x2

y2

)
.

If we then replace x2/y2 by x and also xtz/y3 by y we find that

(3) y2 = x3 + (M +N)x2 +MNx.

In studying the points of EQ(M,N), we note that one may make the further
assumption that the gcd(M,N) be a square-free integer. To see this we
note that if d is a non-zero integer, then EQ(d2M,d2N) is isomorphic to
EQ(M,N) by replacing y by y/d3 and x by x/d2. Also note that EQ(M,N) ∼=
EQ(N,M), hence we may freely interchange the order of M and N in what
follows. Furthermore, we also note that EQ(M,N) ∼= EQ(−M,N −M) ∼=
EQ(−N,M −N) by replacing x by x −M and x −N . Therefore we could
without loss of generality assume that M and N are both positive integers.
Using the standard definitions, one can easily verify that the discriminant
of EQ(M,N) is ∆ = 16M2N2(M −N)2 and its j-invariant is

j =
256(M2 −MN +N2)3

M2N2(M −N)2 .

By Mordell’s theorem, EQ(M,N) forms a finitely generated abelian
group, and so satisfies

EQ(M,N) ∼= Etor × Zr

where Etor, the torsion subgroup of EQ(M,N), is a finite abelian group and
the rank r is a non-negative integer. However, by Mazur’s theorem Etor

satisfies

Etor ∈
{
Zm, where 1 ≤ m ≤ 10, or m = 12,
Z2× Z2m, where 1 ≤ m ≤ 4.

Computing the rank r of an elliptic curve E has been the focus of sig-
nificant interest, and of central importance is the Hasse–Weil L-function
L(E, s). For every prime p let N(p) denote the number of points (includ-
ing the point at infinity) on Ep, the reduction of E modulo p. Define
a(p) := p+ 1−N(p). Then L(E, s) is defined by

L(E, s) :=
∞∑
n=1

a(n)
ns

=
∏

p|∆

1
1− a(p)p−s

∏

p-∆

1
1− a(p)p−s + p1−2s .
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The conjectures of Birch and Swinnerton-Dyer (B-SD) connect the analytic
properties of the Hasse–Weil L-function L(E, s) for an elliptic curve E over
Q with its rank. A weak version is:

Conjecture (B-SD). Let E be an elliptic curve over Q, and let L(E, s)
=
∑∞
n=1 a(n)/ns be its Hasse–Weil L-function. Then L(E, s) has an analytic

continuation to the entire complex plane and the rank of E is positive if and
only if L(E, 1) = 0.

In [4] Coates and Wiles proved that if E is a positive rank elliptic curve
over Q with complex multiplication, then L(E, 1) = 0, and as we shall see
in Section 4, by the work of Kolyvagin, M. R. Murty, V. K. Murty, Bump,
Friedberg, and Hoffstein much more is now known concerning this conjecture
for modular elliptic curves.

Returning to Euler’s problem, if (1) has a non-trivial integer solution
(α, β, γ, δ), then by (2) we see that EQ(M,N) contains the Q-rational point
(α2/β2, αγδ/β3). By factoring (2) and letting y = 0, we find the three
trivial order 2 points (0, 0), (−M, 0), and (−N, 0), and so Z2×Z2 is always
a subgroup of the torsion subgroup of EQ(M,N). Since these points have
y = 0, it is not possible for them to correspond to a non-trivial solution of
(1); hence a solution of (1), if there are any, must correspond to points of
infinite order or torsion points with order different from 2.

If M = −N , the congruent number case, or if M = 2N , or if M = 1
2N ,

then the elliptic curve EQ(M,N) has j = 1728 and hence has complex
multiplication byQ(i). IfM = 2N , then by replacing x by x−N in E(2N,N)
we obtain the more familiar model

y2 = x3 −N2x.

Since the torsion subgroups of all of these curves is Z2×Z2 and these torsion
points do not afford any solutions, a non-trivial solution to Euler’s problem
exists if and only if the rank of EQ(2N,N) is positive, which is precisely
the condition for determining whether or not N is a congruent number.
Consequently, by Tunnell’s theorem we obtain:

Corollary 1. Let n be a square-free integer , d any non-zero integer ,
and let M = 2d2n and N = d2n.

• If n is odd and there is a non-trivial solution to (1), then the number
of integer representations of n by 2x2 + y2 + 32z2 equals the number of its
integer representations 2x2 + y2 + 8z2. Furthermore, assuming B-SD , if the
representation numbers of n by these two ternary quadratic forms are equal ,
then there are infinitely many primitive solutions to (1).
• If n is even and there is a non-trivial solution to (1), then the number

of integer representations of n/2 by 4x2 + y2 + 32z2 equals the number of its
integer representations by 4x2 + y2 + 8z2. Furthermore, assuming B-SD , if
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the representation numbers of n/2 by these two ternary quadratic forms are
equal , then there exist infinitely many primitive solutions to (1).

Unlike the congruent number problem, it is the case that there are tor-
sion points which afford non-trivial solutions. For example, if we let M = 5
and N = 32, then the elliptic curve EQ(5, 32) has rank zero yet (2, 1, 3, 6)
is a non-trivial solution to (1). It turns out that this solution is the unique
primitive solution and it corresponds to certain torsion points of order 3
on the elliptic curve EQ(5, 32). A thorough investigation of the torsion sub-
groups of EQ(M,N) shows that certain torsion points of order 3 and certain
torsion points of order 4 correspond to non-trivial solutions of (1). In all
other cases, there are non-trivial solutions to (1) if and only if the rank of
EQ(M,N) is positive. In Section 3 we will prove the following classification
theorem.

Main Theorem 1. The torsion subgroups of EQ(M,N) are uniquely
determined by the following conditions:

• The torsion subgroup of EQ(M,N) contains Z2× Z4 if M and N are
both squares, or −M and N −M are both squares, or if −N and M − N
are both squares.
• The torsion subgroup of EQ(M,N) is Z2 × Z8 if there exists a non-

zero integer d such that M = d2u4 and N = d2v4, or M = −d2v4 and
N = d2(u4−v4), or M = d2(u4−v4) and N = −d2v4, where (u, v, w) forms
a Pythagorean triple (i.e. u2 + v2 = w2).
• The torsion subgroup of EQ(M,N) is Z2 × Z6 if there exists integers

a and b such that a/b 6∈ {−2,−1,−1/2, 0, 1} and M = a4 + 2a3b and N =
2ab3 + b4.
• In all other cases, the torsion subgroup of EQ(M,N) is Z2× Z2.

As a corollary we obtain the following complete classification of the prim-
itive solutions to (1) which correspond to torsion points in EQ(M,N).

