On addition of two distinct sets of integers

by
Yonutz Stanchescu (Tel Aviv)

1. Introduction. For any nonempty finite set $K \subseteq \mathbb{Z}$ we denote by $d(K)$ the greatest common divisor of K and by $|K|$ the cardinality of K. By the length $\ell(K)$ of K we mean the difference between its maximal and minimal elements.

We write $[m, n]=\{x \in \mathbb{Z} \mid m \leq x \leq n\}$.
Let $A=\left\{0=a_{1}<\ldots<a_{k}\right\}$ and $B=\left\{0=b_{1}<\ldots<b_{l}\right\}$ be two sets of integers. As usual, their sum is defined by

$$
A+B=\{x \in \mathbb{Z} \mid x=a+b, a \in A, b \in B\}
$$

and we put $2 A=A+A$.
Let $h_{A}=\ell(A)-|A|+1$ denote the number of holes in A, that is,

$$
h_{A}=|[1, \ell(A)] \backslash A| .
$$

Here $\ell(A)$ is the largest element of A.
It is easily seen that

$$
\begin{equation*}
|A+B| \geq|A|+|B|-1 \tag{1}
\end{equation*}
$$

In [1] G. Freiman proved the following:
THEOREM 1. (a) If $a_{k} \leq 2 k-3$, then $|2 A| \geq a_{k}+k=2|A|-1+h_{A}$.
(b) If $a_{k} \geq 2 k-2$ and $d(A)=1$, then $|2 A| \geq 3|A|-3$.

Note that (a) improves the lower bound in (1) by exactly h_{A}. The first generalization of Theorem 1 in the case of two different summands was given by G. Freiman in [2]:

Theorem 2. (a) If $\ell(B) \leq \ell(A) \leq|A|+|B|-3$ then

$$
|A+B| \geq \ell(A)+|B|=|A|+|B|-1+h_{A}
$$

(b) If $\max (\ell(A), \ell(B)) \geq|A|+|B|-2$ and $d(A \cup B)=1$ then

$$
|A+B| \geq(|A|+|B|-3)+\min (|A|,|B|)
$$

Later, J. Steinig gave in [4] a somewhat simplified proof of Theorem 2(b), by using Mann's inequality.

A sharpening of Theorem 2(b) with a new beautiful proof based on Kneser's Theorem was recently obtained by V. F. Lev and P. Y. Smeliansky in [3]. Their main result is

Theorem 3. Assume $\ell(A) \geq \ell(B)$ and define

$$
\delta= \begin{cases}1 & \text { if } a_{k}=b_{l} \\ 0 & \text { if } a_{k}>b_{l}\end{cases}
$$

(a) If $\ell(A) \leq|A|+|B|-2-\delta$, then

$$
|A+B| \geq \ell(A)+|B|=|A|+|B|-1+h_{A}
$$

(b) If $\ell(A) \geq|A|+|B|-1-\delta$ and $d(A)=1$, then

$$
|A+B| \geq|A|+2|B|-2-\delta
$$

Note that neither Theorem 2(a) nor Theorem 3(a) improve the trivial lower bound (1) in the case:

$$
\ell(B) \leq \ell(A) \leq|A|+|B|-3 \quad \text { and } \quad h_{A}=0
$$

At the same time the lower bound $|A|+|B|-1+h_{A}$ gives only a modest improvement of (1) if h_{A} is very close to 0 .

More precisely, the lower bound given by Theorems 2 and 3 in case (a) depends only on h_{A} and we would desire a symmetric one, which uses both sets A and B. What happens if h_{A} is much smaller than h_{B} ? Is it still possible to improve the lower bound in this situation?

We prove

Theorem 4. Define

$$
\delta= \begin{cases}1 & \text { if } \ell(A)=\ell(B) \\ 0 & \text { if } \ell(A) \neq \ell(B)\end{cases}
$$

If $\max (\ell(A), \ell(B)) \leq|A|+|B|-2-\delta$, then

$$
\begin{equation*}
|A+B| \geq(|A|+|B|-1)+\max \left(h_{A}, h_{B}\right) \tag{2}
\end{equation*}
$$

2. Proof of Theorem 4. There is no loss of generality in assuming $\ell(A) \geq \ell(B)$. If $h_{A} \geq h_{B}$, Theorem 3 (a) gives the desired inequality (for an elementary proof see for example [4], Theorem x).

