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0. Introduction. In 1936 Erdős and Turán [ET 36] asked whether
for every natural number k and every positive constant α, every subset
A of [n] = {0, 1, . . . , n − 1} with at least αn elements contains a k-term
arithmetic progression provided n is sufficiently large with respect to α
and k. This conjecture was resolved by Roth [Ro 53] for k = 3, whereas
for general k it was settled in the affirmative by the outstanding theo-
rem of Szemerédi [Sz 75]. A few years after Szemerédi’s paper was pub-
lished, an entirely different proof of this result, based on ergodic theory,
was given by Furstenberg [Fu 77]. Since then, the main open problem con-
cerning the original question of Erdős and Turán has been to find better
lower bounds for the size of A that guarantee the existence of arithmetic
progressions of length k in A. Unfortunately, not much has been accom-
plished for k ≥ 4. The explicit estimates that follow from Szemerédi’s orig-
inal proof are very poor and Furstenberg’s approach does not provide such
bounds at all. The case k = 3 is much better understood. Roth’s origi-
nal argument implies that it is enough to assume that |A| ≥ n/ log log n
and the best lower bound to date has been given independently by Heath-
Brown and Szemerédi (see [H-B 87]), who showed that for some absolute
constant c > 0 every subset of [n] with at least n/(log n)c elements con-
tains an arithmetic progression of length three, provided n is sufficiently
large.
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In this paper we approach a related problem. Namely, here we are in-
terested in the existence of a “small” and “sparse” set R ⊆ [n] with the
property that every subset A ⊆ R that contains a fixed positive fraction of
the elements of R contains also a 3-term arithmetic progression. The mea-
sure of sparseness here should be so that it reflects the fact that R is locally
poor in 3-term arithmetic progressions. Clearly, a natural candidate for such
a set R is an M -element set RM uniformly selected from all the M -element
subsets of [n], where 1 ≤M = M(n) ≤ n is to be chosen suitably. Our main
result here confirms this appealing, intuitive idea.

For integers 1 ≤M ≤ n, let R(n,M) be the probability space of all the
M -element subsets of [n] equipped with the uniform measure. In the sequel,
given 0 < α ≤ 1 and a set R ⊆ [n], let us write R →α 3 if any A ⊆ R with
|A| ≥ α|R| contains a 3-term arithmetic progression. Our main result may
then be stated as follows.

Theorem 1. For every constant 0 < α ≤ 1, there exists a constant
C = C(α) such that if C

√
n ≤ M = M(n) ≤ n then the probability that

RM ∈ R(n,M) satisfies RM →α 3 tends to 1 as n→∞.

From Theorem 1, it is easy to deduce the following analogous result for
the random sets Rp ⊆ [n] (0 ≤ p = p(n) ≤ 1) whose elements are chosen
from [n] independently with probability p. Thus, if we write R(n, p) for the
probability space of such Rp, then for a given set R ⊆ [n] the probability
that Rp = R is p|R|(1− p)n−|R|.

Theorem 2. For every constant 0 < α ≤ 1, there exists a constant
C = C(α) such that if C/

√
n ≤ p = p(n) ≤ 1 then the probability that

Rp ∈ R(n,M) satisfies Rp →α 3 tends to 1 as n→∞.

Note that Theorems 1 and 2 are, in a way, close to being best possible:
if M = M(n) = bε√nc for some fixed ε > 0 then the number of 3-term
arithmetic progressions in RM ∈ R(n,M) is, with large probability, smaller
than 2ε2|RM |, and hence all of them may be destroyed by deleting at most
2ε2|RM | elements from RM ; in other words, with large probability the rela-
tion RM →α 3 does not hold for α = 1−2ε2. Clearly, a similar phenomenon
happens for Rp with p = p(n) = ε/

√
n.

Our results above immediately imply the existence of “sparse” sets S =
Sα such that S →α 3 for any fixed 0 < α ≤ 1. The following result makes
this assertion precise.

Corollary 3. Suppose that s = s(n) = o(n1/8) and g = g(n) = o(log n)
as n →∞. Then, for every fixed α > 0, there are constants C and N such
that for every n ≥ N there exists S ⊆ [n] satisfying S →α 3 for which the
following three conditions hold.
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(i) For every k ≥ 0 and l ≥ 1 the set {k, k + l, . . . , k + sl} contains at
most three elements of S, and therefore, in particular , S contains no 4-term
arithmetic progression.

(ii) Every set {k, k+ l, . . . , k+ml} with k ≥ 0, l ≥ 1, and m ≥ √n log n
contains at most Cm/

√
n elements of S.

(iii) If F = F(S) is the 3-uniform hypergraph on the vertex set S whose
hyperedges are the 3-term arithmetic progressions contained in S, then F
has no cycle of length smaller than g.

In words, conditions (i) and (ii) above say that the set S intersects any
arithmetic progression in a small number of elements. In particular, S con-
tains no 4-term arithmetic progressions. Condition (iii) is more combinato-
rial in nature, and says that the 3-term arithmetic progressions contained
in S locally form a tree-like structure, which makes the property S →α 3
somewhat surprising.

Let us remark that the following extension of Szemerédi’s theorem re-
lated to Corollary 3 was proved in [Rö 90], thereby settling a problem raised
by Spencer [Sp 75]. Let k, g ≥ 3 be fixed integers and 0 < α ≤ 1 be a fixed
real. Theorem 4.3 of [Rö 90] asserts that then, for any large enough n, there
exists a k-uniform hypergraph F on [n], all of whose hyperedges are k-term
arithmetic progressions, such that F contains no cycle of length smaller than
g but each subset A ⊆ [n] with |A| ≥ αn contains a hyperedge of F . For
other problems and results in this direction, see Graham and Nešetřil [GN
86], Nešetřil and Rödl [NR 87] and Prömel and Voigt [PV 88]. Note that
Corollary 3 strengthens the above result of [Rö 90] in the case k = 3.

The proof of Theorem 1 is unfortunately quite long. In the next sec-
tion we describe our general approach, stressing the main ideas involved
and ignoring several quite technical parts. We hope that the outline of our
method presented there will be of some use in following the actual proof.
The organization of the paper is also discussed in the next section.

1. Outline of the method of proof. The main lemma in the proof
of Theorem 1 is Lemma 19. In essence, what this lemma says is quite sim-
ple. Assume C

√
n ≤ M ′ = M ′(n) ≤ n for some large C > 0. Disregarding

some technicalities, Lemma 19 states the following: if we condition on our
set RM ′ ∈ R(n,M ′) satisfying a certain “sparseness” condition, the proba-
bility that RM ′ fails to contain an arithmetic progression of length three is
at most exp{−cM ′}, where we may make c arbitrarily large by picking C
appropriately large.

Theorem 1 is shown to follow from Lemma 19 in two steps. Suppose C is a
large constant with respect to a given fixed α > 0 and M = M(n) ≤ α−1M ′.
We aim at showing that RM →α 3 with probability approaching 1. Our first
step consists of a quick calculation based on Lemma 19 to deduce that a
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typical random set RM ∈ R(n,M) will not contain a “sparse” M ′-element
subset R′ that is free of 3-term arithmetic progressions. Our second step is
then to show that our “sparseness” condition is weak enough for every M ′-
element subset R′ of a typical RM ∈ R(n,M) to be sparse. Hence Theorem 1
follows.

Thus, all our efforts go into proving Lemma 19. An important tool in
the proof will be a version of Szemerédi’s regularity lemma [Sz 78]. As is
well known, this is an important graph theoretical component of Szemerédi’s
proof of his theorem on arithmetic progressions. It turns out that it is most
convenient to phrase our arguments below in terms of graphs as well. Fol-
lowing an idea of Ruzsa and Szemerédi [RSz 78] (see also Erdős, Frankl and
Rödl [EFR 86] or Graham and Rödl [GR 87]), for every subset R′ of [n] we
construct a graph G(n,R′) that, roughly speaking, has the property that it
contains a triangle (more precisely, a “spontaneous” triangle) if and only if
R′ contains a 3-term arithmetic progression (more precisely, an “arithmetic
triple”). Lemma 19 is in fact stated in terms of sparse graphs and sponta-
neous triangles, and it asserts that sparse graphs free of such triangles are
extremely rare.

Unfortunately, the proof of Lemma 19 is quite complex, and we shall not
attempt to give a non-technical outline of it here. Probably any such sketch
would fail to be of much help. Nonetheless, we remark that the argument
below is divided into several steps, which are, to a large extent, independent
of one another, and perhaps of some interest in their own right.

The organization of our paper is as follows. In Section 2 we introduce
the notions of regularity, uniformity and sparseness of graphs, and state a
version of Szemerédi’s regularity lemma for suitably sparse graphs together
with a few related results. We start Section 3 with an analogue of a theorem
of Ruzsa and Szemerédi [RSz 78] for sparse graphs (cf. Theorem 8 and
Lemma 9), and then give an important but rather technical lemma, Lemma
10, concerning the existence of certain structures we call “flowers” in edge-
coloured sparse graphs. It is in proving Lemma 10 that we shall make use
of Szemerédi’s regularity lemma in the form given in Section 2.

One of the main probabilistic ingredients in the proof of Lemma 19 is
given in Section 4. Roughly speaking, we show in Lemma 11 that a random
induced subgraph of a bipartite uniform graph contains with very large
probability a fair number of edges. In Section 5 we give a simple sufficient
condition for a regular bipartite graph to be uniform. In Section 6 we relate
our graph theoretical results of the previous sections to subsets of [n]: we
define the “difference graph” GR = GR(n) for any given subset R of [n] and,
using a result from Section 5, show that if R is a random set of suitably large
expected size, then its difference graph GR is uniform with large probability.
Finally, the statement and proof of our main lemma, Lemma 19, and the
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proof of Theorem 1 are given in Section 7, together with a sketch of the
proof of Corollary 3.

2. Uniform graphs and Szemerédi’s lemma. Let G be a graph
with vertex set V = V (G) and edge set E(G). Write |G| = |V (G)| = n
for the order of G, and e(G) = |E(G)| for its size |E(G)|. Furthermore,
let U,W ⊆ V be a pair of disjoint, non-empty subsets of G, let EG(U,W )
denote the set of edges of G that have one end-vertex in U and the other
in W , and set e(U,W ) = eG(U,W ) = |EG(U,W )|. The density dG(U,W ) of
the pair (U,W ) is defined by

dG(U,W ) =
eG(U,W )
|U ||W |

/e(G)
n2 .

For 0 < ε ≤ 1, we say that the pair (U,W ) is (ε,G)-regular , or simply
ε-regular , if for all U ′ ⊆ U and W ′ ⊆ W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W |
we have

|dG(U,W )− dG(U ′,W ′)| ≤ ε.
We say that an l-partite graph G is (l, ε)-uniform, or just ε-uniform, if all
the

(
l
2

)
pairs of distinct vertex classes of the l-partition of G are ε-regular.

