Solvability of p-adic diagonal equations

by

Christopher M. Skinner (Princeton, N.J.)

1. Introduction. Let p be a prime, let \mathbb{Q}_p denote the p-adic numbers, and let K be a finite extension of \mathbb{Q}_p. One of the fundamental questions in the study of diophantine equations asks: when does an equation of the form

$$a_1x_1^k + \ldots + a_sx_s^k = 0, \quad a_i \in K, \quad k \geq 2,$$

have a non-trivial solution over K? (By “non-trivial solution” we mean a non-zero vector $x = (x_1, \ldots, x_s) \in K^s$ satisfying (1).) When $K = \mathbb{Q}_p$, it is well known that it suffices to have $s \geq k^2 + 1$. More generally, suppose $k = p^t m$, $(m, p) = 1$, f is the residue class degree of K, and $d = (m, p^f - 1)$. Birch [B] has shown that for any K, it suffices to have $s \geq (2t+3)^k (d^2k)^{k-1}$. It is the purpose of this note to improve the result of Birch, by essentially reducing the exponent k to $\log k$. Specifically, we prove the following theorem.

Theorem. If $s \geq k((k + 1)^{\max(2t,1)} - 1) + 1$, then any equation of the form (1) has a non-trivial solution over K. In particular, if $(k, p) = 1$, then it suffices to have $s \geq k^2 + 1$.

If K is unramified over \mathbb{Q}_p, then it is possible to replace the $2t$ of the Theorem with a constant. A proof of such a result is indicated in [D]. It is also possible to generalize the results of Schmidt [S] for simultaneous additive equations, at least in the case $(k, p) = 1$. However, in order to keep our exposition as elementary as possible, we do not treat either of these problems in this paper.

2. Notation and preliminaries. In what follows, \mathcal{O} is the ring of integers of K, $p = (\pi)$ is the maximal ideal of \mathcal{O}, f is the residue class degree of K, e is the ramification index of p, and t and m are integers such that $k = p^t m$, with $(m, p) = 1$. Also, L is the maximal unramified subfield

The author was supported by an N.S.F. Graduate Fellowship and, during a visit to the University of Michigan, by the David and Lucile Packard Foundation.
of \(K \), and \(\mathfrak{o} \) is the ring of integers of \(L \). Recall that \(\{1, \pi, \ldots, \pi^{e-1}\} \) is an \(\mathfrak{o} \)-basis of \(\mathfrak{O} \).

Clearly, we lose no generality by assuming that \(a_i \in \mathfrak{O} \) for all \(i \), so henceforth we shall do so.

We write \(\Gamma(k) \) for the least positive integer such that if \(s \geq \Gamma(k) \), then any equation of the form (1) is solvable non-trivially over \(K \). We use \(\Gamma_1(k) \) to denote the similar function for those equations of the form (1) with the additional restriction that \(a_i \not\equiv 0 \mod \pi \) for all \(i \).

We write that \(x \) is a “non-trivial solution mod \(\pi^n \)” if \(x = (x_1, \ldots, x_s) \in \mathfrak{O}^s \) is a solution of (1) modulo \(\pi^n \) and if \(x_j \not\equiv 0 \mod \pi \) for some \(j \). We let \(\Phi(k, n) \) denote the least positive integer such that if \(s \geq \Phi(k, n) \), then any equation of the form (1) has a non-trivial solution mod \(\pi^n \).

Our first lemma reduces the proof of the Theorem to showing that \(\Phi(k, e) \leq k + 1 \).

Lemma 1. (i) \(\Gamma(k) \leq k(\Gamma_1(k) - 1) + 1 \).

(ii) \(\Gamma_1(k) \leq \Phi(k, \max(2te, 1)) \).

(iii) \(\Phi(k, (r + 1)e) \leq \Phi(k, e) \Phi(k, re) \leq \Phi(k, e)^{r+1} \).