Main Corollary 1. The primitive solutions to (1) afforded by the tor-
sion points of EQ(M,N) are as follows:

• If there exists a non-zero integer d such that M = d2u4 and N = d2v4

and (u, v, w) is a Pythagorean triple, then the unique primitive solution to
(1) arising from the torsion subgroup of EQ(M,N) is (|duv|, 1, |duw|, |dvw|).
• If there exists a non-zero integer d such that M = −d2v4 and N =

d2(u4 − v4) (resp. M = d2(u4 − v4) and N = −d2v4) where (u, v, w)
is a Pythagorean triple, then the unique primitive solution to (1) arising
from the torsion subgroup of EQ(M,N) is (|dvw|, 1, |duv|, |duw|) (resp.
(|dvw|, 1, |duw|, |duv|)).
• If there exists integers a and b such that a/b 6∈ {−2,−1,−1/2, 0, 1} and

M = a4 + 2a3b and N = 2ab3 + b4, then the unique primitive solution to (1)
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arising from the torsion subgroup of EQ(M,N) is (|ab|, 1, |a(a+b)|, |b(a+b)|).
• In all other cases, there are no non-trivial solutions to (1) afforded by

the torsion points of EQ(M,N).

So when the torsion subgroup of EQ(M,N) is Z2×Z2 or Z2×Z4, then
there are non-trivial solutions (infinitely many) to (1) if and only if the rank
of EQ(M,N) is positive.

In the general case, assuming the Shimura–Taniyama–Weil conjecture
(STW) and B-SD, we establish how explicit knowledge of the Fourier ex-
pansions of weight 3/2 modular forms can lead to a theoretical solution of
suitable cases of Euler’s problem. In several cases we explicitly carry out
the details in connection with representation numbers by ternary quadratic
forms. For convenience, if Q is a quadratic form, then let r(n,Q) be the
number of integer representations of n by Q. We obtain:

Main Theorem 2. Let n1 be a positive square free integer.

(a) Suppose that L(EQ(6n1,−18n1), 1) 6= 0 and r(n1, x
2 + 2y2 + 12z2) 6=

r(n1, 2x2 + 3y2 + 4z2). Let n2 ≡ n1 mod 24 be a positive square-free integer
and suppose that

(M,N) ∈
{

(24d2n2, 18d2n2), (6d2n2,−18d2n2), (−6d2n2,−24d2n2),

(6d2n2, 54d2n2), (48d2n2,−6d2n2), (−48d2n2,−54d2n2)

}

for some non-zero integer d. If r(n2, x
2 + 2y2 + 12z2) 6= r(n2, 2x2 + 3y2 +

4z2), then the rank of EQ(M,N) is unconditionally 0. If these representation
numbers are equal , then assuming B-SD the rank of EQ(M,N) is positive.

(b) Suppose that L(EQ(40n1,−10n1), 1) 6= 0 and r(n1, x
2 +2y2 +20z2) 6=

r(n1, 2x2 + 4y2 + 5z2). Let n2 ≡ n1, 9n1 mod 40, be a positive square-free
integer and suppose that

(M,N) ∈ {(50d2n2, 10d2n2), (40d2n2,−10d2n2), (−40d2n2,−50d2n2)}
for some non-zero integer d. If r(n2, x

2 + 2y2 + 20z2) 6= r(n2, 2x2 + 3y2 +
4z2), then the rank of EQ(M,N) is unconditionally 0. If these representation
numbers are equal , then assuming B-SD the rank of EQ(M,N) is positive.

(c) Suppose that L(EQ(9n1,−3n1), 1) 6= 0 and r(n1, x
2 + 7y2 + 7z2 −

2yz) 6= r(n1, 3x2 + 4y2 + 5z2 − 4yz). Let n2 ≡ n1 mod 24 be a positive
square-free integer and suppose that

(M,N) ∈
{

(12d2n2, 3d2n2), (9d2n2,−3d2n2), (−9d2n2,−12d2n2),

(27d2n2, 24d2n2), (3d2n2,−24d2n2), (−3d2n2,−27d2n2)

}

for some non-zero integer d. If r(n2, x
2+7y2+7z2−2yz) 6= r(n2, 3x2+4y2+

5z2 − 4yz), then the rank of EQ(M,N) is unconditionally 0. If these repre-
sentation numbers are equal , then assuming B-SD the rank of EQ(M,N) is
positive.
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Consequently, we obtain:

Main Corollary 2. Assume that d is any non-zero integer , and that
(M,N) is a pair of integers belonging to one of the families given in (a), (b)
or (c) of Main Theorem 2. Then in each case we obtain:

(a) Let n2 be an odd positive square-free integer. If r(n2, x
2 + 2y2 +

12z2) 6= r(n2, 2x2 + 3y2 + 4z2), then there are unconditionally no primitive
solutions to (1). If these representation numbers are equal , then assuming
B-SD there are infinitely many primitive solutions to (1).

(b) Let n2 be an odd positive square-free integer. If r(n2, x
2 + 2y2 +

20z2) 6= r(n2, 2x2 + 4y2 + 5z2), then there are unconditionally no primitive
solutions to (1). If these representation numbers are equal , then assuming
B-SD there are infinitely many primitive solutions to (1).

(c) Let n2 6≡ 7 mod 8 be an odd positive square-free integer. If r(n2, x
2 +

7y2+7z2−2yz) 6= r(n2, 3x2+4y2+5z2−4yz), then there are unconditionally
no primitive solutions to (1). If these representation numbers are equal , then
assuming B-SD there are infinitely many primitive solutions to (1).

With the theory of lacunary modular forms, we show that there are
infinitely many quadratic twists in each of the families mentioned in Main
Corollary 2 with rank 0.

Main Theorem 3. Let d be a non-zero integer.

• Let 1 ≤ r ≤ 23 be an odd integer. Then there are infinitely many
positive square-free integers n ≡ r mod 24 such that for

(M,N) ∈
{

(24d2n, 18d2n), (6d2n,−18d2n), (−6d2n,−24d2n),

(6d2n, 54d2n), (48d2n,−6d2n), (−48d2n,−54d2n)

}

the rank of EQ(M,N) is 0. In each of these cases, there are no primitive
solutions to (1).
• If 1 ≤ r ≤ 40 is an odd integer , then there are infinitely many positive

square-free integers n ≡ r or 9r mod 40 such that for

(M,N) ∈ {(50d2n, 10d2n), (40d2n,−10d2n), (−40d2n,−50d2n)}
the rank of EQ(M,N) is 0. In each of these cases, there are no primitive
solutions to (1).
• Let r be one of 1, 3, 5, 9, 11, 13, 17, 19 or 21. Then there are infinitely

many positive square-free integers n ≡ r mod 24 such that for

(M,N) ∈
{

(12d2n, 3d2n), (9d2n,−3d2n), (−9d2n,−12d2n),

(27d2n, 24d2n), (3d2n,−24d2n), (−3d2n,−27d2n)

}

the rank of EQ(M,N) is 0. In such cases there are no primitive solutions
to (1).
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3. The torsion subgroup of EQ(M,N). To obtain Main Theorem 1,
we use the following 2-descent proposition [7, 4.1, p. 37]:

Proposition 1. Let P = (x′, y′) be a Q-rational point on E, an elliptic
curve over Q given by

y2 = (x− α)(x− β)(x− γ)

where α, β, and γ ∈ Q. Then there exists a Q-rational point Q = (x, y) on
E such that 2Q = P if and only if x′−α, x′−β, and x′−γ are all Q-rational
squares.