We say that a partition Π = (V i)k0 of the vertex set V = V (G) of G
is (ε, k)-equitable if |V 0| ≤ εn and |V 1| = . . . = |V k|. We refer to V 0 as
the exceptional class of Π. We say that the (ε, k)-equitable partition Π is
a subpartition of a partition Π ′ = (W j)s0 of V if each V i with 1 ≤ i ≤ k,
that is, every non-exceptional class of Π, is contained in some member of
the partition Π ′. For Π to be a subpartition of Π ′ in the case where Π ′ is
an equitable partition as well, we require every non-exceptional class of Π
to be contained in some non-exceptional class of Π ′. We say that an (ε, k)-
equitable partition Π = (V i)k0 is (ε, k;G)-regular , or simply (ε,G)-regular ,
if at most ε

(
k
2

)
pairs (V i, V j) with 1 ≤ i < j ≤ k are not (ε,G)-regular.

Finally, for a given b > 2 and 0 < η ≤ 1, we say that G is (b, η)-sparse
if, for every disjoint pair of sets U,W ⊆ V such that |U |, |W | ≥ ηn, we have
dG(U,W ) ≤ b. Thus, roughly speaking, a graph is (b, η)-sparse if all of its
large induced subgraphs are not much denser that the graph itself. We can
now state our extension of Szemerédi’s lemma for (b, η)-sparse graphs.

Lemma 4. For any given ε > 0, b > 2, k0 ≥ 1 and s ≥ 1, there are
constants η = η(ε, b, k0, s) > 0 and K0 = K0(ε, b, k0, s) ≥ k0 that depend
only on ε, b, k0, and s for which the following holds. For every (b, η)-sparse
graph G and every partition (W j)s0 of the vertex set of G, there exists an
(ε,G)-regular (ε, k)-equitable subpartition of (W j)s0 with k0 ≤ k ≤ K0.

The proof of Lemma 4 goes along the same lines as the proof of Sze-
merédi’s original result [Sz 78], and hence we omit it here. As a matter of
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fact, in order to prove Lemma 4, one may just rewrite the argument from [Sz
78] putting the “scaled” density dG(U,W ) (or, more precisely, dG(U,W )/b)
in place of Szemerédi’s original density d(U,W ) = eG(U,W )/(|U | · |W |).

From Lemma 4 it immediately follows that one can uniformly parti-
tion any fixed number of graphs at the same time. Let G1, . . . , Gm be a
sequence of graphs defined on the same vertex set V , and let G =

⋃m
i=1Gi

be their union, i.e., the graph on V with the edge set
⋃m
i=1E(Gi). We say

that G1, . . . , Gm is (b, η)-sparse if G is (b, η)-sparse. Furthermore, an (ε, k)-
equitable partition Π = (V i)k0 is (ε, k;G1, . . . , Gm)-regular if it is (ε, k;Gi)-
regular for all 1 ≤ i ≤ m.

One can easily deduce from Lemma 4 that every (b, η)-sparse sequence of
graphs G1, . . . , Gm admits an (ε, k;G1, . . . , Gm)-regular partition, provided
η is small enough with respect to ε, b and 1/k. Roughly speaking, we first
choose a rapidly decreasing sequence ε = εm ≥ εm−1 ≥ . . . ≥ ε1 > 0 of con-
stants, and then invoke Lemma 4 in turn to define a sequence Π1, . . . ,Πm

of finer and finer partitions of V . To be precise, Πi is required to be a
subpartition of Πi−1 for all 1 < i ≤ m, and Πi (1 ≤ i ≤ m) is required
to be an (εi, Gi)-regular partition of V with a “small” number of classes
(as small as Lemma 4 can guarantee). Choosing the εi (1 ≤ i ≤ m) care-
fully enough, the final partition Πm of our sequence Π1, . . . ,Πm will be the
(ε, k;G1, . . . , Gm)-regular partition we seek.

It will be important later that, for any 1 < i ≤ m, the partition Πi

above may be determined solely from Πi−1 and Gi. In other words, the
graphs Gi+1, . . . , Gm play no rôle in the definition of Πi.

We now make the above informal discussion precise. Thus, let k0 and
m ≥ 3 be natural numbers, let ε be a sequence of numbers ε1, . . . , εm such
that 0 < ε1 ≤ . . . ≤ εm < 1 and let G1, . . . , Gm be graphs with the same
vertex set V , where |V | ≥ k0. In the definition below, we shall assume that
the set of all equitable partitions of V have been given a fixed ordering, say
≺. The (ε, k0)-canonical sequence of partitions Π̃1, . . . , Π̃m for G1, . . . , Gm
is defined recursively in the following way:

(i) Among all the (ε1, k;G1)-regular partitions which minimize k ≥ k0,
let Π̃1 be the first one according to ≺.

(ii) Assume that 2 ≤ i ≤ m and that the partition Π̃i−1 has already been
defined. Then we let Π̃i be the ≺-first (εi, k;G1, . . . , Gi)-regular subpartition
of Π̃i−1 which minimizes k.

Note that any partition of the vertices of G into singletons is (ε, k;G)-
regular for k = |V | and every ε > 0. Thus, for each sequence G1, . . . , Gm as
above, an (ε, k0)-canonical sequence of partitions does exist and is of course
unique by definition.
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Now we can use Lemma 4 to deduce that for (b, η)-sparse sequences of
graphs the sizes of the partitions in the associated canonical partition can
be uniformly bounded from above.

Lemma 5. For every ε > 0, b > 2, k0 ≥ 1 and m ≥ 1, there are constants
η = η(ε, b, k0,m) > 0 and K0 = K0(ε, b, k0,m) ≥ k0 and a sequence ε =
ε(m, b, ε, k0) = (ε1, . . . , εm) with 0 < ε1 ≤ . . . ≤ εm = ε such that η, K0

and ε depend only on ε, b, k0 and m and the following holds. For every
(b, η)-sparse sequence of graphs G1, . . . , Gm, the (ε, k0)-canonical sequence
of partitions Π̃1, . . . , Π̃m associated with G1, . . . , Gm only contains partitions
of sizes bounded by K0 + 1. In fact , we have

k0 + 1 ≤ |Π̃1| ≤ . . . ≤ |Π̃m| ≤ K0 + 1.

Note that the ε in the lemma above depends only on m, b, ε, and k0. In
fact, throughout the paper we shall assume that, for any given m, b, ε, and
k0 as in Lemma 5, we have a fixed vector ε = ε(m, b, ε, k0) as in that lemma
associated with this choice of m, b, ε, and k0.

Let us conclude this section with two simple observations. The definition
of ε-regularity deals with the distribution of edges between “large” sets.
Nonetheless, it turns out that each ε-uniform l-partite graph G contains a
large 3ε-uniform l-partite subgraph G such that each vertex of G has a fairly
large degree. In fact, more is true as shown by the following statement.

Fact 6. Suppose l ≥ 2 and 0 < ε < 1/(5l). Let G be an ε-uniform
(l+ 1)-partite graph with (l+ 1)-partition V (G) = V0 ∪ . . . ∪ Vl. Then there
exist subsets V i ⊆ Vi (1 ≤ i ≤ l) such that , for every 1 ≤ i ≤ l, we have
|V i| ≥ (1− lε)|Vi| and for every vertex v ∈ V i we have

|NG(v) ∩ V j | ≥ (1− 2lε)eG(Vi, Vj)/|Vj |
for every j 6= i (1 ≤ j ≤ l). In particular , the graph G induced in G by⋃l
i=1 V i is 3ε-uniform.

P r o o f. Since proofs of very similar statements can be found in [HKŁ 95],
here we only mention the simple idea behind the argument. In order to find
the V i (0 ≤ i ≤ l) we successively delete from Vi the vertices that violate
the conditions we seek. Then one can easily show that, because of the ε-
uniformity of G, this process finishes with the required sets V i (0 ≤ i ≤ l).

Finally, since every graph G on n vertices contains a bipartite subgraph
H whose vertex classes are of cardinality bn/2c and dn/2e and such that
e(H) ≥ e(G)/2, the following fact is an immediate consequence of the defi-
nition of a (b, η)-sparse graph.

Fact 7. If G is (b, η)-sparse then every subgraph H of G with |V (H)| ≥
2η|V (G)|+ 2 vertices contains at most b|V (H)|2e(G)/|V (G)|2 edges.
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3. The Ruzsa–Szemerédi theorem for sparse graphs. In this sec-
tion we state and prove an analogue of a result of Ruzsa and Szemerédi
[RSz 78] (see also Erdős, Frankl and Rödl [EFR 86] or Graham and Rödl
[GR 87]) which remains valid for (b, η)-sparse graphs. Let us say that a
graph is 3-decomposable if it is the union of edge-disjoint triangles. Then
the Ruzsa–Szemerédi theorem that we shall need (and generalize below)
may be stated as follows.

Theorem 8. For every constant c > 0 there exists a constant δ̂(c) > 0
such that every 3-decomposable graph G with at least cn2 edges contains at
least δ̂(c)n3 triangles.

We would like to apply a similar result for graphs which are not so dense.
Unfortunately, in this case the above theorem is no longer valid: there are
3-decomposable graphs G with n vertices and at least n2 exp(−3

√
logn)

edges which contain only e(G)/3 triangles (see, e.g., Theorem 6.6 in [GR
87]). We are thus forced to take another approach. Very roughly speaking,
our method will consist in proving a probabilistic version of Theorem 8,
Lemma 19, asserting that, in some sense, “counterexamples” as above are
rare. However, we need to work for a while before we may state and prove
Lemma 19.

We start with a result saying that if a 3-decomposable graph G admits
an ε-regular partition then, although G may contain only a few triangles,
it must contain many “dense” triples of partition classes. To emphasize the
difference between triangles on the one hand and triples of partition classes
on the other, we shall refer to the latter as triads.

Thus, let G be a (b, η)-sparse graph on n vertices and let Π = (V i)k0
be an (ε, k)-equitable (ε,G)-regular partition of the vertex set of G. We say
that a pair (V r, V s) (1 ≤ r < s ≤ k) is thick if it is (ε,G)-regular and

eG(V r, V s) ≥ |V r| · |V s|e(G)/(50n2).

We say that a triad (V r, V s, V t) (1 ≤ r < s < t ≤ k) is thick if all three
pairs (V r, V s), (V r, V t) and (V s, V t) are thick.

Lemma 9. For every b > 2 there exist constants δ = δ(b) > 0 and
k0 = k0(b) ≥ 1 that depend only on b such that the following holds. For ev-
ery (b, η)-sparse 3-decomposable graph G, if Π is an (ε, k)-equitable (ε,G)-
regular partition of G such that 200εb ≤ 1, k ≥ k0, and 0 < η ≤
min{ε, 1/(2k)}, then Π contains at least δk3 thick triads.