(iv) If \(\Phi(k, e) \leq (k + 1) \), then

\[
\Gamma(k) \leq k((k + 1)^{\max(2t, 1)} - 1) + 1.
\]

Proof. (i) Write \(a_i = \pi^{r_i} b_i \) with \(r_i \geq 0 \), \(0 \leq c_i < k \) and \((b_i, \pi) = 1 \). If \(s > k(c - 1) \), then by the Box Principle at least \(c \) of the \(c_i \)'s are the same. We may assume the corresponding \(i \)'s to be \(i = 1, \ldots, c \). Thus it suffices to find a non-trivial solution of the equation

\[
b_1 x_1^k + b_2 x_2^k + \ldots + b_c x_c^k = 0, \quad (b_i, \pi) = 1.
\]

That such a solution exists if \(c \geq \Gamma_1(k) \) is a consequence of the definition of \(\Gamma_1(k) \).

(ii) Assume \(a_1 \not\equiv 0 \mod \pi \) for all \(i \). Put \(r = \max(1, 2te) \). If \(s \geq \Phi(k, r) \), then by the definition of \(\Phi(k, r) \), there exists a non-trivial solution of (1) mod \(\pi^r \). Let \(x = (x_1, \ldots, x_s) \) be such a solution. We may assume that \(x_1 \not\equiv 0 \mod \pi \). Choose \(y_2, \ldots, y_s \in \mathfrak{o} \) such that \(y_i \equiv x_i \mod \pi^r \). Let \(d = \sum_{i=2}^{s} a_i y_i^k \).

Since \(a_1 x_1^k + d \equiv 0 \mod \pi^r \), it follows from Hensel's Lemma [La, II, Prop. 2] that we can find \(y_1 \in \mathfrak{o} \) such that \(y_1 \equiv x_1 \mod \pi^r \) and \(a_1 y_1^k + d = 0 \). Thus \(y = (y_1, \ldots, y_s) \) is a non-trivial solution of (1).

(iii) Let \(h = \Phi(k, re) \), \(l = \Phi(k, e) \) and let

\[
F_j(x_j) = a_{j+1} x_{j+1}^k + \ldots + a_{j+l} x_{j+l}^k, \quad j = 0, \ldots, l - 1.
\]

Then (1) becomes

\[
F_0(x_0) + F_1(x_1) + \ldots + F_{l-1}(x_{l-1}) + \sum_{i=hl+1}^{s} a_i x_i^k = 0.
\]
Thus, it suffices to find a non-trivial solution of

\[F_0(x_0) + \ldots + F_{l-1}(x_{l-1}) \equiv 0 \mod \pi^{(r+1)e}. \]

By definition of \(\Phi(k, re) \) there exist non-trivial solutions \(y_j \) of the \(l \) equations

\[F_j(x_j) \equiv 0 \mod \pi^{re}, \quad j = 0, \ldots, l - 1. \]

Let \(f_j = F_j(y_j) \). Substituting \(x_j = t_j y_j \) in (3) we get the new equation

\[f_0 t_{k0}^k + \ldots + f_{l-1} t_{kl-1}^k \equiv 0 \mod \pi^{(r+1)e}, \quad f_j \equiv 0 \mod \pi^{re}. \]

From the definition of \(\Phi(k, e) = l \), (4) has a non-trivial solution \(t = (t_0, \ldots, t_{\Phi(k, e) - 1}) \). Thus, \(y = (t_0 y_0, \ldots, t_{\Phi(k, e) - 1} y_{\Phi(k, e) - 1}, 0, \ldots, 0) \in \sigma^* \) is a non-trivial solution of (1) modulo \(\pi^{(r+1)e} \).

(iv) This follows upon combining parts (i)–(iii).

3. Some results about linear systems. Before we can prove that \(\Phi(k, e) \leq k + 1 \), we need some facts about linear systems of a particular type.

In this section, \(F \) is an arbitrary field, and for any non-negative integers \(a \) and \(b \), \(M_{a,b}(F) \) is the ring of matrices over \(F \) of size \(a \times b \).