As an immediate corollary we obtain

Corollary 2. If M and N are distinct non-zero integers, then there
exists a non-trivial solution to (1) if and only if there exist non-trivial
points P = (x′, y′) and Q = (x, y) on EQ(M,N) such that 2Q = P 6∈
{(0, 0), (−M, 0), (−N, 0)}.

P r o o f. First note that (3) has the factorization y2 = x(x + M)(x +
N). Suppose that (x, y, t, z) = (a, b, c, d) is a non-trivial solution to (1).
Then P = (a2/b2, acd/b3) is a point on EQ(M,N) and a2 + Mb2 = c2

and a2 + Nb2 = d2. Hence we find that a2/b2, a2/b2 + M = c2/b2, and
a2/b2 + N = d2/b2 are all rational squares. Then by the proposition above
there exists a point Q such that P = 2Q.

Suppose that there exists a Q-rational point Q = (x, y) such that P =
(x′, y′) = 2Q. We may assume that x′ = a2/b2 since by the duplication
formula (see [27, 28]) it is known that the x-coordinate of 2Q (denoted by
X(2Q)) is

X(2Q) =
(
x2 −MN

2y

)2

= x′.

Hence by the above proposition we know that a2/b2 +M and a2/b2 +N are
both non-zero squares; hence by multiplying through by b2 we obtain the
primitive solution (|a|, |b|,√a2 +Mb2,

√
a2 +Nb2) to (1).

P r o o f o f M a i n T h e o r e m 1. We prove this theorem by investi-
gating the cases where the torsion subgroup contains points of order 4, 8,
and 3.

• In the first case, we first observe that Z2×Z4 is in the torsion subgroup
of EQ(M,N) if and only if there exists a point of order 4. EQ(M,N) has a
point Q of order 4 if and only if 2Q = (x′, y′), an order 2 point, is one of
(0, 0), (−M, 0), or (−N, 0). But by the above proposition, it is known that
(0, 0) (resp. (−M, 0), and (−N, 0)) is twice another point if and only if M
and N are both squares (resp. −M and N −M are both squares and −N
and M −N are both squares).
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We now explicitly list the four points of order 4. If M = m2 and N = n2

(we assume that m,n > 0), then

X(2Q) =
(
x2 −m2n2

2y

)2

= 0.

Hence it is clear that x = ±mn. By solving for y in (3) we find that the four
order 4 points are

(4) (mn,±mn(m+ n)) and (−mn,±mn(m− n)).

Now if −M = m2 and N −M = k2, then

X(2Q) =
(
x2 +m2(k2 −m2)

2y

)2

= m2.

Then by letting y = ±(x2 +m2(k2−m2))/(2m) and solving for x in (3), we
obtain the four order 4 points:

(5) (m2 −mk,±k(m2 −mk)) and (m2 +mk,±k(m2 +mk)).

If −N and M −N are both squares, then the four order 4 points are found
as in this last case.

• In this case we determine when the torsion subgroup is Z2×Z8. Since
Z2×Z4 is a subgroup of Z2×Z8, we consider each of the cases which arose
when determining whether or not Z2×Z4 is contained in the torsion group.

First we consider the case where M = m2 and N = n2. So if Q = (x, y)
is a point of order 8, then 2Q must be one of the four order 4 points given
above. In particular, it is easy to see that X(2Q) = mn. By the proposition,
such a point Q exists if and only if mn,mn+m2, and mn+n2 are all squares.
Since we may assume that gcd(M,N) is square free, we may assume that
gcd(m,n) = 1. Hence it is clear that both m and n are squares, say m = u2

and n = v2. We now know that u2v2, u2v2+u4, and u2v2+v4 are all squares.
This occurs if and only if u2 +v2 = w2 (i.e. (u, v, w) is a Pythagorean triple).
So we find that if M and N are both squares and the torsion group is Z2×Z8,
then M = d2u4 and N = d2v4 where (u, v, w) is a Pythagorean triple and d
is some non-zero integer.

Now we consider the case where −M = m2 and N −M = k2 (the case
where M − N = k2 and −N = n2 is handled similarly). If Q = (x, y) is a
point of order 8, then by the discussion above we find that X(2Q) = m2+mk
(by choosing the signs of m and k if necessary). Hence by the proposition we
find that m2+mk, mk, and mk+k2 are all squares if and only if there is such
a point Q. Since we may assume that the gcd(M,N) is square-free, we may
also assume that the gcd(m, k) = 1. Since mk is a square, we may assume
that both are positive and also that m and k are both squares, say m = v2

and k = u2. Therefore v4 +u2v2, u2v2, and u2v2 +u4 are all squares, which
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then implies that u2 + v2 = w2. Hence we find that the torsion subgroup is
Z2× Z8 when M = −d2v4 and N = d2(u4 − v4).

• In this case we determine those EQ(M,N) for which the torsion sub-
group is Z2 × Z6. To do this use the triplication formula (see [28]) which
determines whether or not a point Q = (x, y) has order 3. In the case of
EQ(M,N), it turns out that Q has order 3 if and only if

3x4 + 4(M +N)x3 + 6MNx2 −M2N2 = 0.

As a degree 4 homogeneous polynomial in the variables M,N , and x, it has
a rational parametrization (due to Nigel Boston)

M

x
= (1 + t)2 − 1,

N

x
=
(

1 +
1
t

)2

− 1.

So replacing t by a/b (where gcd(a, b) = 1) we find that

M

x
=

2ab+ a2

b2
and

N

x
=

2ab+ b2

a2 .

By the Nagell–Lutz theorem, we know that x is an integer and from the last
two equalities we find that x = a2b2. HenceM = 2a3b+a4 andN = 2ab3+b4.
Note that if a/b ∈ {−2,−1,−1/2, 0, 1} then we do not obtain an elliptic
curve.