P r o o f. Let k0 = k0(b) = 40000b and δ = δ(b) = δ̂(0.3/b) > 0, where δ̂
is as given by Theorem 8. We shall show that these values will do for our
lemma. Suppose 200εb ≤ 1 and let Π be an (ε, k)-equitable (ε,G)-regular
partition of a (b, η)-sparse 3-decomposable graph G, where k ≥ k0 and
0 < η ≤ min{ε, 1/(2k)}. Then the following assertions hold:
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(i) the number of edges of G that have both ends in one set of Π is, by
Fact 7, less than

ε2n2be(G)/n2 + k(n/k)2be(G)/n2 = (ε2b+ b/k)e(G) ≤ e(G)/100,

(ii) the number of edges of G incident to the vertices in V 0 is less than

εn2be(G)/n2 ≤ εbe(G) ≤ e(G)/200,

(iii) the number of edges between pairs (V r, V s) (1 ≤ r < s ≤ k) that
are not ε-regular is less than

ε

(
k

2

)(
n

k

)2
be(G)
n2 ≤ εbe(G) ≤ e(G)/200,

(iv) the number of edges between pairs (V r, V s) (1 ≤ r < s ≤ k) that
are not thick is less than(

k

2

)(
n

k

)2
e(G)
50n2 ≤ e(G)/100.

Hence, at least 0.97e(G) edges of G belong to thick pairs (V r, V s). Let
these edges form the edge set of the spanning subgraph G0 of G. Let F
be a family of edge-disjoint triangles of G such that G =

⋃F . Clearly, just
considering F , we see that G0 contains at least e(G)/3−0.03e(G) ≥ 0.3e(G)
triangles. In particular, the partition Π has at least one thick triad, say
(V r(1), V s(1), V t(1)). Let us delete from G0 all edges between the sets V r(1),
V s(1) and V t(1), and let G1 be the graph obtained in this way. Since the
number of edges we delete is smaller than 3b(n/k)2e(G)/n2 ≤ 3be(G)/k2,
we destroy at most 3be(G)/k2 < 0.3e(G) triangles from F . Thus, the graph
G1 contains a triangle and hence the partition Π, viewed as a partition of
G1, contains at least one thick triad. We repeat the procedure above and
obtain a sequence G = G0 ⊃ . . . ⊃ Gl of spanning subgraphs of G with Gl

such that Π, viewed as a partition of Gl, contains no thick triad. Since in
every step we decrease the number of triangles in F by at most 3be(G)/k2,
we have l ≥ 0.1k2/b. Hence, the graph G(Π), whose vertices are the sets
V 1, . . . , V k and V r, V s (1 ≤ r < s ≤ k) are joined by an edge if and only if
the pair (V r, V s) is thick, contains at least 0.1k2/b edge-disjoint triangles.
Thus, by Theorem 8 and our choice of δ = δ(b) = δ̂(0.3/b), the graph G(Π)
contains at least δk3 triangles. Consequently, there exist at least δk3 thick
triads in Π and Lemma 9 follows.

We now turn to the main lemma of this section, Lemma 10. As already
mentioned in Section 1, this is a rather technical result, and before we may
state it we need to introduce a few definitions, including the definition of a
“flower” in an edge-coloured graph. Let us say that a sequence G1, . . . , Gm
of graphs on the same vertex set is balanced if
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(i) E(Gi) ∩ E(Gj) = ∅ for all 1 ≤ i < j ≤ m,
(ii) e(Gi) = e(Gj) for all 1 ≤ i < j ≤ m,

(iii) for all 1 ≤ i ≤ m, all the vertices of Gi have the same degree.

It will be convenient to think of a balanced sequence as above as a graph
G, namely G =

⋃m
i=1Gi, whose edges have been coloured with m colours.

Let G̃ = (Gi)mi=1 be a balanced sequence of graphs and G =
⋃m
i=1Gi. Let

n = |V (G)|. Suppose also that Π̃1, . . . , Π̃m is the (ε, k0)-canonical sequence
of partitions associated with G1, . . . , Gm for some given k0 and some ε =
(ε1, . . . , εm). Then, for any constant 0 < δ ≤ 1, a (δ, k0, ε; G̃)-flower , or, for
short, a (δ, G̃)-flower , consists of three indices 1 ≤ w(1) < w(2) < w(3) ≤ m
together with a vertex v of G and a family {(X(i), Y (i)) : 1 ≤ i ≤ g} of pairs
of non-exceptional elements X(i) and Y (i) of Π̃w(1) such that

(i) 2g|X(i)| = 2g|Y (i)| ≥ δn,
(ii) the 2g sets X(i), Y (i) (1 ≤ i ≤ g) are all distinct,

(iii) all pairs (X(i), Y (i)) are (εw(i), Gw(1))-regular and

eGw(1)(X
(i), Y (i)) ≥ δ|X(i)| · |Y (i)|e(Gw(1))/(106n2)

= δ|X(i)| · |Y (i)|e(G)/(106mn2),

(iv) the vertex v is joined to each X(i) (1 ≤ i ≤ g) by at least δ|X(i)| ×
e(Gw(2))/(106n2) = δ|X(i)|e(G)/(106mn2) edges of Gw(2),

(v) the vertex v is joined to each Y (i) (1 ≤ i ≤ g) by at least δ|Y (i)| ×
e(Gw(3))/(106n2) = δ|Y (i)|e(G)/(106mn2) edges of Gw(3).

We may now state and prove Lemma 10.

Lemma 10. Let b > 2 be given. Then there exist integers m = m(b) ≥ 3
and k0 = k0(b), and a real number 0 < δ = δ(b) ≤ 1 that depend only on b
such that , for any 0 < ε ≤ 1, there exists a constant 0 < η = η(b, ε) ≤ 1 for
which the following holds. Let ε = ε(m, b, ε, k0). If G̃ = (Gi)mi=1 is a balanced
m-edge-colouring of a (b, η)-sparse 3-decomposable graph G =

⋃m
i=1Gi, then

the (ε, k0)-canonical sequence of partitions Π̃1, . . . , Π̃m associated with G̃ =
(Gi)mi=1 admits a (δ, k0, ε; G̃)-flower.

R e m a r k. In the sequel, when considering (b, η)-sparse sequences of
graphs G̃ as above, we shall often say that “a (δ, k0, ε; G̃)-flower exists” or
that “G̃ contains a (δ, G̃)-flower”. In such cases, we are tacitly assuming that
these flowers are built from the (ε, k0)-canonical sequence of partitions as-
sociated with our G̃, where ε = ε(m, b, ε, k0) is the vector we have explicitly
associated with m, b, ε and k0.

P r o o f o f L e m m a 10. Let δ(b) > 0 be as given by Lemma 9. Set
m = m(b) = d3 · 106/δ(b)e, δ = δ(b) = δ(b)/(1600m3) > 0 and k0 =
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k0(b) = max{k0(b), 800m3/δ(b)} ≥ 1, where k0(b) is given by Lemma 9.
We shall show that the assertion holds with this choice of m and δ and
k0. Thus, let an arbitrary 0 < ε ≤ 1 be given. Clearly, we may assume
that ε ≤ min{1/(200b), δ(b)/(800m3)}. Now let us invoke Lemma 5 to ob-
tain η(ε, b, k0,m) > 0 and K0 = K0(ε, b, k0,m) ≥ k0 as given by that
lemma. We may and shall assume that η ≤ min{ε, 1/(2K0)}. Our aim is to
show that the assertion holds for η = η(b, ε) = η(ε, b, k0,m) given above.
Therefore, let G̃ = (Gi)mi=1 be a balanced m-edge-colouring of a (b, η)-sparse
3-decomposable graph G =

⋃m
i=1Gi. We need to verify that, under these

conditions, a (δ, k0, ε; G̃)-flower does indeed exist.
Let Π̃1, . . . , Π̃m be the (ε, k0)-canonical sequence of partitions associ-

ated with G1, . . . , Gm. We first concentrate our attention on the graph
G =

⋃m
i=1Gi and the partition Π̃m. We show that each of at least half

of the thick triads (V r, V s, V t) in Π̃m, whose existence is guaranteed by
Lemma 9, has the property that we may assign to its “sides”, i.e., the pairs
(V r, V s), (V r, V t) and (V s, V t), some three distinct colours so that, if a side
is assigned colour 1 ≤ w ≤ m, then it contains a substantial number of edges
from Gw.

Let us eliminate first the triads for which an assignment as we seek is
not possible. Given 1 ≤ w ≤ m, we say that a thick triad (V r, V s, V t) of
the ε-regular partition Π̃m of G is dominated by w if, putting u = |V r| =
|V s| = |V t|, at least two out of the three pairs of sets (V r, V s), (V r, V t) and
(V s, V t) are joined by more than

u2e(G)/(150n2) ≥ (n/(2km))2e(G)/(150n2) = e(G)/(600k2
m)

edges of Gw, where km = |Π̃m| − 1 ≤ K0. If a thick triad is not dominated
by any w (1 ≤ w ≤ m), we say that it is balanced . Since every vertex of Gw
has degree 2e(Gw)/n = 2e(G)/(mn), at most 2e(G)/(mkm) edges of Gw are
incident to a given set V r of Π̃m. Consequently, the number of thick triads
dominated by w is less than

km

[
2e(G)/(mkm)
e(G)/(600k2

m)

]2

≤ 1.5 · 106k3
m

m2 ≤ δ(b)k3
m

2m
,

so the number of thick triads dominated by some w (1 ≤ w ≤ m) is less
than δ(b)k3

m/2. Thus, by Lemma 9, the graph G contains at least δ(b)k3
m/2

balanced thick triads.
We call a pair (V r, V s) of partition classes of Π̃m a w-rich pair, where

1 ≤ w ≤ m, if the number of edges of Gw between V r and V s is larger than
|V r| · |V s|e(Gw)/(150n2) = |V r| · |V s|e(G)/(150mn2). We say that (V r, V s,
V t) is (w(1), w(2), w(3))-colourable, where the w(i) (i ∈ {1, 2, 3}) are three
distinct colours from {1, . . . ,m}, if and only if we may assign the colours
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w(1), w(2) and w(3) to the pairs (V r, V s), (V r, V t) and (V s, V t), in some
order, in such a way that a colour w is assigned to a pair only if this
pair is w-rich. Now, let (V r, V s, V t) be a balanced thick triad. A mo-
ment’s thought reveals that any such triad is (w(1), w(2), w(3))-colourable
for some 1 ≤ w(1) < w(2) < w(3) ≤ m. Consequently, there is a choice of
(w(1), w(2), w(3)) with 1 ≤ w(1) < w(2) < w(3) ≤ m such that Π̃m contains
at least δ(b)k3

m/2
(
m
3

)
thick triads that are (w(1), w(2), w(3))-colourable.

