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1. Introduction and results. In 1954 Erdős [2], [6, Ch. 3] proved
that there is a set of nonnegative integers A ⊆ N, with counting function
bounded by C log2 x, C an absolute positive constant, which is an additive
complement of the primes P. That is, every positive integer n can be written,
in at least one way, as a sum a+p, with a ∈ A and p ∈ P (otherwise written
as N = A+ P) and, at the same time, A(x) = #(A ∩ [1, x]) ≤ C log2 x. The
proof of this fact was probabilistic. It was shown that almost all random
sets A, drawn from the proper distribution, have the properties mentioned
above.

This result has not been improved. Recently (1) D. Wolke [7] proved the
following:

For any function h(x) ≥ 0 that tends to infinity as x→∞ there is a set
A ⊆ N with

A(x) ≤ Ch(x) log x log log x, C a positive constant ,

and such that N = (A+ P) ∪ E, with E(x) = o(x) as x→∞.

We call a set A as above an almost complement of the primes and E the
exceptional set corresponding to A.

In the first part of this note we improve the result of Wolke. We give a
probabilistic proof, simpler than that in [7], that there is an almost comple-
ment A of the primes with

A(x) ≤ C log x log log x,

with C an absolute positive constant.
Note that the only obvious lower bound for the counting function of a

complement A of the primes is A(x) & log x, since, by the Prime Number
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Theorem, P(x) ∼ x/ log x. In the second part of this note we show that
there are prime-like sets A (i.e. sets with the growth of the primes) whose
additive complements B necessarily have counting functions satisfying

lim inf
x→∞

B(x)

log2 x
≥ 1.

That is, if Erdős’s result is to be improved then one must use some properties
of the primes besides their growth (the proof of Erdős’s theorem is not using
any such properties). The proof is again based on probability.

1.1. Notation. We write A(x) = #(A∩ [1, x]) for the counting function of
the sequence A. We also write A≤x = A∩ [1, x]. By a� b we mean a ≤ Cb,
where C is an absolute constant. The fact lim(a/b) = 1, as an implicit
quantity tends to a limit, will be denoted by a ∼ b. The notation a & b
means lim inf(a/b) ≥ 1. The set of primes is denoted by P. The letter C is
used for an absolute constant, not necessarily the same in all its occurrences,
even in the same equation. We say that the set A complements the set B if
every sufficiently large integer can be written in at least one way as a + b,
with a ∈ A and b ∈ B.

We recall the following definition.

Definition 1. The upper density %(E) of a set E ⊆ N is defined as

%(E) = lim sup
N→∞

#(E ∩ [1, N ])
N

.

A crucial observation here is that the set E ⊆ N has upper density 0 if
and only if

lim sup
N→∞

2−N#(E ∩ [1, 2N ]) = 0.

1.2. New results. We state our results.

Theorem 1 (Almost additive complement for the primes). There is a
set A ⊆ N with

A(x) ∼ C log x log log x
such that every integer n, not in an exceptional set E of upper density 0,
can be represented at least once as

n = a+ p, a ∈ A, p a prime.

R e m a r k. In Theorem 1, and for any M > 0, the counting function of
the exceptional set E can be taken to satisfy E(x)� x/ logM x.

Theorem 2 (Sets that are hard to complement). Let the function φ(x) ≥
1 increase to infinity with x and assume that the function ψ(x) ≥ 1 satisfies

(1) ψ3(x) ≤ (1− δ)(1− λ)
x

log x
exp

(
− (1 + ε)

ψ(x)
φ(λx/ψ(x))

)
,
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for some positive constants δ, ε, λ and for all large x ∈ N. Let the random set
A be defined by letting each x ∈ A, independently of the other integers and
with probability px = 1/φ(x). Then, almost surely , there is no complement
B of A whose counting function B(x) satisfies B(x) ≤ ψ(x) infinitely often.

The result on the “prime-like” sets is the following.

Corollary 1. Define the random set A ⊆ {4, 5, 6, . . .} by Pr[x ∈ A] =
1/ log x, independently for all x ≥ 4. Then, almost surely , there is no com-
plement B of A with counting function satisfying

(2) lim inf
x→∞

B(x)

log2 x
< 1.

Note that such a random set A has A(x) ∼ x/ log x almost surely.

P r o o f o f C o r o l l a r y 1. Let φ(x) = log x in Theorem 2. Take δ =
λ = 1/2, for example. Then condition (1) becomes

(3) ψ3(x) ≤ 1
4
· x

log x
exp

( −(1 + ε)ψ(x)
log
(

1
2x/ψ(x)

)
)
.

Take ψ(x) = C0 log2 x, for a positive constant

(4) C0 < (1 + ε)−1.

Then the right hand side of (3) is � xα, for some positive constant α.
Thus condition (3) is satisfied for all large x. By Theorem 2 then, almost
surely, there is no B which satisfies B(x) ≤ ψ(x) infinitely often, and which
complements A. Since ε > 0 is arbitrary in (4) the corollary is proved.