By solving for y in (3) where x = a2b2, we find that the two order 3
points are

(6) (a2b2,±a2b2(a+ b)2).

• Since Z2×Z2 is always contained in the torsion subgroup of EQ(M,N),
the torsion subgroup (by Mazur’s theorem) must be one of Z2 × Z2,Z2 ×
Z4,Z2×Z6, or Z2×Z8. Therefore if M and N are distinct non-zero integers
which do not occur in the list above, then by process of elimination, the
torsion subgroup of EQ(M,N) must be Z2× Z2.

As an immediate corollary we obtain Main Corollary 1.

P r o o f o f M a i n C o r o l l a r y 1. As a consequence of Corollary 2, we
see that non-trivial solutions afforded by the torsion subgroup of EQ(M,N)
exist if and only if the torsion subgroup is either Z2 × Z8 or Z2 × Z6.
Moreover, from its proof, we find that in these cases the non-trivial solutions
must correspond to the order 4 or 3 torsion points. In each of these cases one
may simply plug in the values of M and N into (4), (5), and (6) to obtain
the x-coordinates of these points. There is only one positive x-coordinate
belonging to order 4 and 3 points, hence there is a unique primitive solution
as a consequence of the proof of Corollary 2.
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4. Modular forms and quadratic twists of EQ(M,N). As a con-
sequence of the results in the last section, we see that when the torsion
subgroup of EQ(M,N) is Z2×Z2 or Z2×Z4, then there are primitive solu-
tions to (1) if and only if the rank of EQ(M,N) is positive. Moreover, there
are infinitely many such primitive solutions for any (M,N) if and only if
the rank of EQ(M,N) is positive.

The Shimura–Taniyama–Weil Conjecture (STW) asserts that certain
weight 2 newforms correspond to the L-functions of elliptic curves over Q.
More precisely, a weak version of the conjecture is:

Conjecture (STW). If E is an elliptic curve over Q with conductor
N and L-function L(E, s) =

∑∞
n=1 a(n)/ns, then the Mellin transform of

L(E, s), f(z) =
∑∞
n=1 a(n)qn is a weight 2 newform in S2(N,χ0) where χ0

is the trivial Dirichlet character modN .

If E is a curve for which the STW conjecture holds, then E is known
as a modular elliptic curve. By the works of Carayol, Eichler, and Shimura
it is known that if f(z) =

∑∞
n=1 a(n)qn is a weight 2 newform with integer

coefficients with trivial character χ0, then there exists an elliptic curve E
over Q with L(E, s) =

∑∞
n=1 a(n)/ns. Recently Wiles [31] has proven the

conjecture for semistable elliptic curves, and Diamond and Kramer [5] have
proved the conjecture for curves with full 2-torsion. In particular, if M 6= N
are non-zero integers, then EQ(M,N) is a modular elliptic curve.

By combining B-SD and STW, it turns out that the rank of an elliptic
curve over Q is positive if and only if the special value of a certain modular
L-function at s = 1 is 0. Recently from the works of Kolyvagin, M. R. Murty,
V. K. Murty, Bump, Friedberg, and Hoffstein (see [3, 10, 14]) we have:

Theorem 1. If E is a modular elliptic curve where L(E, 1) 6= 0, then
the rank of E is 0.

Let ψ be a Dirichlet character modM and let f(z) ∈ Sk(N,χ) with
Fourier expansion f(z) =

∑∞
n=1 a(n)qn. Then the function fψ(z), the ψ-

twist of f(z), defined by

(7) fψ(z) =
∞∑
n=1

ψ(n)a(n)qn

is also a modular form and is contained in Sk(NM2, χψ2). Now we relate
these twists when ψ is a quadratic character to the twists of an elliptic curve.

If E is an elliptic curve over Q given by the equation y2 = x3 + Ax2 +
Bx+C and D is a square-free integer, then the equation of its D-quadratic
twist is

Dy2 = x3 +Ax2 +Bx+ C.
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This curve is denoted by ED. If D is a square-free integer, then the D-
quadratic twist of EQ(M,N) is given by Dy2 = x3 + (M + N)x2 + MNx.
By multiplying both sides of this model by D3 and then replacing D2y by
y and Dx by x we find that the D-quadratic twist of EQ(M,N) is

(8) y2 = x3 + (DM +DN)x2 +D2MNx,

the curve EQ(DM,DN). If L(EQ(M,N), s) =
∑∞
n=1 a(n)/ns is the L-

function for EQ(M,N), then the L-function for its quadratic twist

L(EQ(DM,DN), s) =
∞∑
n=1

aD(n)qn

is
∞∑
n=1

χD(n)a(n)
ns

where χD(n) is the quadratic character for Q(
√
D)/Q. Specifically this

means that for almost all primes p, aD(p) =
(
D
p

)
a(p) where

(
D
p

)
is the

usual Kronecker–Legendre symbol.
Now we briefly describe the theory of half-integral weight modular forms

as developed by Shimura. Let N be a positive integer that is divisible by 4.
Now define

(
c
d

)
and εd by

(
c

d

)
:=

{
−( c|d|

)
if c, d < 0,(

c
|d|
)

otherwise.

εd :=
{

1, d ≡ 1 mod 4,
i, d ≡ 3 mod 4.

Also let (cz+d)1/2 be the principal square root of (cz+d) (i.e. with positive
imaginary part). Let χ be a Dirichlet character modN . Then a meromor-
phic function f(z) on H is called a half-integer weight modular form if

f

(
az + b

cz + d

)
= χ(d)

(
c

d

)2λ+1

ε−1−2λ
d (cz + d)λ+1/2f(z)

for all
(
a b
c d

) ∈ Γ0(N). Such a form is called a form with weight λ + 1/2
and character χ. The set of all such forms that are holomorphic on H as
well as at the cusps is denoted by Mλ+1/2(N,χ) and is a finite-dimensional
C-vector space. The set of those f(z) in Mλ+1/2(N,χ) that also vanish at
the cusps, the cusp forms, is denoted by Sλ+1/2(N,χ).

As in the case of integer weight forms, there are Hecke operators that pre-
serve Mλ+1/2(N,χ) and Sλ+1/2(N,χ). However, for these forms the Hecke
operators act on Fourier expansions in square towers; specifically, if p is a
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prime, then the Hecke operator Tp2 acts on f(z) ∈Mλ+1/2(N,χ) by

(9) f(z)|Tp2

:=
∞∑
n=0

(
a(p2n) + χ(p)

(
(−1)λn

p

)
pλ−1a(n) + χ(p2)p2λ−1a(n/p2)

)
qn.