Thus, there exist a non-exceptional partition class V of Π̃m and pairs
(U im,W

i
m) (1 ≤ i ≤ f = dδ(b)k2

m/(2m
3)e) of non-exceptional partition

classes of Π̃m such that, for all 1 ≤ i ≤ f , the triple (V ,U im,W
i
m) satis-

fies the following conditions:

(i) the pair (U im,W
i
m) is (ε,Gw(1))-regular, and

eGw(1)(U
i
m,W

i
m) ≥ |U im| · |W i

m|e(Gw(1))/(150n2),

(ii) the pair (V ,U im) is (ε,Gw(2))-regular, and

eGw(2)(V ,U
i
m) ≥ |V | · |U im|e(Gw(2))/(150n2),

(iii) the pair (V ,W i
m) is (ε,Gw(3))-regular, and

eGw(3)(V ,W
i
m) ≥ |V | · |W i

m|e(Gw(3))/(150n2).

Now, it follows from Fact 6 with l = 3 that, for every given i (1 ≤
i ≤ f), at least half of the vertices of V are joined both by at least
|U im|e(Gw(2))/(300n2) edges of Gw(2) to U im and by at least |W i

m|e(Gw(3))×
(300n2)−1 edges of Gw(3) to W i

m. Thus, by an elementary averaging
argument, there is a vertex v in V and a set Ξ = {(U im,W i

m) : i ∈ Λ}
of w(1)-rich pairs (U im,W

i
m) of cardinality |Λ| ≥ f/2 ≥ δ(b)k2

m/(4m
3)

such that v is joined by at least |U im|e(Gw(2))/(300n2) edges of Gw(2) to
U im and by at least |W i

m|e(Gw(3))/(300n2) edges of Gw(3) to W i
m for all

(U im,W
i
m) ∈ Ξ.

We shall show that the existence of such a vertex v and such a set Ξ
implies the existence of a (δ, G̃)-flower. The three colours associated with
the flower we shall exhibit are w(1), w(2), w(3). Our only problem is that so
far we have only considered the partition Π̃m, whereas the definition of the
flower deals with subsets of the partition Π̃w(1). Thus, in the rest of the proof
we shall try to relate the properties of Π̃m with those of Π̃w(1). In order to
do this, we shall consider the graph Ĝ(Π̃m, Ξ) whose vertex set is the set
of non-exceptional partition classes of Π̃m, with two such vertices Um, Wm

being connected by an edge in Ĝ(Π̃m, Ξ) if and only if (Um,Wm) ∈ Ξ.
Note first that Ĝ(Π̃m, Ξ) has N = km vertices and at least cN2 edges,

where c = δ(b)/(8m3). Furthermore, since Π̃m is a subpartition of Π̃w(1),
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each non-exceptional partition class of Π̃m is contained in some non-excep-
tional partition class of Π̃w(1). Thus, the partition Π̃w(1) of G naturally
induces a partition Π̂w(1) of the vertex set of Ĝ(Π̃m, Ξ). Unfortunately, be-
cause of the exceptional class V 0

m of Π̃m, not all partition classes of Π̂w(1)
need have the same size. However, since |V 0

w(1)|, |V 0
m| ≤ εn we immediately

see that all of them contain at most 2km/kw(1) elements, and a little argu-
ment shows that at least (1 − 3ε)kw(1) of them have at least km/(2kw(1))
elements.

Now suppose l ≥ 100/c and ε ≤ c/100. Then simple calculations show
that the following holds: for any graph Ĝ with N vertices and at least
cN2 edges, and every partition Π̂ = (V i)li=1 of the vertex set of Ĝ into l
classes such that all the partition classes V i have cardinality at most 2N/l
and not fewer than (1− 3ε)l of them have cardinality greater than or equal
to N/(2l), there exist at least cl2/100 pairs {V̂ , V̂ ′} of distinct partition
classes of Π̂ such that |V̂ |, |V̂ ′| ≥ N/(2l) and V̂ , V̂ ′ are joined by at least
c|V̂ | · |V̂ ′|/10 edges. Hence, since every graph on at most k vertices and at
least ck2 edges contains a matching of size at least ck/2, the above partition
Π̂ of Ĝ must contain at least g = dcl/200e disjoint pairs (X̂i, Ŷ i) (1 ≤ i ≤ g)
such that |X̂i|, |Ŷ i| ≥ N/(2l) and such that the number of edges between
X̂i and Ŷ i is at least c|X̂i| · |Ŷ i|/10 for all 1 ≤ i ≤ g. Finally, we may
again use the fact that dense graphs contain large matchings to deduce that
there is a matching of size at least cN/(40l) between X̂i and Ŷ i for all
1 ≤ i ≤ g.

We apply this observation to Ĝ = Ĝ(Π̃m, Ξ) and the partition Π̂ =
Π̂w(1). Thus let us check the required hypotheses for our observation to
apply. First note that the condition l ≥ 100/c becomes in our context kw(1) ≥
800m3/δ(b), whilst ε ≤ c/100 corresponds to ε ≤ δ(b)/(800m2). The number
of disjoint pairs (X̂i, Ŷ i) (1 ≤ i ≤ g) guaranteed by the observation is
g = dckw(1)/200e = dδ(b)kw(1)/(1600m3)e. Moreover, X̂i is joined to Ŷ i by
at least

c|X̂i| · |Ŷ i|
10

≥ c

10

(
km

2kw(1)

)2

≥ 1
10
· δ(b)

8m3 ·
k2
m

4k2
w(1)

=
δ(b)k2

m

320k2
w(1)m

3

edges of Ĝ(Π̃m, Ξ), and hence the corresponding pair (Xi
w(1), Y

i
w(1)) of par-

tition classes of Π̃w(1) is joined by at least

δ(b)k2
m

320k2
w(1)m

3

(
n

2km

)2 e(Gw(1))
150n2 ≥

δ(b)|U iw(1)| · |W i
w(1)|e(G)

2 · 105m4n2

edges of Gw(1).
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Furthermore, we know that, for every 1 ≤ i ≤ g, the graph Ĝ(Π̃m, Ξ)
contains a matching M̂i between X̂i and Ŷ i of size at least

c

40
· km
kw(1)

=
δ(b)

320m3 ·
km
kw(1)

.

Recall that every edge of Ĝ(Π̃m, Ξ) corresponds to a pair (Um,Wm) from Ξ.
We may and shall assume that at least (δ(b)/(640m3))km/kw(1) of the edges

(Um,Wm) from M̂i are such that Um ∈ X̂i and Wm ∈ Ŷ i (i.e., Um ⊆ Xi
w(1)

and Wm ⊆ Y iw(1)). Recall that, for every (Um,Wm) ∈ Ξ, the vertex v is
joined to Um by at least

|Um|e(Gw(2))
300n2 ≥ n

2km
· e(G)

300mn2 =
e(G)

600kmmn

edges of Gw(2), and similarly it is joined to Wm by at least e(G)/(600kmmn)
edges of Gw(3). Therefore the vertex v is joined to Xi

w(1) by at least

δ(b)
640m3 ·

km
kw(1)

· e(G)
600kmmn

≥ |Xi
w(1)|

δ(b)e(G)
4 · 105m4n2

edges of Gw(2). Clearly, the same argument applied to Y iw(1) shows that v

is joined to Y iw(1) by at least |Y iw(1)|δ(b)e(G)/(4 · 105m4n2) edges of Gw(3).

Since δ = δ(b)/(1600m3), we conclude that there are at least g = dδkw(1)e
pairwise disjoint pairs (Xi

w(1), Y
i
w(1)) of non-exceptional partition classes of

Π̃w(1) such that every such pair is (ε,Gw(1))-regular, between every such
pair there are at least δ(b)|U iw(1)| · |W i

w(1)|e(G)/(106m4n2) edges of Gw(1),
and one set of every such pair is joined to v by at least

|Xi
w(1)|

δ(b)e(G)
4 · 105m4n2 ≥

δ(b)|Xi
w(1)|e(G)

106m4n2 =
δ(b)|Y iw(1)|e(G)

106m4

edges of Gw(2), while the other is joined to v by at least δ(b)|Y iw(1)|e(G) ×
(106m4n2)−1 edges of Gw(3). Finally, if u is the common cardinality of the
sets Xi

w(1), Y
i
w(1) (1 ≤ i ≤ g), then 2gu ≥ δn. Therefore 1 ≤ w(1) < w(2) <

w(3) ≤ m, together with v ∈ V (G), and {(Xi
w(1), Y

i
w(1)) : 1 ≤ i ≤ g} form a

(δ, G̃)-flower, and Lemma 10 follows.

4. Random subgraphs of uniform bipartite graphs. In this section
we give a result that, although a little technical, may be of independent
interest. Namely, we prove that, under quite weak hypotheses, with very
large probability a random induced subgraphH ′ of a bipartite uniform graph
H contains a fair number of edges. In fact, we show that, in selecting the
random subgraph H ′ in question, we may allow an “adversary” to “mark”,



Arithmetic progressions of length three 147

during the selection process, a few vertices of H as forbidden vertices for
H ′ so as to minimize our chances of getting many edges in our random
subgraph; even with this rule the probability that we fail to get a few edges
in H ′ is essentially super-exponentially small in the number of edges of the
original bipartite graph H.

Let H = H(u, %, ε) be an ε-uniform bipartite graph with bipartition
V (H) = V1 ∪ V2, where |V1| = |V2| = u ≥ 1, and with edge-density
e(H)u−2 = %. Let d1, d2 ≤ u be two given positive integers. Now select a
random induced subgraph of H in the following manner. First, an adversary
chooses a set S1 ⊂ V1 with |S1| ≤ u/ log log u. Then we randomly pick a set
D1 ⊂ V1 \S1 with |D1| = d1, with all the d1-subsets of V1 \S1 equiprobable.
Next, under the full knowledge of the sets S1 and D1, our adversary picks a
set S2 ⊂ V2 with |S2| ≤ u/ log log u, and we randomly pick a set D2 ⊂ V2\S2

with |D2| = d2, with all the d2-subsets of V2 \ S2 equiprobable. Let us call
the outcome of the above procedure a random (d1, d2;S1, S2)-subgraph of
H, or simply a (d1, d2)-subgraph of H.

Lemma 11. For every constant 0 < β ≤ 1, there exist a constant 0 <
ε = ε(β) ≤ 1 and a natural number u0 such that , for any real d ≥ 2(u/ε)1/2

and any given graph H = H(u, %, ε) as above with u ≥ u0 and % ≥ d/u, the
following assertion holds. If d1, d2 ≥ d, regardless of the choices for S1 and
S2 of our adversary , the probability that a random (d1, d2;S1, S2)-subgraph
of H fails to contain at least d/2 edges is at most βd.