Suppose that $h_{B}>h_{A}$. If $\ell(A)=\ell(B)$, then Theorem 3(a) gives

$$
\begin{aligned}
|A+B| & \geq \ell(B)+|A|=|A|+|B|-1+h_{B} \\
& =|A|+|B|-1+\max \left(h_{A}, h_{B}\right) .
\end{aligned}
$$

Hence, we assume below that

$$
\begin{gather*}
h_{B}>h_{A}, \tag{3}\\
\ell(A)=a_{k}>b_{l}=\ell(B) \tag{4}
\end{gather*}
$$

and this also yields $\delta=0$.

Define m by

$$
\begin{equation*}
a_{m}<b_{l} \leq a_{m+1} \tag{5}
\end{equation*}
$$

and let

$$
\begin{equation*}
A^{\prime}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, \quad A^{\prime \prime}=\left\{a_{m+1}, a_{m+2}, \ldots, a_{k}\right\} . \tag{6}
\end{equation*}
$$

Note that $m \geq 2$ in view of (3) and (4). Obviously $\left(A^{\prime}+B\right) \cap\left(A^{\prime \prime}+b_{l}\right)=\emptyset$ and therefore

$$
\begin{equation*}
|A+B| \geq\left|A^{\prime}+B\right|+\left|A^{\prime \prime}\right| . \tag{7}
\end{equation*}
$$

If we show that B and A^{\prime} satisfy the assumptions of Theorem 3(a) then using this theorem to estimate $\left|B+A^{\prime}\right|$ one obtains

$$
\left|B+A^{\prime}\right| \geq|B|+\left|A^{\prime}\right|-1+h_{B}
$$

and thus

$$
\begin{aligned}
|A+B| & \geq\left|A^{\prime}+B\right|+\left|A^{\prime \prime}\right| \geq\left(|B|+\left|A^{\prime}\right|-1\right)+h_{B}+\left|A^{\prime \prime}\right| \\
& =(|A|+|B|-1)+h_{B},
\end{aligned}
$$

completing the proof.
Thus it remains to show that

$$
\begin{gather*}
\ell(B)>\ell\left(A^{\prime}\right), \tag{8}\\
\ell(B) \leq|B|+\left|A^{\prime}\right|-2 . \tag{9}
\end{gather*}
$$

By inequality (5), the number of holes in A between 1 and b_{l} is given by $b_{l}-(m-1)$, and is at most h_{A}. We get

$$
\begin{aligned}
\ell\left(A^{\prime}\right) & =a_{m}<b_{l}=\ell(B)=\left[b_{l}-(m-1)\right]+(m-1) \\
& \leq h_{A}+(m-1)=a_{k}-(k-1)+(m-1) \\
& \leq(k+l-2)-(k-1)+(m-1)=|B|+\left|A^{\prime}\right|-2 .
\end{aligned}
$$

The theorem is proved.
3. Consequences. We usually utilize nontrivial lower bounds for $|A+B|$ in order to estimate the length of A and B for a given value of $|A+B|$. Our theorem sharpens the corresponding results of V. F. Lev and P. Y. Smeliansky.

In this section we do not assume that the minimal elements of A and B are 0 and for $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $B=\left\{b_{1}, \ldots, b_{l}\right\}$ we define

$$
\delta= \begin{cases}1 & \text { if } \ell(A)=\ell(B), \\ 0 & \text { if } \ell(A) \neq \ell(B) .\end{cases}
$$

Corollary 1. Let $B \subseteq A$ be two finite sets of integers. Denote by d the greatest common divisor of $a_{2}-a_{1}, \ldots, a_{k}-a_{1}$, let $a=\ell(A) / d$ be the reduced length of A and put $b=\ell(B) / d$. If $T=|A+B|<|A|+2|B|-2-\delta$ then $a \leq T-l$ and $b \leq T-k$.