As in the integer weight case, a form f(z) is called an eigenform if for every
prime p there exists a complex number λp such that

f(z)|Tp2 = λpf(z).

The canonical example of weight 1/2 modular forms is

θ(z) :=
∑

n∈Z
qn

2
= 1 + 2q + 2q4 + 2q9 + . . .

However, this is an example of a more general phenomenon from which many
examples of forms are obtained. For example, if Q(x1, . . . , xk) is a positive
definite quadratic form in k variables then let r(n,Q) denote the number of
representations of n by Q. The generating function for r(n,Q) defined by

(10) θQ(z) :=
∑

x1,...,xk∈Zk
qQ(x1,...,xk)

is a weight k/2 modular form on some congruence group. Here we illustrate
how to construct cusp forms using quadratic forms. Two positive definite
quadratic forms Q1 and Q2 are in the same genus if they are equivalent over
R and over Zp for every prime p. Then let θQ1(z) and θQ2(z) be defined as
in (10). In [26] Siegel showed that if Q1 and Q2 are in the same genus then
the function F (z) := θQ1(z)− θQ2(z) is a cusp form.

Specifically, we have the following theorem due to Schoeneberg [22] which
explicitly computes the level and character of such cusp forms when there
are an even number of variables in the quadratic form.

Theorem (Schoeneberg). Let Q be a positive definite quadratic form in
2k variables with determinant D and let ∆ := (−1)kD be its discriminant.
If A is the 2k × 2k matrix which represents Q, then let N be the smallest
positive integer such that NA−1 is an integral matrix with even diagonal
entries. Then θQ(z), as defined in (10), is in Mk(2N,χ) where χ(n) :=

(
∆
n

)
.

Now equipped with results of Schoeneberg and Siegel we construct three
weight 3/2 eigenforms which are critical to the sequel. We simply searched
through a list of reduced ternary quadratic forms and we found the fol-
lowing convenient weight 3/2 forms, which by the methods of this paper,
correspond to elliptic curves with full 2-torsion. The referee has informed
us of a paper by Lehman [11] where a systematic version of this method is
described. Moreover, there is an explicit table containing all the weight 3/2
theta series arising from positive definite ternary quadratic forms with level
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≤ 100. Consequently, with some routine computation, more cases of Euler’s
problem may be handled with the results in [11].

Proposition 2. Let Q1 = x2 + 2y2 + 12z2, Q2 = 2x2 + 3y2 + 4z2,
Q3 = x2 + 2y2 + 20z2, Q4 = 2x2 + 4y2 + 5z2, Q5 = x2 + 7y2 + 7z2 − 2yz,
and Q6 = 3x2 + 4y2 + 5z2 − 4yz and define

f1(z) :=
1
2

(θQ1(z)− θQ2(z)),

f2(z) :=
1
2

(θQ3(z)− θQ4(z)),

f3(z) :=
1
2

(θQ5(z)− θQ6(z)).

Then as weight 3/2 cusp forms we find that f1(z) ∈ S3/2
(
48,
(

6
n

))
, f2(z) ∈

S3/2
(
80,
(

10
n

))
, and f3(z) ∈ S3/2

(
192,

(
3
n

))
.

P r o o f. We prove the proposition for f3(z), leaving f1(z) and f2(z) to
the reader. First we note that Q5 and Q6 are two ternary quadratic forms
which are in the same genus. Hence by Siegel’s theorem f3(z) is a weight
3/2 cusp form on some congruence subgroup.

Let Q̃5 = 7y2+7z2−2yz and Q̃6 = 4y2+5z2−4yz. Then by Schoeneberg’s
theorem we find that θQ̃5

(z) ∈ M1
(
192,

(−3
n

))
and θQ̃6

(z) ∈ M1
(
64,
(−1
n

))
.

It is easy to see that θQ5(z) = θ(z)θQ̃5
(z) and that θQ6(z) = θ(3z)θQ̃6

(z).
Since θ(z) ∈M1/2(4, χ0) and θ(3z) ∈M1/2

(
12,
(

3
n

))
, we see that

θQ5

(
az + b

cz + d

)
=
(
c

d

)
ε−1
d

(−3
d

)
(cz + d)3/2θQ5(z)

and

θQ6

(
az + b

cz + d

)
=
(

3
d

)(
c

d

)
ε−1
d

(−1
d

)
(cz + d)3/2θQ6(z)

for all
(
a b
c d

) ∈ Γ0(192). But since ε−2
d =

(−1
d

)
we find that θQ5(z) and θQ6(z)

are contained in M3/2
(
192,

(
3
n

))
, and so f3(z) := 1

2 (θQ5(z) − θQ6(z)) ∈
S3/2

(
192,

(
3
n

))
since Q5 and Q6 are in the same genus.

The critical link between the theory of half integer weight modular forms
and the integer weight modular forms is the Shimura lift . The Shimura lifts
are a family of maps which take the L-function of a half-integer weight cusp
form and return the L-function of an integer weight modular form. More
precisely, let f(z) =

∑∞
n=1 a(n)qn ∈ Sλ+1/2(N,χ) where λ ≥ 1. Define the

Dirichlet character ψ by ψ(d) = χ(d)
(−1
d

)λ
. Now define A(n) by the formal

product of L-functions
∞∑
n=1

A(n)
ns

:= L(s− λ+ 1, ψ)
∞∑
n=1

a(n2)
ns

.
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Then Shimura proved that the Mellin transform of this product, which we
denote by S(f(z)) =

∑∞
n=1A(n)qn, is a weight 2λ modular form. In fact,

it is known that S(f(z)) ∈ M2λ(N/2, χ2). Furthermore, if λ ≥ 2, then
S(f(z)) ∈ S2λ(N/2, χ2).

Shimura conjectured that there are formulae involving special values of
modular L-functions relating the Fourier coefficients of f(z) with those of
S(f(z)). First we fix some necessary notation. If F (z) =

∑∞
n=1A(n)qn is a

modular form, then its L-function L(F, s) is defined by

L(F, s) =
∞∑
n=1

A(n)
ns

.

Now if ψ is a Dirichlet character and if Fψ(z) =
∑∞
n=1 ψ(n)A(n)qn is the

ψ-twist of F (z), then we let L(F, ψ, s) denote the modular L-function for
Fψ(z).

In [30] Waldspurger proved this conjecture explicitly. For our purposes
we use:

Theorem (Waldspurger). Let f(z) ∈ Sλ+1/2(N,χ) be an eigenform of
the Hecke operators Tp2 such that S(f(z)) = F (z) ∈ Snew

2λ (M,χ2) for an
appropriate positive integer M . Denote their respective Fourier expansions
by f(z) =

∑∞
n=1 a(n)qn and F (z) =

∑∞
n=1A(n)qn. Let n1 and n2 be two

positive square-free integers such that n1/n2 ∈ Q×2
p for all p |N . Then

(11) a2(n1)L
(
F,

(−1
n

)λ
χ−1χn2 , λ

)
χ(n2/n1)nλ−1/2

2

= a2(n2)L
(
F,

(−1
n

)λ
χ−1χn1 , λ

)
n
λ−1/2
1 .