P r o o f. Given 0 < β ≤ 1, we choose ε = β2/16 > 0 and show that this
choice of ε > 0 will do. In the sequel, we assume that u is large enough for
our inequalities to hold. Let our adversary choose the set S1 ⊂ V1. Recall
that |S1| ≤ u/ log log u. We show first that the set U of those vertices of V2

that are adjacent to the vertices in our random set D1 ⊂ V1 \ S1 is larger
than (1 − ε)n with probability at least 1 − (4ε)d/2. In order to do so we
generate the vertices of D1 one by one and prove that, typically, in each
step we enlarge the set U by a fair number of vertices.

Let us randomly choose a vertex v1 among all the vertices of V1 \ S1 to
be the first vertex of D1. Denote by W 1 the set of the vertices of V1 that
have fewer than dε/2 < (1− ε)d neighbours in V2. Then, by the ε-regularity
of (V1, V2), we have |W 1| ≤ εu. If v1 belongs to W 1, let us say that it is a
bad vertex, whereas if v1 6∈ W 1 let us say that it is a good vertex. Finally,
let U1 ⊆ V2 be the set of neighbours of v1 in V2.

Similarly, suppose that for some 2 ≤ i ≤ d1 the vertices v1, . . . , vi−1

have already been put into D1. We randomly pick a vertex vi from V1 \
({v1, . . . , vi−1} ∪ S1) to be the ith vertex of D1 and denote by U≤i−1 the
set of neighbours of v1, . . . , vi−1. Then, if |U≤i−1| ≤ (1 − ε)u, we let W i

be the set of all the vertices in V1 that have fewer than dε/2 ≤ (1 − ε)εd
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neighbours in V2 \U≤i−1. Note that, by the ε-regularity of the pair (V1, V2),
we have |W i| ≤ εu. As before, we call vi bad if it belongs to W i, and good
otherwise. Moreover, in the case where |U≤i−1| > (1 − ε)u, we always say
that vi is good. This process is continued until all the d1 elements of D1

have been chosen.
Now, suppose that our process has terminated with a set D1 with U =

U≤d1 of cardinality |U | < (1− ε)u. Since each good vertex vi increases the
size of the neighbourhood of D1 in V2 by at least dε/2, the number of good
elements in D1 must be less than 2u/(dε) ≤ d1/2. Hence, at least half of
all the elements of D1 must be bad, but the probability of this happening
is smaller than 2d1εd1/2 ≤ (4ε)d/2. Thus, |U | ≥ (1− ε)n with probability at
least 1− (4ε)d/2.

Assume now that our process has terminated with a set D1 with U =
U≤d1 of cardinality |U | ≥ (1 − ε)u. We now let our adversary pick his set
S2 ⊂ V2. Then the probability that at least half of the d2 ≥ d vertices of D2

should lie outside U is at most 2d2(εn/(n−|S2|))d2/2, which, for sufficiently
large u, is less than 2d2(2ε)d2/2 ≤ (8ε)d/2.

Thus, the probability that our random (d1, d2)-subgraph of H contains
fewer than d/2 edges is bounded from above by (4ε)d/2 + (8ε)d/2 ≤ (16ε)d/2

= βd, as required.

5. A sufficient condition for uniformity. Let G be an l-partite graph
with l-partition V (G) = V1∪ . . .∪Vl (l ≥ 2). Recall that G is ε-uniform if all
pairs (Vi, Vj) (1 ≤ i < j ≤ l) are ε-regular. Moreover, observe that in order
to check the ε-regularity for any such pair (Vi, Vj), in principle one must
examine the density of many pairs (A,B) with A ⊆ Vi, B ⊆ Vj . However,
it turns out that the ε-regularity of (Vi, Vj) is implied by a rather simple
condition imposed upon the intersection of the neighbourhoods of pairs of
vertices. This idea has been exploited in many places; see, e.g., Alon, Duke,
Lefmann, Rödl and Yuster [ADLRY 94], Frankl, Rödl and Wilson [FRW 88]
and Thomason [Th 87a] (see also [Th 87b]). The following fact is a slight
refinement of earlier results in [Th 87a] and [FRW 88].

Lemma 12. Let G be a d-regular bipartite graph with bipartition V (G) =
V1 ∪ V2, where |V1| = |V2| = n and d = pn (0 < p ≤ 1). Assume that for a
subset B of V2 with b vertices and some ε > 0 we have

(1)
∑

x,x′∈B
|N(x) ∩N(x′)| ≤ (1 + ε)

(
b

2

)
np2,

where the sum is taken over all unordered pairs x, x′ ∈ B with x 6= x′. Then,
for every subset A of V1 with a vertices, we have

(e(A,B)− abp)2 ≤ εa(n− a)b2p2 + abnp.
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P r o o f. Suppose V1 = {x1, . . . , xn} and let di (1 ≤ i ≤ n) be the number
of neighbours the vertex xi has in B. For simplicity of notation, assume that
A = {x1, . . . , xa}. Then, since G is d-regular, we have

n∑

i=1

di = e(V1, B) = db = e(A,B) + e(V1 \A,B).

Furthermore, using (1), counting directed paths of length two with both
ends in B leads to

(1 + ε)b(b− 1)np2 ≥
n∑

i=1

di(di − 1) =
a∑

i=1

di(di − 1) +
n∑

i=a+1

di(di − 1).

Since
∑a
i=1 di = e(A,B) and

∑n
i=a+1 di = e(V1 \ A,B) = db − e(A,B), by

the Cauchy–Schwarz inequality we have

(1 + ε)b(b− 1)np2 ≥ 1
a
e(A,B)(e(A,B)− a)

+
1

n− a (db− e(A,B))(db− e(A,B)− n+ a),

which, after elementary calculations, may be reduced to

abpn(n− a)(1− p) + εab(b− 1)p2n(n− a) ≥ n(e(A,B)− abp)2,

from which the assertion easily follows.

As an immediate consequence of the above result we obtain a simple
sufficient condition for the η-uniformity of a regular bipartite graph G.

Lemma 13. Let G be a d-regular bipartite graph with bipartition V (G) =
V1 ∪ V2, where |V1| = |V2| = n, d = pn, and p = ω/n with ω = ω(n) → ∞
as n → ∞. Suppose that for some constant 0 < ε < 1/2 independent of n
we have

(2)
∑

x,x′
(|N(x) ∩N(x′)| − (1 + ε)np2) ≤ 4ε3n3p2,

where the sum is taken over all unordered pairs x, x′ ∈ V2 with x 6= x′ and
|N(x) ∩ N(x′)| ≥ (1 + ε)np2. Then G is 8ε1/3-uniform provided n is large
enough.

P r o o f. Take any A ⊆ V1, B ⊆ V2 of sizes a = |A| ≥ 2ε1/3n and b =
|B| ≥ 2ε1/3n. Then, writing

∑′
x,x′∈B for the sum over all unordered pairs

of distinct vertices x, x′ ∈ B, and
∑′′
x,x′∈V2

for the sum over all unordered
pairs of distinct vertices x, x′ ∈ V2 with |N(x) ∩ N(x′)| ≥ (1 + ε)np2, we
deduce from (2) that
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∑′

x,x′∈B
|N(x) ∩N(x′)|

≤ (1 + ε)
(
b

2

)
np2 +

∑′′

x,x′∈V2

(|N(x) ∩N(x′)| − (1 + ε)np2)

≤ (1 + ε)
(
b

2

)
np2 + 4ε3n3p2 ≤ (1 + ε+ 2ε2)

(
b

2

)
np2 ≤ (1 + 2ε)

(
b

2

)
np2.

Furthermore, since ω = pn → ∞ as n → ∞, for large enough n we have
abpn ≤ εanb2p2 and hence, by Lemma 12,

|e(A,B)− abp| ≤
√

4εanb2p2 ≤ 2ε1/3abp.

Now, to complete the proof, it is enough to observe that, according to
our definition of density, dG(A,B) = 4e(A,B)/(abp) while dG(V1, V2) = 4.
Hence

|dG(A,B)− dG(V1, V2)| = 4|e(A,B)− abp|
abp

≤ 8ε1/3,

as required.

6. Difference-graphs. Let A be a subset of [n] = {0, 1, . . . , n − 1}.
The associated difference-graph GA = GA(n) is the bipartite graph with
bipartition V (GA) = V ∪W , where both V and W are copies of [n], and for
v ∈ V and w ∈W the pair {v, w} is an edge of GA if and only if w ≡ v + a
(mod n) for some a ∈ A. It is immediate that each vertex of GA has degree
|A|, and that the number of common neighbours of two distinct vertices v
and v′ that belong to the same class of the bipartition depends only on the
value of v − v′. In fact, this value is the same as the number tA(v − v′) of
ordered pairs (a, a′) ∈ A×A such that a′ − a ≡ v − v′ (mod n). Therefore,
the structure of GA is closely related to the behaviour of the numbers tA(j)
(1 ≤ j < n). Our next result deals with the distribution of the tR(j) for a
random set R ∈ R(n, p). In the sequel, we write ⊕ and 	 for addition and
subtraction modulo n, respectively.

Lemma 14. For every fixed 0 < ε ≤ 1 and 0 < η ≤ 1 there exists a
constant C = C(ε, η) for which the following holds. For every p = p(n) ≥
C/
√
n, the probability that R ∈ R(n, p) satisfies

(3)
∑{

tR(j)− (1 + ε)np2} ≤ ηn2p2,

where the sum is taken over all 1 ≤ j < n such that tR(j) ≥ (1 + ε)np2,
tends to 1 as n→∞.

P r o o f. For i ∈ [n], let Ii be the characteristic function of the event {i ∈
R}. Thus Ii is a 0–1 random variable with Ii = 1 if and only if i ∈ R. For a
given 1 ≤ j < n, let us divide the set of all n pairs (i, i⊕j) (i ∈ [n]) into three
classes B1(j), B2(j) and B3(j) in such a way that bn/3c ≤ |Bl(j)| ≤ dn/3e
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for all l ∈ {1, 2, 3}, and such that, for any i ∈ [n], no Bl(j) contains both
pairs (i	 j, i) and (i, i⊕ j). The fact that such a partition is always possible
follows from the simple observation that every 2-regular graph admits a
proper 3-edge-colouring in which the sizes of any two colour classes differ by
at most one. In fact, for later convenience, we may and shall further require
of the Bl(j) that, for all l ∈ {1, 2, 3}, if j1 +j2 = n, then the set of unordered
pairs that naturally correspond to the elements of Bl(j1) should be the same
as the corresponding set for Bl(j2). Now, for all 1 ≤ j < n and l ∈ {1, 2, 3},
define the random variables X(j, l) and X̂(j, l) by setting

X(j, l) =
∑

(i,i⊕j)∈Bl(j)
IiIi⊕j ,

and

X̂(j, l) =
{

0 if X(j, l) < (1 + ε)|Bl(j)|p2,
X(j, l) otherwise

or, briefly, X̂(j, l) = 1(j, l)X(j, l), where 1(j, l) is the characteristic function
of the event {X(j, l) ≥ (1 + ε)|Bl(j)|p2}. Then, clearly, we have tR(j) =
X(j, 1) +X(j, 2) +X(j, 3) for all 1 ≤ j < n. Notice now that the left-hand
side of (3) is at most

3∑

l=1

n−1∑

j=1

(X̂(j, l)− 1(j, l)(1 + ε)|Bl(j)|p2).

