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Introduction. For an algebraic integer α generating a number field
K = Q(α), the discriminants of α and K are related by the equation

(1) D(α) = D(K)(I(α))2,

where I(α) = [OK : Z[α]], the index of the ring generated by α in the
full ring of integers OK of K. Classically, the index of the field K is the
greatest common divisor of all indices I(α) for α ∈ OK with K = Q(α).
Dedekind was the first to show that the index may not be 1 by exhibiting
certain cubic and quartic fields with this property. By results of Bauer and
von Żyliński early this century, it is known that a rational prime p divides
the index of some field of degree d if and only if p < d. Later work by En-
gstrom [2] investigated which powers of these primes may occur as common
index divisors.

In contrast to the index of the field, we focus here on the minimal index
of the primitive algebraic integers of the field, which we denote by I(K). In
other words,

I(K) = min{I(α)},
where the minimum is over all α ∈ OK with K = Q(α). The simplest
situation is of course I(K) = 1, in which case OK is said to have a power
basis. This happens trivially for any quadratic field, but when the degree
of K is larger than 2 one does not expect this to be the case in general. In
fact, much work has been done on the problem of classifying fields of certain
types which have a power basis (in some cases with complete success). We
refer the reader to the papers of Gras [3 and 4] and Cougnard [1] for more
on this topic.

A natural question to ask, and the one which we address here, is how
large I(K) can be. In view of the remarks above on the index, this is only
interesting when considering fields of degree less than a given bound. Here
we determine upper bounds for I(K) in terms of just the degree and dis-
criminant of K, with sharper bounds using more properties of the field. We
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also construct examples which indicate that these upper bounds are sharp,
at least in terms of the discriminant.

Statement of results. In the results stated below, K is a number field
of degree d and discriminant D(K). We write d = r + 2s, where r is the
number of real places and s is the number of complex places of K.

Theorem 1. Let d > 2, let c denote the maximum degree of a proper
subfield of K, and let t be the minimum of c and log2 d. Then

I(K) < (d2t(2/π)s/(d−c))d(d−1)/2|D(K)|(d2−3d+2c)/(4d−4c).

Note that the exponent on the discriminant in the statement of Theo-
rem 1 is between (d − 2)/4 and (d − 2)/2. The upper bound for I(K) in
Theorem 1 is largest when c is maximal, i.e., when c = d/2. In this case the
exponent on the discriminant is (d− 2)/2.

Corollary 1. For any number field K

I(K) < (d2 log2 d)d(d−1)/2|D(K)|(d−2)/2.

The upper bound for I(K) in Theorem 1 is smallest when K has no
non-trivial subfields. This is the case, for example, when the degree d is
prime.

Corollary 2. If K has no proper subfields besides Q, then

I(K) < dd(d−1)|D(K)|(d−2)/4.

The general result of Corollary 1 can be sharpened if K has a real place.

Theorem 2. If K has at least one real place, then

I(K) ≤ ((2/π)s2d/2)d−1|D(K)|(d−2)/2.

For an arbitrary number field K, the upper bound on I(K) in Theorem 1
may be far from the truth, since of course it could happen that I(K) = 1.
Thus, a lower bound for I(K) cannot be given in general, but only for fields
of some particular type. To our knowledge, the only result in this direction is
that of Hall [5] who showed that I(K) can be arbitrarily large for pure cubic
fields. This is in marked contrast to the known result that the index of such
a field is either 1 or 2. Unfortunately, it would be very difficult to deduce
an explicit lower bound for I(K) strictly in terms of the discriminant by
Hall’s argument. We will discuss this in more detail later. When the degree
is even, however, we can show that the dependence on the discriminant in
the upper bound of Corollary 1 cannot be improved, at least in the absence
of further information about the field.
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Theorem 3. Let d ≥ 4 be even. Then there are infinitely many fields K
of degree d such that

I(K)� |D(K)|(d−2)/2,

where the implicit constant depends only on d.

The implicit constant in Theorem 3 is actually determined by a particular
choice of a certain field of degree d/2. This choice can be made canonically,
so that the constant depends only on d. In the case d = 4 the lower bound
of Theorem 3 can be achieved more simply (and the implicit constant made
concrete) by considering pure quartic fields.

Theorem 4. For an odd rational prime p, the field K = Q( 4
√

2p2) sat-
isfies I(K) = 2−11|D(K)|.