By combining Waldspurger’s theorem with B-SD we find that we can
determine whether or not the ranks of certain twists of an elliptic curve
over Q are positive.

Theorem 2. Let E be a modular elliptic curve over Q with L(E, s) =∑∞
n=1A(n)/ns. Let f(z) =

∑∞
n=1 a(n)qn ∈ S3/2

(
N,
(
d
n

))
be an eigenform

of the Hecke operators Tp2 such that S(f(z)) = F (z) =
∑∞
n=1A(n)qn. Now

let n1 be a positive square-free integer such that a(n1) 6= 0 and such that
L(E−dn1 , 1) 6= 0. Suppose that n2 is a positive square-free integer such that
n1/n2 ∈ Q×2

p for every prime p |N . If a(n2) 6= 0, then the rank of E−dn2 is
unconditionally 0. If a(n2) = 0, then assuming B-SD the rank of E−dn2 is
positive.
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P r o o f. In (11) we now substitute 1 for λ and replace χ by
(
d
n

)
. Then

by solving for L
(
F,
(−dn2

n

)
, 1
)

we obtain

L

(
F,

(−dn2

n

)
, 1
)

=
a2(n2)L

(
F,
(−dn1

n

)
, 1
)√
n1√

n2a2(n1)
.

Since E is a modular elliptic curve corresponding to the weight 2 newform
F (z), we find that

L(E−dn2 , 1) =
a2(n2)L(E−dn1 , 1)

√
n1√

n2a2(n1)
.

So by hypothesis we find that L(E−dn2 , 1) = 0 if and only if a(n2) = 0.
If a(n2) 6= 0, then by Theorem 1 we find that the rank of E−dn2 is un-
conditionally 0. If a(n2) = 0, then by B-SD the rank of E−dn2 is posi-
tive.

We now prove Main Theorem 2.

P r o o f o f M a i n T h e o r e m 2. We now prove Main Theorem 2 which
contains explicit examples of the above theorem. Using the cusp forms f1(z),
f2(z) and f3(z) from Proposition 2, let S(fi(z)) =

∑∞
n=1Ai(n)qn for 1 ≤

i ≤ 3. For example, we found that

S(f1(z)) = q − q3 − 2q5 + q9 + 4q11 − 2q13 + 2q15 + 2q17 + . . .

= η(2z)η(4z)η(6z)η(12z)

and

S(f3(z)) = q + q3 − 2q5 + q9 − 4q11 − 2q13 − 2q15 + 2q17 + . . .

=
η4(4z)η4(12z)

η(2z)η(6z)η(8z)η(24z)
.

In fact, it should be noted that S(f3(z)) is S(f1(z)) twisted by the quadratic
character

(−1
n

)
, which implies that the corresponding curves are twists of

each other by D = −1.
Since the Hecke operators Tp2 and Tp commute with the Shimura lift

and the images S(fi(z)) are all weight 2 newforms, it follows that all three
weight 3/2 forms are eigenforms.

We find that S(f1(z)) ∈ Snew
2 (24, χ0), S(f2(z)) ∈ Snew

2 (40, χ0), and
S(f3(z)) ∈ Snew

2 (48, χ0). In these cases the weight 2 newforms correspond
to certain EQ(M,N). Since elliptic curves with conductor 24, 40, and 48
are all modular, it is easy to verify that the L(EQ(M,N), s) are the Mellin
transforms of the S(Fi(z)).

The pairs (M,N) for which L(EQ(M,N), s) corresponds to S(f1(z)) are
(−4,−3), (−1, 3), (1, 4), (−1,−9), (−8, 1), and (8, 9). Those corresponding
to S(f2(z)) are (−5,−1), (−4, 1), and (4, 5), and those corresponding to
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S(f3(z)) are (−4,−1), (−3, 1), (3, 4), (−9,−8), (−1, 8), and (1, 9). By The-
orems 1 and 2 and since the coefficient of qn in fi(z) is 1

2 (r(n,Q2i−1) −
r(n,Q2i)) by Proposition 2 we obtain the main result.

We immediately obtain Main Corollary 2 by the following computations.

P r o o f o f M a i n C o r o l l a r y 2. Since the torsion subgroups (by
Main Theorem 1) are not Z2× Z8 nor Z2× Z6, we only need to determine
the ranks of the relevant curves. By the last theorem, we only need to look for
square-free positive integers n1 in each arithmetic progression which satisfy
the hypotheses of the last theorem. We check these case by case.

• In the first case one can check that the conditions of Main Theorem 2
are satisfied by n1 = 1, 3, 5, 7, 57, 35, 13, 39, 17, 67, 93, and 23, and they are
the representatives for the odd arithmetic progressions mod 24 in increasing
order by residue class.
• In the second case the hypotheses of Main Theorem 2 are satisfied by

n1 = 1, 3, 5, 7, 11, 13, 55, 17, 61, 145, 31, and 195. The arithmetic progressions
come in pairs and hence we only need one representative for each pair.
• In the third case the conditions of the theorem are satisfied by n1 =

1, 3, 5, 57, 11, 37, 17, 19, and 21. These are representatives for the odd arith-
metic progressions mod24 (except those that are 7 mod 8) in increasing or-
der by residue class. We note that for every non-negative integer n

r(8n+ 7, x2 + 7y2 + 7z2 − 2yz) = r(8n+ 7, 3x2 + 4y2 + 5z2 − 4yz)

hence the conditions of the theorem are not satisfied for the arithmetic
progression 7 mod 8.

We now show how one may use results like Main Theorem 2 to establish
the existence of infinitely many quadratic twists of certain curves with rank
0. Using impressive analytic estimates on certain special values of modular
L-functions, L. Mai and M. R. Murty [12] proved that a modular elliptic
curve E has infinitely many quadratic twists by D ≡ 1 mod 4N , where N is
the conductor of E, with rank 0. Here we show that this is indeed the case
in the families of quadratic twists in Main Corollary 2. To do this we will
use the theory of modular forms with complex multiplication as developed
by Hecke and Serre. The author developed two other elementary methods of
guaranteeing the existence of rank 0 quadratic twists in [15, 16]. In fact, in
[16] it is shown that for some elliptic curves E there exists a set S of primes
with density 1/3 for which the D-twist of E has rank 0 provided that all
the prime factors of D are in S.

