When are global units norms of units?

by

DAVID FOLK (Ypsilanti, Mich.)

1. Introduction. Let L/K be a Galois extension of number fields, $\omega \in K$, H the Hilbert class field of L. Often it is possible to determine that $\omega = N_{L/K}(z)$, for some $z \in L$, while number theoretical questions often demand more: If ω is an element of \mathcal{O}_K^* , is it also the norm of an element $z \in \mathcal{O}_L^*$? In this paper, we prove that if ω is not the norm of a unit, then it is not even a global norm from H.

Throughout the paper, we will be using the following notation: For an arbitrary number field M, \mathcal{O}_M will denote the ring of algebraic integers in M, \mathcal{O}_M^* the group of units of \mathcal{O}_M , P_M the principal ideals of M. Further, A_M will denote the adeles of M, A_M^* the group of ideles of M, with I_M denoting the ideals of M. Finally, C_M and Cl_M will denote the ideal class group of M, respectively.

THEOREM 1. Let L/K be a Galois extension of number fields with H the Hilbert class field of L. Then

$$N_{H/K}(H^*) \cap \mathcal{O}_K^* \subset N_{L/K}(\mathcal{O}_L^*).$$

Proof. Let

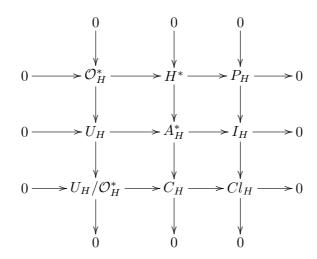
$$G := \operatorname{Gal}(L/K)$$
 and $\Gamma := \operatorname{Gal}(H/K)$.

with $\omega \in N_{H/K}(H^*) \cap \mathcal{O}_K^*$. We will also write ω for its image in the Tate cohomology group $\widehat{H}^0(\Gamma, \mathcal{O}_H^*)$. This is harmless, since we want to prove that $\omega \in N_{L/K}(\mathcal{O}_L^*)$ and the other representatives of the class of ω in $\widehat{H}^0(\Gamma, \mathcal{O}_H^*)$ differ from ω by an element of $N_{H/K}(\mathcal{O}_H^*) \subset N_{L/K}(\mathcal{O}_L^*)$. Consider the commutative diagram of Γ -modules, with exact rows and exact columns:

¹⁹⁹¹ Mathematics Subject Classification: 11R37.

^[145]

D. Folk



We thus derive the following diagram of Γ -cohomology groups:

$$\begin{split} \widehat{H}^{-2}(\Gamma, Cl_H) & \longrightarrow \widehat{H}^{-1}(\Gamma, U_H/\mathcal{O}_H^*) & \longrightarrow \widehat{H}^{-1}(\Gamma, C_H) \\ & \downarrow & \downarrow^{\delta} & \downarrow \\ \widehat{H}^{-1}(\Gamma, P_H) & \longrightarrow \widehat{H}^0(\Gamma, \mathcal{O}_H^*) & \longrightarrow \widehat{H}^0(\Gamma, H^*) \\ & \downarrow & \downarrow & \downarrow \\ 0 & \longrightarrow \widehat{H}^0(\Gamma, U_H) & \longrightarrow \widehat{H}^0(\Gamma, A_H^*) \end{split}$$

The zero in the lower left corner comes from the fact that $\hat{H}^{-1}(\Gamma, I_H) = 0$, which follows from Shapiro's lemma (see [2], Lemma 2.11 for details).

We now do a diagram chase: $\omega \in \widehat{H}^0(\Gamma, \mathcal{O}_H^*)$ maps to 0 in $\widehat{H}^0(\Gamma, H^*)$. Therefore it "comes from" $z \in \widehat{H}^{-1}(\Gamma, P_H)$. Because of the zero in the left lower corner, z itself "comes from" $y \in \widehat{H}^{-2}(\Gamma, Cl_H)$. Let x denote the image of y in $\widehat{H}^{-1}(\Gamma, U_H/\mathcal{O}_H^*)$. Let $x \in U_H$ also denote any unit idèle whose class in $\widehat{H}^{-1}(\Gamma, U_H/\mathcal{O}_H^*)$ is our x. By the exactness of the diagram, the class x maps to 0 in $\widehat{H}^{-1}(\Gamma, C_H)$, hence the element $x \in H^* \cdot (A_H^*)^{I_\Gamma}$, where I_{Γ} denotes the augmentation ideal of $Z[\Gamma]$, and $H^* \cdot (A_H^*)^{I_\Gamma}$ denotes the subgroup of A_H^* generated by the set $\{x^{1-\sigma} : x \in A_H^*, \sigma \in \Gamma\}$ and H^* . Moreover, by the commutativity of the diagram, the map labeled δ maps the class x to the class of ω in $\widehat{H}^0(\Gamma, \mathcal{O}_H^*)$. Recall the definition of the coboundary map $\delta : \widehat{H}^{-1}(\Gamma, U_H/\mathcal{O}_H^*) \to \widehat{H}^0(\Gamma, \mathcal{O}_H^*)$: Choose any element $x \in U_H$ representing the class $x \in \widehat{H}^{-1}(\Gamma, U_H/\mathcal{O}_H^*)$. Thus we see that the class of the $N_{H/K}(x)$ in $\widehat{H}^0(\Gamma, \mathcal{O}_H^*) \cong \mathcal{O}_K^*/N_{H/K}(\mathcal{O}_H^*)$ is equal to that of ω . Combining this with the fact that $\widehat{H}^{-1}(\Gamma, U_H/\mathcal{O}_H^*)$ is a submodule of $U_H/(U_H)^{I_\Gamma}\mathcal{O}_H^*$, we see that we may modify the element $x \in U_H$ by an element of \mathcal{O}_H^* so that the elements x and ω satisfy $N_{H/K}(x) = \omega$.

Let therefore $\alpha \in H^*$ such that $x\alpha^{-1} \in (A_H^*)^{I_{\Gamma}}$. Then

$$N_{H/L}(x\alpha^{-1}) \in N_{H/L}((A_H^*)^{I_{\Gamma}}) = (N_{H/L}(A_H^*))^{I_G}$$

$$\subset (U_L \cdot L^*)^{I_G} = U_L^{I_G} \cdot (L^*)^{I_G}.$$

The first equality follows from the fact that $N_{H/L}$ is a central element in the group ring $Z[\Gamma]$, the inclusion from the fact that H is the Hilbert class field of L and the last equality is a generality. By I_G we denote the augmentation ideal of the group ring Z[G].

So, we have $N_{H/L}(x\alpha^{-1}) = u\beta$, where $u \in U_L^{I_G}$ and $\beta \in (L^*)^{I_G}$. This implies that

$$\eta = N_{H/L}(x) \cdot u^{-1} = N_{H/L}(\alpha) \cdot \beta \in L^* \cap U_L = \mathcal{O}_L^*.$$

Since $N_{L/K}(u) = 1$, we have $N_{L/K}(\eta) = N_{H/K}(x) = \omega$, as required.

I would like to express my deep appreciation to David Leep and Renè Schoof for their willingness to listen and for their wonderful suggestions.

References

- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic Number Theory, Academic Press, New York, 1967.
- [2] A. Fröhlich, Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, American Mathematical Society, 1980.

Department of Mathematics Eastern Michigan University Ypsilanti, Michigan 48197 U.S.A. E-mail: mth-folk@online.emich.edu

> Received on 24.2.1995 and in revised form on 22.1.1996

(2747)