Hence it is enough to show that, with probability tending to 1 as n → ∞,
we have

(4) Z =
3∑

l=1

n−1∑

j=1

X̂(j, l) ≤ ηn2p2.

Let us estimate first the expectation EX̂(j, l) of X̂(j, l). Note that X(j, l)
is a sum of independent 0–1 random variables, and thus it has binomial
distribution Bi(m, p2), where m = |Bl(j)|. (It was for achieving the above
independence that the classes B1(j), B2(j) and B3(j) were introduced.)
Therefore, setting r0 = d(1 + ε)p2me, we get

E(X̂(j, l)) =
m∑

r=r0

r

(
m

r

)
p2r(1− p2)m−r(5)

= mp2
m∑

r=r0

(
m− 1
r − 1

)
p2r−2(1− p2)m−r

= mp2
m−1∑

r=r0−1

(
m− 1
r

)
p2r(1− p2)m−r−1

= mp2b≥(r0 − 1;m− 1, p2),
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where b≥(r0−1;m−1, p2) is the probability that a binomial random variable
with parameters m− 1 and p2 takes values greater than or equal to r0 − 1.
The behaviour of the function b≥ is, of course, well studied, and it is known
that for every choice of m′, p′ and k′ such that k′ ≤ m′p′ we have

b≥(m′p′ + k′;m′, p′) ≤ exp
(
− (k′)2

3m′p′

)
.

(See, for instance, Section 6 in McDiarmid [McD 89].) Thus, in our case,

b≥(r0 − 1;m− 1, p2) ≤ exp
(
− (εp2m− 1)2

3(m− 1)p2

)
≤ exp

{
− 1

10
ε2np2

}
;

here and below we assume that n is large enough for all our inequalities to
hold. Hence EX̂(j, l) ≤ |Bl(j)|p2 exp(−ε2np2/10) and, consequently,

E(Z) = E
( 3∑

l=1

n−1∑

j=1

X̂(j, l)
)
≤ n2p2 exp

{
− 1

10
ε2np2

}
.

Thus, if p = p(n) is such that np2 → ∞ as n → ∞, then the right-hand
side of the above inequality is o(n2p2). Therefore, by Markov’s inequality,
relation (4) holds with probability 1−o(1) as n→∞, and hence our lemma
follows in this case.

In order to complete the proof, it is enough to consider the case when
p = p(n) > C/

√
n for some large C > 0 but, say, np2 < log log n. Thus

we henceforth assume that p = p(n) satisfies these conditions. In the re-
maining, rather technical part of the proof, we shall compute the variance
of Z =

∑3
l=1

∑n−1
j=1 X̂(j, l) for such a p and then show that this random

variable is concentrated around its expectation through a direct application
of Chebyshev’s inequality.

First, let us note that withm= |Bl(j)| as before, the variance Var(X̂(j, l))
of X̂(j, l) is no greater than

m∑
r=r0

r2
(
m

r

)
p2r(1− p2)m−r

=
m∑

r=r0

r(r − 1)
(
m

r

)
p2r(1− p2)m−r + EX̂(j, l)

= m(m− 1)p4
m−2∑

r=r0−2

(
m− 2
r

)
p2r−2(1− p2)m−r−2 + EX̂(j, l)

= m(m− 1)p4b≥(r0 − 2;m− 2, p2) +mp2b≥(r0 − 1;m− 1, p2)

≤ n2p4 exp
{
− 1

10
ε2np2

}
= O(1).
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Note that for j1, j2 ∈ {1, . . . , n − 1}, if j1 + j2 = n, then X̂(j1, l) =
X̂(j2, l) for all l ∈ {1, 2, 3}. Thus the covariance Cov(X̂(j1, l), X̂(j2, l)) be-
tween X̂(j1, l) and X̂(j2, l) coincides with Var(X(j1, l)) = O(1). Now let
(j1, l1) 6= (j2, l2) and suppose also that if j1 + j2 = n then l1 6= l2. We
shall estimate Cov(X̂(j1, l1), X̂(j2, l2)). For simplicity, put U1 = X̂(j1, l1)
and U2 = X̂(j2, l2). We have Cov(X̂(j1, l1), X̂(j2, l2)) = Cov(U1, U2) =
E(U1U2) − E(U1)E(U2). We shall first estimate from above the value of
E(U1U2). Recall that we write R for a random element of our probability
space R(n, p). We have

(6) E(U1U2) =
∑

R0⊆[n]

U1(R0)U2(R0) Prob(R = R0).

Let us say that R ∈ R(n, p) is exceptional if either U1(R) or U2(R) is at least
as large as umax = blog nc. Standard inequalities for the tail of the binomial
distribution give that the probability that R ∈ R(n, p) is exceptional is no
greater than n−(1/2) log log n. Since U1 and U2 are at most n, the exceptional
R0 contribute n2−(1/2) log log n to the sum in (6). In the sequel we concentrate
our attention on non-exceptional R ∈ R(n, p).

Let us introduce some notation. Let Gs (s ∈ {1, 2}) be the directed
graph with vertex set [n] and edge set Bls(js). Thus each Gs simply consists
of some isolated edges. Moreover, the directed graph G1 ∪ G2 contains no
cycle of length 2. Let Hs = Hs(R) (s ∈ {1, 2}) be the random subgraph
of Gs induced by the elements of R ∈ R(n, p), and put H = H(R) =
H1(R) ∪H2(R) ⊆ G1 ∪G2.

We now consider the structure ofH. Let us say that R ∈ R(n, p) is typical
if H = H(R) is a matching. The probability that R ∈ R(n, p) is not typical
is at most np3 ≤ (log log n)3/2/

√
n. Thus, the contribution of the atyp-

ical, non-exceptional R0 ⊆ [n] in (6) is at most u2
max(log log n)3/2n−1/2 =

O((log n)2(log log n)3/2n−1/2). From here onwards we only take into account
R ∈ R(n, p) that are typical and non-exceptional. Thus H = H(R) will al-
ways consist of isolated edges.

To bound the contribution of the typical, non-exceptional R0 ⊆ [n] to
the sum in (6), we shall need the following consequence of a large deviations
inequality of Janson, Łuczak, and Ruciński [JŁR 90]. Let J be a graph with
maximal degree at most 2, with m edges, and n2 vertices of degree two. Let
Jp be a random induced subgraph of J obtained by selecting its vertices
randomly and independently, each with probability p. Then the inequality
of Janson, Łuczak and Ruciński gives that the probability that Jp has no
edges is at most exp{−mp2 + 2n2p

3}.
We are now ready to bound E′(U1U2) =

∑
U1(R0)U2(R0) Prob(R = R0),

where the sum is taken over all typical and non-exceptional R0 ⊆ [n]. For
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s ∈ {1, 2}, let ms = |Bls(js)| and us = d(1 + ε)msp
2e. Then E′(U1U2) is at

most
umax∑
u1=r1

u1

(
m1

u1

) umax∑
u2=r2

u2

(
m2

u2

)
p2u1+2u2 exp(−(m1 +m2−3u1−3u2)p2 +2np3)

≤
umax∑
u1=r1

u1

(
m1

u1

)
p2u1(1− p2)m1−u1

umax∑
u2=r2

u2

(
m2

u2

)
p2u2(1− p2)m2−u2

× exp(2umaxp
2 + np4 + 2np3)

≤ (1 +O(n−1/2(log log n)3/2)E(U1)E(U2).

Therefore

Cov(X̂(j1, l1), X̂(j2, l2)) = Cov(U1, U2) = E(U1U2)− E(U1)E(U2)

≤ n2−(1/2) log log n +O(n−1/2(log n)2(log log n)3/2)

+O(n−1/2(log log n)7/2)

= O(n−1/2(log n)2(log log n)3/2).

Thus,

Var(Z) = Var
( 3∑

l=1

n−1∑

j=1

X̂(j, l)
)

=
3∑

l1=1

n−1∑

j1=1

3∑

l2=1

n−1∑

j2=1

Cov(X̂(j1, l1), X̂(j2, l2))

= 6nO(1) + 9n2O(n−1/2(log n)3) = O(n3/2(logn)3).

We now note that (5) and the trivial fact that

b≥(r0 − 1;m− 1, p2) ≥
(
m− 1
r0 − 1

)
p2(r0−1)(1− p2)m−r0 ≥ exp{−3np2}

imply that

E(Z) =
3∑

l=1

n−1∑

j=1

EX̂(j, l) ≥ n(n− 1)p2 exp{−3np2} ≥ C2n/(2(log n)3).

Thus Var(Z) = o((E(Z))2) and, hence, from Chebyshev’s inequality, with
probability tending to 1 as n→∞, we have

Z ≤ 2E(Z) ≤ 2n2p2 exp(−ε2np2/10).

Thus (4) holds with probability tending to 1 as n → ∞ provided C2 ≥
10ε−2 log(2/η).

Lemmas 13 and 14 immediately imply that the difference graph GR =
GR(n) for a random subset R ∈ R(n, p) is η-uniform, provided the proba-
bility p is large enough.
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Fact 15. For every 0 < η ≤ 1 there exists a constant C = C(η) such
that , if p = p(n) ≥ C/

√
n and R ∈ R(n, p), then the bipartite graph GR =

GR(n) is η-uniform with probability tending to 1 as n→∞.

7. Proof of Theorem 1. Let S be a subset of [n] = {0, . . . , n − 1},
where n is an odd natural number. Following Ruzsa and Szemerédi [RSz 78]
(see also Erdős, Frankl and Rödl [EFR 86] and Graham and Rödl [GR 87])
we introduce a graph G(n, S) that reflects the arithmetic structure of S.
Thus, G(n, S) is a tripartite graph whose vertex set consists of three copies
V1, V2, V3 of the set [n] and {i, j} is an edge of G(n, S) if and only if one of
the following three conditions holds:

(i) i ∈ V1, j ∈ V2 and j = i⊕ k for some k ∈ S,
(ii) i ∈ V2, j ∈ V3 and j = i⊕ k for some k ∈ S,

(iii) i ∈ V1, j ∈ V3 and j = i⊕ 2k for some k ∈ S;

here and below ⊕ and 	 stand for addition and subtraction modulo n.
Clearly, if k ∈ S then the vertices i ∈ V1, i⊕ k ∈ V2 and i⊕ 2k ∈ V3 induce
a triangle in G(n, S). A triangle of G(n, S) of this type is said to be trivial .
We are interested in the non-trivial, or spontaneous, triangles of G(n, S),
since they reflect the arithmetic structure of S in the sense made precise
below.