Proof of Theorems 1 and 2. We begin with an effective version of
the primitive element theorem.

Lemma 1. Let α, β be algebraic over Q with α 6∈ Q and β 6∈ Q(α). Let
[Q(α, β) : Q] = e. Then Q(α, β) = Q(α + zβ) for some z ∈ Z satisfying
|z| < e2/2.

P r o o f. Let z ∈ Z and suppose that α+ zβ is not a primitive element of
Q(α, β). Then either z = 0 or α+ zβ = α(i) + zβ(j) for some conjugates α(i)

of α and β(j) of β distinct from α and β, respectively. Thus, the number
of such integers which fail to give a primitive element is no larger than
1+(e/2−1)(e−1). Since e ≥ 4, there is an integer z with α+zβ a primitive
element and |z| ≤ 1 + (e/2− 1)(e− 1)/2 < e2/2.

Now let the notation be as in the statement of Theorem 1. Denote the
embeddings of K into C by a 7→ a(j) for 1 ≤ j ≤ d, and order these so that
the first r are real and a(j+s) = a(j) for r < j ≤ r + s. For X ∈ Rd write

X = (x1, . . . ,xr+s),

where

xj ∈
{R if j ≤ r,
R2 otherwise.

Define % : K → Rd by

%(a) = (a(1), . . . , a(r),<a(r+1),=a(r+1), . . . ,<a(r+s),=a(r+s)).

Let Λ = %(OK). This is a lattice of determinant det(Λ) = 2−s|D(K)|1/2
([6, Chap. V, §2, Lemma 2]). Let B ⊂ Rd be the convex body defined by

B = {X ∈ Rd : |xj | ≤ 1 for all j}.
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Let λ1 ≤ . . . ≤ λd be the successive minima of Λ with respect to B. By
Minkowski’s second convex bodies theorem (see [7]),

λ1 . . . λd ≤ 2d det(Λ)
Vol(B)

= (2/π)s|D(K)|1/2.

Further, we have λ1 = 1 since %(1) ∈ B and %(a) ∈ λB implies that the
norm N(a) of a satisfies |N(a)| ≤ λd. Hence,

(2) λd−cc+1 ≤
d∏

j=c+1

λj ≤ (2/π)s|D(K)|1/2.

Next, we choose successive elements α1, . . . , αu ∈ OK with u ≤ t such
that K = Q(α1, . . . , αu), α1 6∈ Q, αj+1 6∈ Q(α1, . . . , αj), and %(αj) ∈ λc+1B
for each j. These may be determined as follows (the choice is not unique). Let
α1 ∈ OK \Q be such that %(α1) ∈ λ2B and let L1 = Q(α1). If L1 = K, stop.
Otherwise, let d1 = [L1 : Q] < d and let α2 ∈ OK \L1 with %(α2) ∈ λd1+1B.
Such an α2 must exist since at most d1 elements of L1 may be linearly
independent over Z. Let L2 = Q(α1, α2). If L2 = K, stop. Otherwise, con-
tinue in the same fashion, eventually getting K = Q(α1, . . . , αu). Note that
u ≤ log2 d. Further, u ≤ c since du−1 ≤ c and 1, α1, . . . , αu−1 are elements
of Lu−1 which are linearly independent over Z.

At this point we apply Lemma 1 to obtain a primitive element α ∈ OK

of the form α = α1 + z2α2 + . . .+ zuαu, where the zj ’s are rational integers
with |zj | < d2/2. We have |α(j)| < λc+1td

2/2 for each j, so that

(3) |D(α)| =
∏

i<j

|α(i) − α(j)|2 < (d2tλc+1)d(d−1).

Theorem 1 follows from (1)–(3).

The proof of Theorem 2 is simpler than that given for Theorem 1 above,
using only Minkowski’s first theorem. With Λ as above and 1 > ε > 0 we
define C ⊂ Rd by

C = {X ∈ Rd : |x1| ≤ (2/π)s|D(K)|1/2(1− ε)1−d, |xj | ≤ 1− ε for j > 1}.
Then C is a convex body with volume Vol(C) = 2d det(Λ). By Minkowski’s
first convex bodies theorem (see [7]), there is a non-zero α ∈ OK with
%(α) ∈ C. We claim that K = Q(α).