Let \(c, r, \) and \(n \) be positive integers, and let

\[A_{ij} \in M_{ri,n}(F), \quad i = 1, \ldots, c, \quad j = 1, \ldots, i, \quad r_i \leq r, \]

be arbitrary matrices. We allow “empty” matrices (i.e. \(r_i = 0 \)). Consider the block matrix

\[A = \begin{pmatrix} A_{11} & 0 & \ldots & 0 \\ A_{21} & A_{22} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{c1} & \ldots & \ldots & A_{cc} \end{pmatrix}. \]

Definition. We say that any matrix \(A \) of the form (5a,b) is \((c, r, n) \)-good if

1. for each \(i \), the non-zero row vectors of \(A_{ii} \) are linearly independent over \(F \), and
2. for each \(q \), the \(q \)th row of \((A_{11} A_{12} \ldots A_{ii}) \) is non-zero iff the \(q \)th row of \(A_{ii} \) is non-zero.

Note that both conditions are trivially satisfied by matrices with \(r_i = 0 \).

The following lemma partially motivates our use of the adjective “good.”

Lemma 2. Suppose \(A \) is \((c, r, n) \)-good with \(n > r \), and suppose \(X = (x_1, \ldots, x_n) \) is a non-zero solution of the linear system

\[A_{11} X = 0. \]
(For A_{11} empty, any X is a solution.) Then the linear system

\[(6)\]

$AY = 0$

has a solution $Y = (y_1, \ldots, y_n)$ **such that** $y_i = x_i$ **for** $i = 1, \ldots, n$.

Proof. We will proceed by induction on c. The claim is trivially true for $c = 1$. Suppose $c > 1$. Write

$$A = \begin{pmatrix} B_1 & 0 \\ B_2 & A_{cc} \end{pmatrix}.$$

B_1 is $(c - 1, r, n)$-good, so by hypothesis there exists a solution $Y_1 = (y_1, \ldots, y_{(c-1)n})$ of the linear system

$$B_1 Y_1 = 0$$

such that $y_1 = x_1$ for $i = 1, \ldots, n$. Let $D = B_2 Y_1$. It follows from Part 2 of the definition of a good matrix that the qth entry of D is zero if the qth row of A_{cc} is zero. By Part 1 of the definition of a good matrix, the non-zero rows of A_{cc} are linearly independent. Thus, since $n > r \geq \text{rank}(A_{cc})$ the linear system

$$A_{cc} Y_2 = -D$$

has a solution in F. It follows that $Y = (Y_1, Y_2)$ is the desired solution to (6).

Next, we consider a slightly more general system, though still of a very special type. Again, let c, r, n be positive integers. Let

\[(7a)\]

$$M_{i,j} \in M_{r_j, n}(F), \quad i = 1, \ldots, c, \quad j = 1, \ldots, c - i + 1, \quad \sum_{j=1}^{c} r_j \leq r.$$

We allow empty matrices (i.e. $r_j = 0$). Consider the block matrix

\[(7b)\]

$$M = \begin{pmatrix} M_{1,1} & 0 & \ldots & 0 \\ M_{1,2} & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ M_{1,c} & 0 & \ldots & 0 \\ M_{2,1} & M_{1,1} & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ M_{2,c-1} & M_{1,c-1} & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ M_{c,1} & M_{c-1,1} & M_{c-2,1} & \ldots & M_{11} \end{pmatrix}.$$
Lemma 3. If M is any matrix of the form (7a,b), then there exists an invertible matrix P such that $M' = PM$ is (c,r,n)-good.

Proof. We will proceed again by induction on c. There is an invertible Q such that $QM_{1,1} = \left(\begin{array}{c} N_{1,1} \\ 0 \end{array} \right)$, where the rows of $N_{1,1}$ are non-zero and linearly independent. Suppose that $N_{1,1}$ has ν rows, so that $QM_{1,1}$ has $r_1 - \nu$ zero rows. For every $k = 1, \ldots, c$,

$$Q(M_{k,1} M_{k-1,1} \ldots M_{1,1}) = \begin{pmatrix} N_{k,1} & \cdots & N_{2,1} & N_{1,1} \\ N_{k,1}^* & \cdots & N_{2,1}^* & 0 \end{pmatrix}.$$