First we give essential preliminaries and definitions regarding modu-
lar forms with complex multiplication. Let K = Q(

√−d) be an imagi-
nary quadratic field with integer ring OK with discriminant −D. A Hecke
Grössencharakter φ of weight k ≥ 2 with conductor Λ, an ideal in OK , is a
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group homomorphism from I(Λ), the group of fractional ideals prime to Λ,
to C× satisfying

φ(αOK) = αk−1 when α ≡ 1 mod Λ.

Given such a φ, define a formal power series Ψ(z) in q = e2πiz by

Ψ(z) :=
∑

a

φ(a)qN(a),

where the sum is taken over all integral ideals a prime to Λ and N(a) is the
ideal norm of a in OK . The function Ψ(z) is a newform in Snew

k

(
DN(Λ),(−d

n

)φ(nOK)
nk−1

)
. Such forms are known as modular forms with complex multi-

plication. Using these definitions we find that if

Ψ(z) =
∞∑
n=1

a(n)qn,

then for every prime p where
(−d
p

)
= −1 we have a(p) = 0 (then there are

no ideals of norm p). These are the inert primes of K.
Now introduce the notion of a lacunary modular form. Suppose that

f(z) =
∑∞
n=1 a(n)qn ∈ Mk(N,χ) for some positive integers k and N and

some suitable Dirichlet character χ. The form f(z) is called lacunary if
almost all of the Fourier coefficients a(n) are zero. In this setting we take
“almost all” to mean that a(n) = 0 on a subset of the positive integers with
density one. In [23], Serre proved that such a form f(z) is lacunary if and
only if f(z) is expressible as a finite linear combination of modular forms
with complex multiplication.

We now use these ideas to prove Main Theorem 3.

P r o o f o f M a i n T h e o r e m 3. First we recall the following fact con-
cerning the restriction of the Fourier expansion of an integer weight modular
form to an arithmetic progression.

Lemma 1. Let f(z) =
∑∞
n=0 a(n)qn be a modular form in Mk(N,χ) and

let d := gcd(r, t). If 0 ≤ r < t, then

fr,t(z) =
∑

n≡rmod t

a(n)qn

is the Fourier expansion of a modular form in Mk(Nt2/d).

Define

F1(z) := f1(z)θ(24z) =
∞∑
n=1

A1(n)qn, F2(z) := f2(z)θ(40z) =
∞∑
n=1

A2(n)qn,
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and

F3(z) := f3(z)θ(24z) =
∞∑
n=1

A3(n)qn.

It is easily verified that F1(z) ∈ S2(192, χ0), F2(z) ∈ S2(160, χ0), and F3(z)
∈ S2(192, χ0). Let ai(n) (1 ≤ i ≤ 3) denote the Fourier coefficients of fi(z).

By (9), it is clear that the Hecke operators Tp2 act on ai(n), in square
towers. In other words, if n is a positive square-free integer, then ai(nm2) is
uniquely determined by ai(n) and the eigenvalues for Tp2 for primes p |m.
In fact, it is easy to verify that if ai(n) = 0, then ai(nm2) = 0 for every
non-zero integer m.

Let F1,r(z) be the weight 2 cusp form defined by

F1,r(z) :=
∑

n≡rmod 24

A1(n)qn.

By Lemma 1, it is clear that F1,r(z) is a weight 2 modular form (in fact,
a cuspidal one) with respect to the congruence subgroup Γ0(242 · 96). It is
easy to verify that if n is a square-free integer such that nm2 ≡ r mod 24
and m is prime to 6, then n ≡ r mod 24.

Let 1 ≤ r ≤ 24 be a positive odd integer. Suppose that there are only
finitely many square-free positive integers n ≡ r mod 24 such that a1(n) 6= 0,
say n1, . . . , ntr . So by the definition of F1(z), we find that

F1,r(z) =
( tr∑

i=1

∑

gcd(m,24)=1

a1(nim2)qnim
2
)(∑

n∈Z
q24n2

)
.

Since the set of positive integers that are represented by any binary quadratic
form has density zero in the set of non-negative integers, we find that F1,r(z)
is a lacunary modular form. Hence by Serre’s theorem it must be the case
that F1,r(z) is a finite linear combination of complex multiplication modular
forms of weight 2. Since F1,r(z) has level 242 · 96 = 21133 and the discrimi-
nants of the CM fields divide the level, the only imaginary quadratic fields
whose Hecke Grössencharakters can occur in this linear combination are
Q(i),Q(

√−2),Q(
√−3), and Q(

√−6).
Now if there exists a prime p which is inert in each of these fields such

that the coefficient A1(pm) 6= 0 where pm ≡ r mod 24 and gcd(p,m) = 1,
then F1,r(z) cannot be a linear combination of such CM forms. This follows
from the fact that the coefficients in every newform are multiplicative and
there are no ideals with norm p in any of these fields. It is impossible for
any of the CM forms in the linear combination to have a non-zero coefficient
associated with the exponent pm. The smallest prime which is inert in each
of these fields is p = 23. For r = 1 it turns out that A1(23 · 71) = −16 6= 0.
Hence F1,1(z) is not a linear combination of CM forms, hence it is not
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lacunary. This contradicts the assumption that there are only finitely many
square-free positive integers n ≡ 1 mod 24 such that a1(n) 6= 0. Hence there
are infinitely many n such that a1(n) 6= 0, and by Main Corollary 2 this
implies that the given pairs (M,N) of integers are rank 0 quadratic twists.
For r = 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23 we find that A1(987) = −16,
A1(437) = 16, A1(391) = 8, A1(345) = −8, A1(299) = −8, A1(253) = −16,
A1(207) = 4, A1(713) = −32, A1(115) = −8, A1(69) = 4, and A1(23) = 4
respectively. All of these indices contain either 23, 47, or 71 as a simple prime
factor and all three primes are inert in all four quadratic imaginary fields. All
of these coefficients are non-zero, which shows that none of the F1,r(z) are
lacunary, thereby contradicting the assumption that there are only finitely
many square-free positive integers n ≡ r mod 24 where a1(n) 6= 0.

In the second case, suppose that there are only finitely many square-free
positive integers n ≡ r or 9r mod 40 such that a2(n) 6= 0, say n1, . . . , ntr . It
is easy to verify that if nm2 ≡ r or 9r mod 40 where n is square-free, then
n ≡ r or 9r mod 40. Hence if we define Fr,9r(z) by

Fr,9r(z) =
∑

n≡r,9rmod 40

A2(n)qn,

then Fr,9r(z) is a weight 2 cusp form with respect to the group Γ0(402 ·160)
and by hypothesis satisfies

Fr,9r(z) =
( tr∑

i=1

∑

gcd(m,40)=1

a2(nim2)qnim
2
)(∑

n∈Z
q40n2

)
.