Theorem 2 can give analogous results for the case of φ(x) � logk x, for
any constant k. But it provides no useful information if φ(x) grows like a
power of x.

2. Proofs

2.1. Bounds for large deviations. In the proof of Theorem 1 we shall
make use of the following bound on large deviations of random variables
(r.v.’s) which are sums of independent r.v.’s.

Proposition 1 (Chernoff [1, p. 239]). If Y = X1 + . . . + Xk, and the
Xj are independent indicator random variables (that is, Xj ∈ {0, 1}), then
for all ε > 0,

Pr[|Y −EY | > εEY ] ≤ 2e−cεEY ,
where cε > 0 is a function of ε alone,

cε = min {− log (eε(1 + ε)−(1+ε)), ε2/2}.
One uses the Chernoff bound in the following manner. The r.v. Y of

Proposition 1 is a quantity which we have already proved, is on the average



4 M. N. Kolountzakis

in a certain desired range. An invocation of the proposition then gives us an
estimate on the probability that Y deviates from this range.

Assume now that, as is usually the case, we have to do this for more than
one variable, say for the variables Y1, . . . , Yn, all of them sums of independent
indicator r.v.’s. Typically we only need Proposition 1 with ε = const., say
ε = 1/10. We then have

Pr[∃j : |Yj −EYj | > εEYj ] ≤ 2
n∑

j=1

(eEYj )−cε ,

and we need the right hand side to be less than 1, which can be achieved
with EYj ≥ C log j and with the constant C at our disposal to make as large
as we please.

We shall also use Markov’s inequality,

(5) Pr[X > λEX] < 1/λ,

valid for every nonnegative r.v. X and for all λ > 0.

2.2. P r o o f o f T h e o r e m 1. The random set A is defined by letting
x ∈ A with probability

(6) αx = K
log log x

x
,

independently for all x ∈ N, where K > 0 is a constant that will be deter-
mined later. (If the right hand side of (6) is not in (0, 1) we define αx = 0.)

Write χj = 1(j ∈ A) and notice that

EA(x) = E
x∑

j=1

χj =
x∑

j=1

αj .

One checks easily that

EA(x) ∼ K log x log log x,

and that with high probability the r.v.’s A(x) are asymptotic to their ex-
pected values, and thus asymptotic to K log x log log x (since EA(x) is super-
logarithmic, Proposition 1 applies without problems—we omit the details).

The representation function is given by

r(x) = #{p ∈ P : x− p ∈ A}.
Our first task is to estimate its expected value. For this we quote [2] and [6,
p. 154], where it is proved that

(7) Er(x)� K log log x.

It is worth mentioning that the proof of (7) requires information about the
distribution of primes that is finer than what the Prime Number Theorem
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provides. In particular, one uses the fact that, for some δ ∈ (0, 1), the number
of primes in the interval (x, x+ xδ) is ∼ xδ/ log x as x→∞.

Using Proposition 1 the estimate (7) implies that the probability of the
“bad event”

Ax =
{|r(x)−Er(x)| > 1

2Er(x)
}

is bounded above:

(8) Pr[Ax]� (log x)−α,

for α = CK, C an absolute positive constant.
The r.v. that counts the exceptions up to n (i.e. the number of integers

not in A+ P) is

Xn =
n∑

k=1

1(Ak),

and using (8) we obtain

EXn � n

logα n
.

Markov’s inequality (5) allows us to bound the probability of the bad events

Bn = {X2n > n−M2n},
where M > 0 is arbitrary but fixed. Applying (5) with λ ∼ nα−M one
obtains

Pr[Bn]� 1
nα−M

.

The constant K is now chosen so as to yield α > M + 1. Consequently,∑
n≥1 Pr[Bn] < ∞, which concludes the proof, since

∑
n≥n0

Pr[Bn] < 1
for some integer n0, and, therefore, with positive probability, all but finitely
many of the events Bn fail.

R e m a r k. Since nothing beyond properties of their distribution has been
used in the preceding proof about the primes, Theorem 1 holds if the se-
quence of primes is replaced by any other of similar growth properties.

2.3. P r o o f o f T h e o r e m 2. Fix B ⊆ N with B(x) ≤ ψ(x) for a
certain x ∈ N. Notice that the number of possible intersections B ∩ [1, x] is
at most xψ(x). Our first goal is to put as many disjoint translational copies
of the set −B in the interval [1, x] as possible, such that none of these
copies intersects a certain initial interval [1, s], with s = s(x) to be specified
later.
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Let n be the maximum number for which there exist integers a1, . . . , an ∈
[1, x] such that all sets aj−B≤aj are disjoint from each other and also disjoint
from the interval [1, s]. The lower estimate for n comes from the observation
that, since it is impossible to add an extra an+1 to the collection a1, . . . , an,
it must be the case that, for any y ∈ [1, x], the set y−B≤y intersects either
one of aj −B≤aj , j = 1, . . . , n, or the interval [1, s]. Let

G = [1, s] ∪
n⋃

j=1

(aj −B≤aj )

and observe that #G ≤ s + nB(x). Our assumption about n implies that
[1, x] ⊆ G+B. Therefore

x ≤ (s+ nB(x))B(x) ≤ (s+ nψ(x))ψ(x),

which implies

n ≥ x

ψ2(x)
− s

ψ(x)
.