Clearly, each G(n, S) contains precisely n|S| trivial triangles, and in fact
G(n, S) is the edge-disjoint union of those triangles. More importantly, the
number of spontaneous triangles in G(n, S) depends on the number of arith-
metic triples in S, that is, triples of distinct elements a, b, c ∈ S such that
a	c = c	b. Indeed, for any arithmetic triple ∆ = (a, b, c) and every i ∈ [n],
the graph G(n, S) contains the associated spontaneous triangle with vertices
i ∈ V1, i⊕a ∈ V2 and i⊕a⊕ b ∈ V3, and, conversely, any spontaneous trian-
gle is associated with such a pair (∆, i). Thus, in order to verify whether S
contains an arithmetic triple it is enough to look for a spontaneous triangle
in G(n, S).

Naturally, we shall be particularly interested in the structure of G(n,R)
for a random subset R of [n]. It will be later crucial that, for a large random
set R ⊆ [n], the graph G(n,R) is typically uniform, and hence sparse, as
shown by our next two results. In the sequel, it will be convenient to extend
the definition of η-uniformity to subsets of [n] in the obvious way. If S ⊆ [n]
is such that G(n, S) is η-uniform for some 0 < η ≤ 1, then let us say that
S itself is η-uniform. Moreover, given b > 2 and 0 < η ≤ 1, we define the
notion of (b, η)-sparseness for S above in the analogous way.

Fact 16. For every 0 < η ≤ 1 there exists a constant C = C(η) such
that , if p = p(n) ≥ C/√n, then the probability that R ∈ R(n, p) is η-uniform
tends to 1 as n→∞ along the odd integers.
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P r o o f. Since for odd n the graph G2R = G2R(n) may be identified
with GR̄ = GR̄(n) for some R ∈ R(n, p), with the map R 7→ R measure
preserving, the assertion follows from Fact 15 and the definition ofG(n,R).

From Fact 16 one may deduce the following result concerning the uni-
formity and sparseness of RM ∈ R(n,M) for large M .

Fact 17. For every 0 < η ≤ 1 there exists a constant C = C(η) such
that , if M = M(n) ≥ C

√
n, then the probability that R ∈ R(n,M) is

η-uniform and (4, η)-sparse tends to 1 as n→∞ along the odd integers.

P r o o f. We start by noticing that, for any 0 < η ≤ 1, if 0 < η0 ≤ 1 is
small enough, then for any S ⊆ [n] the fact that the graph G = G(n, S) is
η0-uniform implies that G is, say, (4, η)-sparse. Therefore we proceed to show
that for any 0 < η0 ≤ 1, if Cn1/2 ≤ M = M(n) ≤ n for some sufficiently
large constant C, then G = G(n,RM ) is η0-uniform with probability 1−o(1)
as n→∞ along the odd integers.

Pick η1 = η0/6 and ε = η2
1/3. Let C = (1 + ε)C1, where C1 = C(η1)

is as given by Fact 16, and assume that C
√
n ≤ M = M(n) ≤ n. Set

p = p(n) = M/(1 + ε)n. We may generate RM ∈ R(n,M) by picking
Rp ∈ R(n, p) conditioned on Rp satisfying |Rp| ≤ M , and then by adding
random elements of [n]\Rp to Rp to obtain a set RM of cardinality M . Since
with probability 1− o(1) as n→∞, we have |Rp| ≥ (1− ε)pn, we shall as-
sume that our Rp does satisfy this condition. Assume also that G = G(n,Rp)
is η1-uniform, and recall that by Fact 16 this event also holds with prob-
ability 1 − o(1). It now suffices to show that, under these two conditions
on Rp, the set RM is η0-uniform whatever elements were added to Rp to
generate RM .

Write GM for G(n,RM ) and Gp for G(n,Rp). Let U,W ⊂ V (GM ) be two
disjoint sets contained in two distinct vertex classes of GM with |U |, |W | ≥
η1n. Put %M = M/n and %p = |Rp|/n. Note that then (1−2ε)%M ≤ %p ≤ %M
and that |%p − p| ≤ εp. Moreover, we have

eGM (U,W ) ≥ eGp(U,W ) ≥ (1− η1)%p|U | · |W | ≥ (1− 2η1)%M |U | · |W |
and

eGM (U,W ) ≤ eGp(U,W ) + 2εpn|U |
≤ (1 + η1)%p|U | · |W |+ 2(εp/η1)|U | · |W |
≤ (1 + 2η1)%p|U | · |W | ≤ (1 + 2η1)%M |U | · |W |.

Now notice that

dGM (U,W ) = 3eGM (U,W )/(%M |U | · |W |)
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and the density between two any sets of tripartition of G(n,RM ) is 3. Thus,

|dGM (U,W )− 3| ≤ 3|eGM (U,W )− %M |U | · |W ||
%M |U | · |W | ≤ 6η1 = η0,

and so GM = G(n,RM ) is indeed η0-uniform, as required.

In the sequel, it will be necessary for us to view R(n,M) as resembling a
product of a large number of spaces. Assume that the integer m divides M ,
and put M0 = M/m. We then define the space R̃(n,m,M0) as the uniform
space of m-tuples R̃ = (Ri)mi=1 of pairwise disjoint M0-subsets Ri ⊆ [n].
Thus all m-tuples R̃ ∈ R̃(n,m,M0) are equiprobable, and the map R̃ =
(Ri)mi=1 ∈ R̃(n,m,M0) 7→ ⋃m

i=1Ri ∈ R(n,M) is measure-preserving. We
shall also consider the probability space G̃ = G̃(n,m,M0) of the balanced
3-decomposable m-edge-coloured graphs G̃ = G̃(n, R̃) = (Gi)mi=1 determined
by the Gi = G(n,Ri) (1 ≤ i ≤ m), where R̃ = (Ri)mi=1 is a random element
of R̃(n,m,M0). In this space we consider the event A(b, η) that a graph
from G̃ should be (b, η)-sparse, and denote the conditional probability space
obtained from G̃ by conditioning on A(b, η) by G̃(n,m,M0 | b, η).

Lemma 18. Let m ≥ 3, k0 ≥ 1, b > 4, 0 < ξ ≤ 1 and 0 < δ ≤ 1 be given.
Then there exist constants 0 < ε = ε(m, ξ, δ) ≤ 1 and C = C(m, k0, b, ξ, δ)
for which the following holds for any sufficiently large n. Suppose Cn1/2 ≤
M = mM0 = mM0(n) ≤ n/(log log n)2, let G̃ = (Gi)mi=1 ∈ G̃(n,m,M0 | b, η)
and let Π̃1, . . . , Π̃m be the (ε, k0)-canonical sequence of partitions associated
with G̃, where as usual ε = ε(m, b, ε, k0). Then the probability that there ex-
ists a (δ, k0, ε; G̃)-flower which contains no spontaneous triangles is smaller
than ξM .

P r o o f. Put β = ξ108mδ−2
, and let 0 < ε = ε(β) = ε(m, ξ, δ) ≤ 1

be as given by Lemma 11. Furthermore, let η and K0 ≥ 1/(2ε) be such
that Lemma 5 holds and let C1 = C(η) be as in Fact 17. Finally, set C =
max{C1, 107m

√
K0/(δ

√
ε)}. We shall show that for such a choice of ε, η and

C the assertion holds. We also remark that in the sequel we tacitly assume
that n is sufficiently large whenever it is needed.

Let us first restate our result in terms of m-coloured graphs G̃ = (Gi)mi=1

from G̃(n,m,M0). Let B(δ) be the event that G̃ should be (b, η)-sparse
and moreover it should contain a (δ, k0, ε; G̃)-flower without a spontaneous
triangle. We have to show that

Prob(B(δ) | A(b, η)) ≤ ξM .
Suppose we show that

(7) Prob(B(δ)) ≤ ξM/2.
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Then, by our choice of C, for any large enough n we have Prob(A(b, η)) >
1/2. Therefore

Prob(B(δ) | A(b, η)) =
Prob(B(δ) ∩ A(b, η))

Prob(A(b, η))
≤ Prob(B(δ))

Prob(A(b, η))
≤ ξM ,

as required. Hence it only remains to prove (7).
Let us first estimate the probability that a fixed (δ, G̃)-flower contains no

spontaneous triangle. Thus, let the colours 1 ≤ w(1) < w(2) < w(3) ≤ m,
the vertex v ∈ V (G), and the family {(X(i), Y (i)) : 1 ≤ i ≤ g}, where

u = |X(i)| = |Y (i)| ≥ n/(2K0),

and 2gu ≥ δn, form a (δ, G̃)-flower. We may further assume that all the X(i)

(1 ≤ i ≤ g′ = dg/2e) are contained in a single vertex class of the tripartition
of G, as are all the Y (i) (1 ≤ i ≤ g′). Below we shall only consider X(i) and
Y (i) for 1 ≤ i ≤ g′. Also, let us mention for completeness that G has 3n
vertices and e(G) = |E(G)| = 3nM = 3nmM0 edges.

Suppose now that the Ri (1 ≤ i < w(2)) have been chosen. Thus, in
particular, the graphs Hi = Gw(1)[X(i), Y (i)] (1 ≤ i ≤ g′), namely the
bipartite subgraphs of Gw(1) with bipartition V (Hi) = X(i) ∪ Y (i) and edge
set EGw(1)(X

(i), Y (i)), have been fixed. By the definition of a (δ, G̃)-flower,
each Hi (1 ≤ i ≤ g′) is ε-uniform, and for all 1 ≤ i ≤ g′ we have e(Hi) =
eGw(1)(X

(i), Y (i)) ≥ %0u
2, where %0 = 10−6δM0/n.

Let us now pick Rw(2), and study the neighbourhood N
(i)
w(2)(v) ⊂ X(i)

(1 ≤ i ≤ g′) of the vertex v in the graph Gw(2) inside the set X(i). Put

d = %0u. Again by the definition of a (δ, G̃)-flower, we know that d(i)
1 =

|N (i)
w(2)(v)| ≥ d = %0u. Now let us condition on the values of the d(i)

1 (1 ≤
i ≤ g′). Once these g′ numbers are fixed, for every 1 ≤ i ≤ g′, all the
subsets of cardinality d

(i)
1 of the set X(i) \ S(i)

1 are equally likely to be
chosen as N (i)

w(2)(v), where S
(i)
1 is the neighbourhood of v within X(i) in

the graph
⋃

1≤k<w(2)Gk. Furthermore, we make the simple but important
observation that, because we choose Rw(2) randomly and uniformly from all
the M0-subsets of [n] \⋃1≤k<w(2)Rk, and because we have decided on the

cardinalities d(i)
1 (1 ≤ i ≤ g′) in advance, the sets N (i)

w(2)(v) (1 ≤ i ≤ g′) are
all selected independently.