Again as in the first case we find that Fr,9r(z) is a lacunary modular form
and hence it is a finite linear combination of CM forms with respect to Q(i),
Q(
√−2), Q(

√−5), and Q(
√−10). However, we find that A2(1209) = 32,

A2(923) = 8, A2(1085) = 8, A2(527) = −8, A2(651) = −24, A2(213) = 24,
A2(775) = 4, A2(217) = −8, A2(341) = −8, A2(1065) = −24, A2(31) = 4,
and A2(355) = −4. All of these coefficients are non-zero and they cover all
pairs of residue classes r, 9r mod 40 with r odd. Since all the exponents
above contain either 31 or 71 as simple factors and they are inert in all four
quadratic imaginary fields, it is not the case that any of the Fr,9r(z) are finite
linear combinations of CM forms. Hence by Serre’s theorem none of them
are lacunary; therefore if 1 ≤ r ≤ 40 is odd, then there are infinitely many
square-free integers n ≡ r or 9r mod 40 for which the relevant EQ(M,N)
twisted by n has rank 0.

In the third case for 1 ≤ r ≤ 24 odd, we define

F3,r(z) =
∑

n≡r mod 24

A3(n)qn.
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If there are only finitely many square-free positive integers n ≡ r mod 24
such that a3(n) 6= 0, say n1, . . . , ntr , then F3,r(z) has the following factor-
ization:

F3,r(z) =
( tr∑

i=1

∑

gcd(m,24)=1

a3(nim2)qnim
2
)(∑

n∈Z
q24n2

)
.

So F3,r(z) is a lacunary weight 2 cusp form with respect to the group
Γ0(242 · 96). Hence by Serre’s theorem, F3,r(z) is a finite linear combina-
tion of CM forms with respect to Q(i), Q(

√−2), Q(
√−3), and Q(

√−6). For
r = 1, 3, 5, 9, 11, 13, 17, 19, and 21 we find that A3(1081) = 16, A3(483) = 16,
A3(437) = −16, A3(345) = −8, A3(851) = 32, A3(805) = 48, A3(161) = −8,
A3(115) = −16, and A3(69) = −4 respectively. All of these coefficients are
non-zero and these indices all contain at least one of 23 or 47, primes that
are inert in each of these four quadratic imaginary fields, as simple prime
factors. As in the previous two cases, if r = 1, 3, 5, 9, 11, 13, 17, 19, or 21,
then there are infinitely many square-free positive integers n ≡ r mod 24
such that the quadratic twist of EQ(M,N) by n has rank 0.

5. Simultaneous Pellian equations. Let M and N be distinct positive
integers. In this section we investigate the existence of simultaneous non-
trivial integer solutions (a, b, c) to the pair of Pellian equations

(12) a2 −Mb2 = 1 and c2 −Nb2 = 1.

Such a solution (a, b, c) is called non-trivial if b 6= 0. Using the methods
developed by Schmidt [20, 21], Schlickewei [19] proved that the number of
simultaneous integer solutions (a, b, c) to (12) is � 4 · 8278

. In recent work
by Masser and Rickert [13], this bound has been lowered to 132, and M.
Bennett has informed me that he [2] has lowered this bound to 28.

The aim of this section is to show that there are several infinite families
of such systems where one may deduce the non-existence of non-trivial solu-
tions to (12) by simply computing the number of representations of certain
integers by pairs of ternary quadratic forms.

We first prove the following elementary proposition.

Lemma 2. If M and N are distinct positive integers and (a, b, c) is a
non-trivial solution to (12), then (x, y) = (1/b2, ac/b3) is a point of infinite
order on the elliptic curve EQ(M,N). In particular , if EQ(M,N) has rank
0, then there are no non-trivial solutions to (12).

P r o o f. Suppose that (a, b, c) is a non-trivial solution to (12). It is easy
to see that 1+Mb2 = a2 and 1+Nb2 = c2. Therefore (x, y, t, z) = (1, b, a, c)
is a non-trivial solution to (1). It is easy to see that this implies that

a2c2 = 1 + (M +N)b2 +MNb4,
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which after multiplying through by 1/b6 becomes

a2c2

b6
=

1
b6

+
M +N

b4
+
MN

b2
.

Hence (x, y) = (1/b2, ac/b3) is a rational point on EQ(M,N). Moreover, by
the Lutz–Nagell theorem [7, Theorem 5.1], since the coordinates of torsion
points are integers, we may assume that b = ±1.

By Main Corollary 1, the primitive solutions (x, y, t, z) to (12) afforded
by the torsion points of E(M,N) are completely classified. It is a straight-
forward exercise to deduce that (1/b2, ac/b3) is not any of the torsion points
found in the proof of Main Theorem 1.

We immediately obtain the following as a consequence of Lemma 2,
Corollary 1, and Main Corollary 2.

Main Corollary 3. Let d be any non-zero integer.

(i) Let n be an odd positive square-free integer and suppose that (M,N)
= (2d2n, d2n). If 2r(n, 2x2 + y2 + 32z2) 6= r(n, 2x2 + y2 + 8z2), then there
are no non-trivial solutions to (12).

(ii) Let n be an even positive square-free integer and suppose that (M,N)
= (2d2n, d2n). If 2r(n/2, 4x2 + y2 + 32z2) 6= r(n/2, 4x2 + y2 + 8z2), then
there are no non-trivial solutions to (12).

(iii) Let n be an odd positive square-free integer and suppose that (M,N)
= (24d2n, 18d2n) or (6d2n, 54d2n). If r(n, x2 + 2y2 + 12z2) 6= r(n, 2x2 +
3y2 + 4z2), then there are no non-trivial solutions to (12).

(iv) Let n be an odd positive square-free integer and suppose that (M,N)
= (50d2n, 10d2n). If r(n, x2 +2y2 +20z2) 6= r(n, 2x2 +4y2 +5z2), then there
are no non-trivial solutions to (12).

(v) Let n 6≡ 7 mod 8 be an odd positive square-free integer for which
(M,N) = (12d2n, 3d2n) or (27d2n, 24d2n). If r(n, x2 + 7y2 + 7z2 − 2yz) 6=
r(n, 3x2 + 4y2 + 5z2−4yz), then there are no non-trivial primitive solutions
to (12).

R e m a r k. In [18] Rickert proves that there are no non-trivial solutions
to (12) where M = 2 and N = 3. By the above proposition, it is easy to
obtain this result because E(2, 3) is a rank 0 elliptic curve.
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