Thus, there exists an invertible matrix P_1 such that

$$P_1 M = \begin{pmatrix} N_{1,1} & 0 & \cdots & 0 \\ N_{2,1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ M_{1,c} & 0 & \cdots & 0 \\ N_{2,1} & N_{1,1} & 0 & \cdots & 0 \\ N_{3,1}^* & N_{2,1}^* & \cdots & \cdots & \vdots \\ M_{2,2} & M_{1,2} & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ M_{2,c-1} & M_{1,c-1} & 0 & 0 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ N_{c,1} & N_{c-1,1} & N_{c-2,1} & \cdots & N_{1,1} \\ 0 & 0 & \cdots & \cdots & 0 \end{pmatrix},$$

where there are $r_1 - \nu$ rows of zeros at the bottom. Put

$$R_{i,1} = \begin{pmatrix} N_{i,1} \\ N_{i+1,1}^* \\ M_{i,2} \end{pmatrix}, \quad i = 1, \ldots, c - 1,$$

$$R_{i,j} = M_{i,j+1}, \quad i = 1, \ldots, c - 1, \quad j = 2, \ldots, c - i.$$

Let $v_j = \text{(number of rows of } R_{i,j})$. Then by (8) and the definition of M, we see that

$$\sum_{j=1}^{c-1} v_j = \sum_{j=1}^c r_j \leq r.$$
Put
\[
R = \begin{pmatrix}
R_{1,1} & 0 & \ldots & 0 \\
R_{1,2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
R_{1,c-1} & 0 & \ldots & 0 \\
R_{2,1} & R_{1,1} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
R_{2,c-2} & R_{1,c-2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
R_{c-1,1} & R_{c-2,1} & R_{c-3,1} & \ldots & R_{11}
\end{pmatrix}.
\]

Then
\[
P_1 M = \begin{pmatrix}
R & 0 \\
* & N_{1,1} \\
0 & 0
\end{pmatrix}.
\]

From (10) it follows that \(R \) is of the form (7a,b) with \(c \) replaced by \(c - 1 \).
By the induction hypothesis, there exists an invertible \(P_2 \) such that \(P_2 R \) is \((c - 1, r, n)\)-good. Then
\[
\begin{pmatrix} P_2 & 0 \\ 0 & I \end{pmatrix} P_1 M = \begin{pmatrix} P_2 R & 0 \\ * & N_{1,1} \\ 0 & 0 \end{pmatrix}.
\]

This is clearly \((c, r, n)\)-good, and we have found the desired \(P \). ■

4. Proof of the Theorem. By Lemma 1, we need only show that any equation of the form
\[
a_1 x_1^k + \ldots + a_s x_s^k \equiv 0 \mod \pi^e, \quad a_i \in \mathfrak{O},
\]
has a non-trivial solution \(\mod \pi^e \), provided \(s \geq k + 1 \).

For any \(x \in \mathfrak{O} \) we have
\[
x = x_0 + x_1 \pi + \ldots + x_{e-1} \pi^{e-1}, \quad x_i \in \mathfrak{o}.
\]

Put \(c = [e/p^i] \). Then
\[
x^{p^i} \equiv x_0^{p^i} + x_1^{p^i} \pi^{p^i} + \ldots + x_c^{p^i} \pi^{cp^i} \mod \pi^e.
\]

Write
\[
a_i = \sum_{j=0}^{e-1} a_{i,j} \pi^j, \quad x_i = \sum_{j=0}^{e-1} x_{i,j} \pi^j.
\]