To see this claim, let v be the place of K corresponding to the embedding
a 7→ a(1). (Note that v is real by the hypothesis of Theorem 2 and our
ordering of the embeddings.) If K 6= Q(α), then v lies above a place w of
Q(α). Since both v and w are real, we have another place v′ lying above w,
whence another embedding a 7→ a(l) with l 6= 1 and |α(1)| = |α(l)|. But then
|α(1)| < 1 by the definition of C, which implies that |N(α)| < 1. Since α is
a non-zero integral element, this is impossible and we must have K = Q(α).
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Since α is a primitive element of K its discriminant from K to Q is not
zero. Thus,

|D(α)| =
∏

i 6=j
|α(i) − α(j)|

≤ (2(2/π)s|D(K)|1/2(1− ε)1−d)2d−2(2(1− ε))(d−1)(d−2)

= (2/π)2s(d−1)(2/(1− ε))d(d−1)|D(K)|d−1.

By (1) we get

I(K) ≤ (2/π)s(d−1)(2/(1− ε))d(d−1)/2|D(K)|(d−2)/2.

Theorem 2 follows by letting ε→ 0.

Proof of Theorems 3 and 4. Let d = 2n with n ≥ 2. The fields K of
Theorem 3 will be constructed as imaginary quadratic extensions of a fixed
totally real field of degree n. A preparatory result is needed first.

Lemma 2. Let L be a normal totally real field of degree n. Then there
exists an α ∈ OL which is totally positive and such that L = Q(β2α) for
any non-zero β ∈ OL.

P r o o f. Each ideal class of OL contains infinitely many primes of inertial
degree one (see [6], Chap. VIII, §2). Therefore, for infinitely many rational
primes p there is an αp ∈ OL with |N(αp)| = p, where N denotes the
norm from L to Q. Now each αp has some pattern of signs for its conjugates
α

(1)
p , . . . , α

(n)
p , and there are only 2n possible such patterns. Thus, there must

be distinct rational primes p1, p2 for which α(j)
p1 and α(j)

p2 have the same sign
for each j. Let α = αp1αp2 .

We have α ∈ OL is totally positive by construction. Let β ∈ OL \ {0}.
The prime ideal (p1) splits completely in OL:

(p1) = π1 . . . πn,

where π1 = (αp1). This implies that the order at π1 of αβ2 is odd, whereas
the order at πj is even for j > 1. Thus, if F = Q(αβ2) and P is the prime of
OF lying below π1, then π1 is the only prime above P . Finally, as the local
degree of π1 over p1 is 1, we get F = L.

Let L and α be as in Lemma 2. In what follows, the discriminant of
√−α

appears. This will depend only on d if one chooses L and α in some canonical
way. For example, one could choose L with minimal conductor among all
nth degree totally real subfields of cyclotomic fields. Once L is fixed, choose
α among those elements satisfying Lemma 2 so that |D(

√−α)| is minimal.
Given L and α, let p be a rational prime which is unramified in L and rel-

atively prime to the norm of 2α. Let K = L(
√−pα), an imaginary quadratic
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extension of L of degree d = 2n. Letting γ =
√−pα we have

1, γ, γ2/p, γ3/p, . . . , γd−2/pn−1, γd−1/pn−1

are elements of OK which are linearly independent over Z. Hence

(4) |D(K)| ≤ |disc(1, γ, . . . , γd−1/pn−1)| = pn|D(
√−α)| � pn,

where the implicit constant depends only on d.
Now let θ ∈ OK and assume that K = Q(θ). We write θ in the form

θ = a+ b
√−pα, a, b ∈ L, b 6= 0.

By considering the trace and norm of θ from K to L and our hypotheses on
p, we find

(5) 4αb2 ∈ OL \ {0}.
In particular, note that 4αb2 satisfies the statements in Lemma 2.