Proof. Define $A^{\prime}=\left\{\left(a_{i}-a_{1}\right) / d: i=1, \ldots, k\right\}$ and $B^{\prime}=\left\{\left(b_{j}-b_{1}\right) / d:\right.$ $j=1, \ldots, l\}$. Note that $\ell\left(A^{\prime}\right)=a \geq \ell\left(B^{\prime}\right)$ and $d\left(A^{\prime}\right)=1$.

If $a \geq\left|A^{\prime}\right|+\left|B^{\prime}\right|-1-\delta$ then Theorem $3(\mathrm{~b})$ gives $|A+B|=\left|A^{\prime}+B^{\prime}\right| \geq$ $\left|A^{\prime}\right|+2\left|B^{\prime}\right|-2-\delta=|A|+2|B|-2-\delta$, a contradiction.

Therefore $a \leq\left|A^{\prime}\right|+\left|B^{\prime}\right|-2-\delta$. Theorem 4 gives $|A+B|=\left|A^{\prime}+B^{\prime}\right| \geq$ $\left(\left|A^{\prime}\right|+\left|B^{\prime}\right|-1\right)+\max \left(h_{A^{\prime}}, h_{B^{\prime}}\right)=\max (a+|B|, b+|A|)$. The corollary is proven.

Corollary 2. Let A and B be two finite sets of integers. Denote by d the greatest common divisor of $a_{2}-a_{1}, \ldots, a_{k}-a_{1}, b_{2}-b_{1}, \ldots, b_{l}-b_{1}$ and put $a=\ell(A) / d, b=\ell(B) / d$. If $T=|A+B|<|A|+|B|+\min (|A|,|B|)-2-\delta$ then $a \leq T-l$ and $b \leq T-k$.

Proof. Define $A^{\prime}=\left\{\left(a_{i}-a_{1}\right) / d: i=1, \ldots, k\right\}$ and $B^{\prime}=\left\{\left(b_{j}-b_{1}\right) / d:\right.$ $j=1, \ldots, l\}$. Note that $d\left(A^{\prime} \cup B^{\prime}\right)=1$.

It is not difficult to prove (see [3], Lemma 2) that $\left|A^{\prime}+B^{\prime}\right| \geq 2\left|A^{\prime}\right|+$ $\left|B^{\prime}\right|-2$ if $d\left(A^{\prime}\right)>1$ and $d\left(A^{\prime} \cup B^{\prime}\right)=1$.

If $c=\max (a, b) \geq\left|A^{\prime}\right|+\left|B^{\prime}\right|-1-\delta$ then by Theorem $3(\mathrm{~b})$ and the previous remark we obtain $|A+B|=\left|A^{\prime}+B^{\prime}\right| \geq\left|A^{\prime}\right|+\left|B^{\prime}\right|-2-\delta+$ $\min \left(\left|A^{\prime}\right|,\left|B^{\prime}\right|\right)=|A|+|B|-2-\delta+\min (|A|,|B|)$, a contradiction.

Therefore $c \leq\left|A^{\prime}\right|+\left|B^{\prime}\right|-2-\delta$. Theorem 4 gives $|A+B|=\left|A^{\prime}+B^{\prime}\right| \geq$ $\max \left(a+\left|B^{\prime}\right|, b+\left|A^{\prime}\right|\right)=\max (a+|B|, b+|A|)$. The corollary is proven.

References

[1] G. Freiman, On addition of finite sets, I, Izv. Vyssh. Uchebn. Zaved. Mat. 1959 (6), 202-213 (in Russian).
[2] -, Inverse problems of additive number theory, VI. On addition of finite sets, III, ibid. 1962 (3), 151-157 (in Russian).
[3] V. F. Lev and P. Y. Smeliansky, On addition of two distinct sets of integers, Acta Arith. 70 (1995), 85-91.
[4] J. Steinig, On Freiman's theorems concerning the sum of two finite sets of integers, in: Preprints of the conference on Structure Theory of Set Addition, CIRM, Marseille, 1993, 173-186.

School of Mathematics
Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University
69978 Ramat Aviv, Israel
E-mail: ionut@math.tau.ac.il