Suppose now that the Ri (w(2) ≤ i < w(3)) have also been chosen, and
pick Rw(3). Let N (i)

w(3)(v) ⊂ Y (i) be the Gw(3)-neighbourhood of v within

Y (i). Put d(i)
2 = |N (i)

w(3)(v)| (1 ≤ i ≤ g′), and note that again d(i)
2 ≥ d = %0u.

We now condition on the values of the d(i)
2 (1 ≤ i ≤ g′). As above, under

this conditioning, for every 1 ≤ i ≤ g′, all the subsets of cardinality d
(i)
2 of
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the set Y (i) \ S(i)
2 are equally likely to be chosen as N (i)

w(3)(v), where S(i)
2 is

the neighbourhood of v within Y (i) in the graph
⋃

1≤k<w(3)Gk. As before,

the sets N (i)
w(3)(v) (1 ≤ i ≤ g′) are all selected independently.

We now apply Lemma 11 to all the Hi (1 ≤ i ≤ g′). Recall that d = %0u
and notice that, for all 1 ≤ i ≤ g′, the density e(Hi)u−2 of Hi is at least
%0 = d/u and d

(i)
j ≥ d (j ∈ {1, 2}). Also, by the choice of C, we have

d ≥ 2(u/ε)1/2. Moreover, since M = mM0 ≤ n/(log log n)2, for large enough
n we have |S(i)

j | ≤ u/ log log u for all 1 ≤ i ≤ g′, j ∈ {1, 2}. We now recall

that the sets N (i)
w(2)(v) (1 ≤ i ≤ g′) are all selected independently, as are

all the N (i)
w(3)(v) (1 ≤ i ≤ g′). Thus, applying Lemma 11 simultaneously to

all the Hi (1 ≤ i ≤ g′), we see that the probability that we do not have a
spontaneous triangle in G is at most βdg

′ ≤ ξ2M .
Now, to complete the proof, it suffices to estimate the number of all

possible candidates for (δ, G̃)-flowers in our (b, η)-sparse m-edge-coloured
graph G̃. Clearly, the vertex v can be selected in at most n ways, there are
at most

(
m
3

) ≤ m3 possible choices for the indices w(1), w(2) and w(3) and,
since |Π̃w(1)| ≤ K0 + 1 (cf. Lemma 5) and g ≤ (|Π̃w(1)| − 1)/2 < K0, the
number of possible choices for the set of pairs {(X(i), Y (i)) : 1 ≤ i ≤ g} can
be estimated very generously by K0×K0! ≤ (K0 +1)!. Thus, since M grows
to infinity at least as fast as

√
n, we have

Prob(B(δ)) ≤ nm3(K0 + 1)!ξ2M ≤ ξM/2
whenever n is large enough. Thus (7) holds and Lemma 18 is proved.

As an almost immediate consequence of the above lemma and Lemma 10,
we get the following result, which will be crucial for the proof of Theorem 1.

Let R(n,M | b, η) denote the uniform probability space whose elements
are the (b, η)-sparse M -subsets R of [n]. Clearly, R(n,M | b, η) may be
obtained from R(n,M) by conditioning on the event that G(n,R) should
be (b, η)-sparse. Let the associated probability space of the G(n,R) (R ∈
R(n,M | b, η)) be denoted by G(n,M | b, η). Thus to pick an element G
from G(n,M | b, η) we simply generate R ∈ R(n,M | b, η) and let G =
G(n,R). Suppose the integer m divides M . Clearly, since all graphs from
G(n,M | b, η) are generated by M -subsets of [n] and each such subset can
be decomposed into m subsets of size M0 = M/m in the same number of
ways, one can generate an element of G(n,M | b, η) by choosing a graph
from G̃(n,m,M0 | b, η) and ignoring the colouring of its edges.

Now our next result can be stated as follows.

Lemma 19. For every b ≥ 4 and 0 < ξ ≤ 1, there exist constants 0 <
η(b, ξ) ≤ 1, C = C(b, ξ), and N = N(b, ξ) such that , for every n ≥ N
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and C
√
n ≤ M = mM0 = mM0(n) ≤ n/(log log n)2, where m = m(b) is

as given in Lemma 10, the probability that G ∈ G(n,M | b, η) contains no
spontaneous triangle is at most ξM .

P r o o f. Let b ≥ 4 and 0 < ξ ≤ 1 be given. Choose m = m(b) ≥ 3,
0 < δ = δ(b) ≤ 1 and k0 = k0(b) ≥ 1 as in Lemma 10, and let 0 < ε =
ε(m, ξ, δ) ≤ 1 be as in Lemma 18. Finally, let 0 < η = η(b, ε) ≤ 1 be as
given by Lemma 10, and let C = C(m, k0, b, ξ, δ) be as given by Lemma 18.
As always, we assume that n is sufficiently large whenever it is needed.

Observe that, because of the choice of m, k0, and δ, every element of
G̃(n,m,M0 | b, η) contains an (ε(m, b, ε, k0), k0)-flower and, by Lemma 18,
with probability at least 1 − ξM every such flower must contain a sponta-
neous triangle. Thus the probability that an element of G̃(n,m,M0 | b, η)
contains no spontaneous triangle is smaller than ξM . As already mentioned,
the graphs from G̃(n,m,M0 | b, η) naturally correspond to elements from
G(n,mM0 | b, η), and hence Lemma 19 follows.

We can now finally prove Theorem 1.

P r o o f o f T h e o r e m 1. Clearly, it suffices to prove that, for any given
0 < α ≤ 1, there is a suitable choice for C = C(α) such that

(†) if Cn1/2 ≤ M = M(n) ≤ n, then limn→∞ Prob(R →α 3) = 1, where
the limit is taken along o d d values of n.

Thus henceforth we may and shall assume that n is odd. Also, below we
assume that n is sufficiently large whenever it is needed. For convenience,
let us say that a property holds almost surely if it holds with probability
tending to 1 as n tends to infinity along odd integers.

Let a constant 0 < α ≤ 1 be given, and assume that 1 ≤M = M(n) ≤ n.
Note that the Heath-Brown–Szemerédi result mentioned in Section 0 implies
that any set A ⊂ [n] with |A| ≥ n/(log log n)2 contains a 3-term arithmetic
progression provided n is sufficiently large. Thus we may and shall assume
that αM ≤ n/(log log n)2, since otherwise R→α 3 for any set R ⊆ [n] with
|R| = M .

Put α′ = α/2. Set b = 6/α′ ≥ 4 and 0 < ξ = α′/4 ≤ 1, and let
m = m(b) ≥ 3 be as given in Lemma 10. Moreover, let 0 < η = η(b, ξ) ≤ 1
and C1 = C(b, ξ) be as given in Lemma 19, and let C2 = C(η) be as given
in Fact 17. We let C = C(α′) = max{(4/(3α′))C1, C2}. We now show that
(†) holds with this choice of C.

Our first aim is to verify that R ∈ R(n,M) almost surely has the prop-
erty that any subset A′ ⊆ R with at least α′|R| elements contains an arith-
metic triple. For simplicity, let us write R→′α′ 3 if R has this property.

Let us start by picking an integer multiple M ′ = M ′(n) of m such
that (3α′/4)M ≤ M ′ ≤ α′M holds for any sufficiently large n. Put M0 =
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M0(n) = M ′/m. We now consider the spaces R(n,M ′ | b, η) and G(n,M ′ |
b, η). Note that C1n

1/2 ≤ M ′ = mM0 ≤ n/(log log n)2, and hence that by
Lemma 19 the probability that G ∈ G(n,M ′ | b, η) contains no spontaneous
triangle is at most ξM

′
. Thus, the probability that R ∈ R(n,M ′ | b, η)

contains no arithmetic triple is at most ξM
′

for all large enough n. Therefore,
the number of (b, η)-sparse subsets A′ of [n] with M ′ elements that do not
contain arithmetic triples is at most ξM

′( n
M ′
)
.

Let D be the event that R ∈ R(n,M) should contain a (b, η)-sparse
subset A′ with M ′ elements which is free of arithmetic triples. Then the
probability that D holds is at most

ξM
′
(
n

M ′

)(
n−M ′
M −M ′

)(
n

M

)−1

≤
(
eξn

M ′

)M ′(
M

n

)M ′
≤
(

4eξ
3α′

)M ′
= o(1).

Let now S be the event that R ∈ R(n,M) is (4, η)-sparse. Then, by Fact 17,
S holds almost surely. We now note that if R is (4, η)-sparse, then any subset
A′ ⊆ R with |A′| = M ′ is (b, η)-sparse. Therefore, if D fails and S holds,
then R →′α′ 3. Since almost surely D fails and S holds, we conclude that a
random set R ∈ R(n,M) satisfies R→′α′ 3 almost surely.

Now recall that n is odd, and write n = 2k + 1. Observe that if A is
a subset of R with at least α|R| elements, then at least one of the subsets
A1 = A ∩ {0, . . . , k} and A2 = A ∩ {k, . . . , 2k} must have at least α′|R| =
α|R|/2 elements, and that Ai (i ∈ {1, 2}) contains an arithmetic triple if
and only if it contains an arithmetic progression of length three. Thus (†)
does hold and Theorem 1 is proved.

Corollary 3 may be deduced from Theorem 1 in a routine manner.

S k e t c h o f t h e p r o o f o f C o r o l l a r y 3. Let s = s(n), g = g(n),
and α be as in the statement of our corollary. Pick C0 sufficiently large so
that with p = p(n) = C0n

−1/2 and R = Rp ∈ R(n, p) we have R →α/2 3
with probability 1− o(1) as n→∞.

The probability that a fixed set as in (i) of the corollary meets R in
more than 3 elements is O(s4n−2). Hence the expected number of such sets
is O(s4) = o(

√
n). The probability that a fixed set as in (ii) meets R in

more than Cm/
√
n elements is at most exp{−2m/

√
n} for large enough C.

Therefore the probability that such a set exists is o(1). Now, let G(3) =
G

(3)
n be the 3-uniform hypergraph on [n] whose hyperedges are the 3-term

arithmetic progressions contained in [n]. One can easily check that for every
l ≥ 2 the number of cycles of length l in G(3) is at most (3n)l. For any
such cycle of G(3) the probability that it appears in F = F(R) is p2l.
Therefore the expected number of cycles in F shorter than g is at most∑g
l=2(3np2)l = o(

√
n).
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In view of the above remarks, with probability 1− o(1) as n→∞, there
exists a set S ⊆ R with |S| ≥ |R|/2 satisfying (i)–(iii). Finally, note that if
R→α/2 3, then S →α 3.
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Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.
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