By the above comments, to solve (11) for \(k = p^i \) it is sufficient to solve the
system
\[\sum_{i=1}^{s} a_{i,0} x_{i,0}^{p^t} \equiv 0 \mod p, \]
\[\vdots \]
\[\sum_{i=1}^{s} a_{i,p^t-1} x_{i,0}^{p^t} \equiv 0 \mod p, \]
\[\sum_{i=1}^{s} a_{i,p^t} x_{i,0}^{p^t} + \sum_{i=1}^{s} a_{i,0} x_{i,1}^{p^t} \equiv 0 \mod p, \]
\[\vdots \]
\[\sum_{i=1}^{s} a_{i,2p^t-1} x_{i,0}^{p^t} + \sum_{i=1}^{s} a_{i,p^t-1} x_{i,1}^{p^t} \equiv 0 \mod p, \]
\[\vdots \]
\[\sum_{i=1}^{s} a_{i,(c+1)p^t-1} x_{i,0}^{p^t} + \sum_{i=1}^{s} a_{i,cp^t-1} x_{i,1}^{p^t} + \ldots + \sum_{i=1}^{s} a_{i,p^t-1} x_{i,c}^{p^t} \equiv 0 \mod p, \]
over \(\mathfrak{o} \). Here \(a_{i,j} = 0 \) if \(j \geq e \).

Lemma 4. If \(s \geq k+1 \), then any system of the form (12) has a non-trivial solution such that

(i) \(x_{j,0} \not\equiv 0 \mod p \) for some \(j \).

(ii) \(x_{j,0} \) is an \(m \)-th power mod \(p \) for all \(j \).

Proof. Since \(p \) is unramified in \(L \), \(L(p) = \mathfrak{o}/(p) \) is a finite field of characteristic \(p \). Thus, \(x \mapsto x^{p^t} \) is an automorphism of \(L(p) \). Therefore, to solve (12) it suffices to solve the associated linear system (i.e. replace \(x_{i,j}^{p^t} \) with \(y_{i,j} \)) over \(L(p) \). We wish to find a solution such that \(y_{i,0} \) is an \(m \)-th power for \(i = 1, \ldots, s \).

Observe that the matrix of coefficients of (12) is in the form of (7a,b), with \(c \) replaced by \(c + 1 \), \(r = p^t \), and \(n = s \). By Lemma 3, (12) is equivalent via elementary row operations to a system whose coefficient matrix is \((c+1,p^t,s)\)-good. Suppose this new matrix is given by

\[
\begin{pmatrix}
B_{11} & 0 & \ldots & 0 \\
B_{21} & B_{22} & \ldots & 0 \\
\ast & \ast & \ast & \ast
\end{pmatrix}, \quad B_{ij} \in M_{r_i,s}(L(p)), \; r_i \leq p^t.
\]
By the theorem of Chevalley–Warning [Se, I, Thm. 3], if \(s > p^m = k \), then the system \(B_{11} Y_1 = 0 \) has a non-trivial solution over \(L(p) \), say \(Y_1 = (y_1, \ldots, y_s) \), such that each \(y_i \) is an \(m \)th power. By Lemma 2 this can be extended to a solution \(Y \) of the linear system associated with (12). By the remarks in the first paragraph of this proof, \(Y \) corresponds to a solution of (12). ∎

The proof of the Theorem now follows upon combining Lemma 1 with the following lemma.

Lemma 5. For any \(k \), an equation of the form (11) has a non-trivial solution \(\mod \pi^e \) provided \(s \geq k + 1 \). Therefore, \(\Phi(k, e) \leq k + 1 \).

Proof. By the previous lemma and the comments preceding it, we can find \(x_1, \ldots, x_s \), not all zero modulo \(\pi \), such that
\[
a_1 x_1^{p^t} + \ldots + a_s x_s^{p^t} \equiv 0 \mod \pi^e,
\]
and
\[
x_i \equiv y_i^m \mod \pi, \quad i = 1, \ldots, s.
\]
Since \((m, p) = 1\), it follows from Hensel’s Lemma that for each \(i \) we can find \(z_i \in \mathcal{O} \) such that \(z_i^m \equiv x_i \mod \pi^e \). Thus \(z = (z_1, \ldots, z_s) \) is the desired solution of (11). ∎

References

Department of Mathematics
Princeton University
Princeton, New Jersey 08544
U.S.A.
E-mail: cmcls@math.princeton.edu

Received on 9.6.1995
and in revised form on 2.10.1995

(2803)