Now let λ ∈ (0, 1) be arbitrary and define s = λx/ψ(x) to get the lower
bound

(9) n ≥ (1− λ)
x

ψ2(x)
.

Assume now that B(t) ≤ ψ(t) for infinitely many t ∈ N. Let x be large
and such that B(x) ≤ ψ(x). Define a1, . . . , an as above. Let A be a random
set as defined in the statement of the theorem. We estimate from above the
probability that a certain aj belongs to A+B. We have

Pr[aj ∈ A+B] = 1−Pr[aj 6∈ A+B]

= 1−
∏

k∈aj−B≤aj

(
1− 1

φ(k)

)

≤ 1−
(

1− 1
φ(s)

)ψ(x)

, since [1, s] ∩ (aj−B≤aj ) = ∅,

≤ 1− exp
(
− (1 + ε)

ψ(x)
φ(s)

)
,

using the inequality log(1 − 1/φ(s)) ≥ −(1 + ε)/φ(s), valid for any ε > 0,
since φ(s) becomes large with x.

The probability that all a1, . . . , an are in A + B can now be estimated
easily since the events {aj ∈ A+B}, j = 1, . . . , n, are independent, the sets
aj −B≤aj being disjoint. We have
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Pr[a1, . . . , an ∈ A+B] =
n∏

j=1

Pr[aj ∈ A+B]

≤
(

1− exp
(
−(1 + ε)

ψ(x)
φ(s)

))n
.

Define the events

E = {A has a complement B such that B(x) ≤ ψ(x) infinitely often}
and, for M,x = 1, 2, . . . ,

EMx = {there is B ⊆ N with B(x) ≤ ψ(x) such that A+B ⊇ [M,x]}.
We have proved that for each M ∈ N, each sufficiently large x ∈ N (to
be precise, for each x with s(x) > M) and for any fixed B ⊆ N with
B(x) ≤ ψ(x) the probability that A+B ⊇ [M,x] is at most

(
1− exp

(
−(1 + ε)

ψ(x)
φ(x)

))n
.

Notice also that

E ⊆
⋃

M≥1

⋂

x≥1

⋃

y≥x
EMy .

In other words, if A has a complement B which satisfies B(x) ≤ ψ(x) in-
finitely often, then there is an M ∈ N and infinitely many x ∈ N such that
A + B ⊇ [M,x] and B(x) ≤ ψ(x). Therefore, if for each M ∈ N we can
prove

∑
x≥1 Pr[EMx ] < ∞, the desired conclusion Pr[E] = 0 will follow, as

this implies Pr[
⋂
x≥1

⋃
y≥xE

M
y ] = 0.

Let us now fix M ∈ N. If we assume that for a certain x ∈ N we have
B(x) ≤ ψ(x) then the number of possibilities for the set B∩ [1, x] is at most
xψ(x) and, using the previous estimate, we obtain for all large x

(10) Pr[EMx ] ≤ xψ(x)
(

1− exp
(
−(1 + ε)

ψ(x)
φ(s)

))n
.

Taking logarithms in (10) and using the lower estimate (9) and the in-
equality log(1− y) ≤ −y, for y ≥ 0, we obtain

log Pr[EMx ] ≤ ψ(x) log x− (1− λ)
x

ψ2(x)
exp
(
−(1 + ε)

ψ(x)
φ(s)

)
.

Since ψ(x)→∞ it therefore suffices to have

(11) ψ(x) log x ≤ (1− δ)(1− λ)
x

ψ2(x)
exp

(
− (1 + ε)

ψ(x)
φ(s)

)
,

for some constant δ > 0, and for all sufficiently large x. In that case we have
Pr[EMx ] ≤ e−C log x, for all large x and for arbitrarily large C > 0, which
implies the finiteness of the series

∑
x≥1 Pr[EMx ].
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Rearranging (11), the probability of complementation is 0 if there are
positive constants δ, ε, λ such that for all large x we have

(12) ψ3(x) ≤ (1− δ)(1− λ)
x

log x
exp
(
−(1 + ε)

ψ(x)
φ(λx/ψ(x))

)
,

and the theorem is proved.

Acknowledgements. I am indebted to Prof. R. P. Kaufmann for point-
ing out an error in a previous version of the paper.
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