For x ∈ L we denote the conjugates of x over Q by x(1), . . . , x(n). Sim-
ilarly, we let θ(j) = a(j) + b(j)

√
−pα(j). Then the d conjugates of θ over Q

are θ(1), . . . , θ(n) and their complex conjugates. Thus,

(6) |D(θ)|

=
n∏

j=1

|θ(j) − θ(j)|2 ·
∏

j 6=l
|θ(j) − θ(l)|2 · |θ(j) − θ(l)|2

=
n∏

j=1

|2b(j)
√
−pα(j)|2 ·

∏

j 6=l
|(a(j) − a(l)) + i

√
p(b(j)

√
α(j) − b(l)

√
α(l))|2

× |(a(j) − a(l)) + i
√
p(b(j)

√
α(j) + b(l)

√
α(l))|2

≥
n∏

j=1

∣∣2
√

(pαb2)(j)
∣∣2

×
∏

j 6=l

∣∣
√

(pαb2)(j) −
√

(pαb2)(l)
∣∣2 ·
∣∣
√

(pαb2)(j) +
√

(pαb2)(l)
∣∣2

= (p/4)n(2n−1)|D(
√
−4αb2 )|

≥ pn(2n−2)2−2n(2n−1)|D(K)|
by (4), (5), and the choice of α. Theorem 3 follows from (1), (4) and (6).

For the proof of Theorem 4, let p be an odd prime and let α = 4
√

2p2.
Let K = Q(α). Then 1, α, α2/p, α3/p are elements of OK which are linearly
independent over Z. Further,

disc(1, α, α2/p, α3/p) = p−4D(α) = 211p2.
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Since α2 = p
√

2 and p is odd, p must ramify in K; therefore p2 divides D(K).
Also, α satisfies an Eisenstein polynomial for the prime 2, so the powers of α
constitute a 2-local integral basis. This shows that the four elements above
constitute an integral basis for K, so that

(7) D(K) = 211p2 = 2−11I(α).

Now let θ ∈ OK be a primitive element of K and write θ = a+bα, where
a, b ∈ Z[

√
2] and b 6= 0. Denoting conjugation in Q(

√
2) by a superscript ′,

the four conjugates of θ are a± bα and a′ ± b′iα. Thus,

(8) |D(θ)|
= |2bα|2 · |2b′α|2 · |(a− a′) + (b− ib′)α|2 · |(a− a′) + (b+ b′i)α|2

× |(a− a′)− (b+ b′i)α|2 · |(a− a′)− (b− b′i)α|2

= (2α)4|N(b)|2 · |(a− a′)2 − (b− b′i)2α2|2 · |(a− a′)2 − (b+ b′i)2α2|2

≥ 28α12|N(b)|6,
where N(b) denotes the norm of b from Q(

√
2) to Q. From (1), (7) and (8)

we get I(θ) ≥ p2, proving Theorem 4.

Finally, we remark that obtaining lower bounds for I(K) appears to be
far more difficult when K has odd degree. To illustrate this point, consider
the simple situation K = Q( 3

√
pq2), where p and q are distinct primes with

p2 6≡ q2 (mod 9). A typical algebraic integer in K has the form

θ = w + x 3
√
pq2 + y 3

√
p2q

with w, x, y ∈ Z, and it is straightforward to compute that

I(θ) = |qx3 − py3|.
Thus, I(K) is determined as the smallest non-zero integer, in absolute value,
represented by the binary form F (X,Y ) = qX3 − pY 3. Hall in [5] showed
that one can make I(K) arbitrarily large by imposing successive congruence
conditions on p and q, so that the Thue inequality |F (x, y)| ≤ m has no
solutions for arbitrarily large m. It would be extremely difficult to quantify
m in terms of the discriminant of F , much less to obtain such a result with
m a power of the discriminant in analogy with Theorems 3 and 4.

The situation is similar in any cubic field, as Hall showed. Achieving a
lower bound for I(K) is equivalent to showing that a certain Thue inequality
has no solutions. More generally for higher degrees, achieving a lower bound
for I(K) is equivalent to showing that a certain norm form inequality has
no solutions. Generally speaking, such results are simply out of reach at the
present time.
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(1995), 63–79.

[5] M. Hal l, Indices in cubic fields, Bull. Amer. Math. Soc. 43 (1937), 104–108.
[6] S. Lang, Algebraic Number Theory, Springer, New York, 1986.
[7] G. Lekkerkerker, Geometry of Numbers, Wolters-Noordhoff, Groningen, 1969.

Department of Mathematics
Northern Illinois University
DeKalb, Illinois 60115
U.S.A.
E-mail: jthunder@math.niu.edu

wolfskil@math.niu.edu

Received on 31.8.1995
and in revised form on 23.11.1995 (2853)


