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On a problem of Eisenstein
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Peter Stevenhagen (Amsterdam)

1. Introduction. In 1844, a list of 11 open problems composed by Eisen-
stein was published in Crelle’s journal [7]. Among these problems, which are
rather diverse in nature and precision, there are three that pertain to class
groups of quadratic orders. Class groups of other orders were still unknown
at that time, and Eisenstein’s questions are couched in Gauss’s language
of quadratic forms. In various forms, they ask for “criteria” to recognize
quadratic discriminants that yield class numbers divisible by an integer n,
and to recognize for such discriminants the classes that are in the kernel or
the image of the multiplication-by-n map. For n = 2, this is accomplished
by Gauss’s theory of genera and ambiguous forms. From our modern point
of view, it is clear that, in the case of quadratic orders, one cannot hope for
an immediate generalization of these results if one replaces n = 2 by n = 3,
as is done by Eisenstein in his eighth problem. In fact, the behavior of the
odd part of quadratic class groups is in many ways as intractable as it was in
Eisenstein’s days, and our knowledge of their “average behavior” is almost
entirely conjectural [2].

The problem we will focus on in this paper is Eisenstein’s fourth ques-
tion, which can be seen as a weak version of the problem above for the
case n = 3. In this question, we are asked to give a criterion to decide
a priori whether the equation x2 − dy2 = 4 for a positive integer d ≡
5 mod 8 is solvable in odd integers x and y. Note that the congruence
condition on d is clearly necessary for the existence of such a solution.
As Eisenstein indicates, this question is related to the 3-divisibility of the
class number of the order O4d = Z[

√
d] of discriminant 4d. Writing O∆

and h(∆) for the quadratic order of discriminant ∆ and its class num-
ber, respectively, we can formulate this in modern terms in the follo-
wing way.
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1.1. Lemma. The following are equivalent for a positive integer d ≡
5 mod 8 :

(1) the equation x2 − dy2 = 4 has no solutions in odd integers x and y;
(2) the fundamental unit εd ∈ Od lies in the unit class of (Od/2Od)∗;
(3) the unit groups O∗4d and O∗d coincide;
(4) h(4d) = 3h(d).

P r o o f. All solutions to the Pell equation in (1) are of the form x+y
√
d =

±2εkd for some k ∈ Z. If the fundamental unit εd has norm N(εd) = −1,
only the even exponents k yield a solution, otherwise all values of k are
allowed. The requirement that x and y be odd means that εkd lies in Od =
Z[(1+

√
d)/2] but not in O4d = Z+2Od = Z[

√
d], so there is no such solution

if O∗4d and O∗d coincide.
As Od/2Od is a field of 4 elements for d ≡ 5 mod 8, we see from the

equality

(1.2) O∗4d = ker[O∗d
ϕ2−→ (Od/2Od)∗ ∼= F∗4]

that O∗4d and O∗d coincide if and only if the reduction map ϕ2 maps εd to
the unit class of (Od/2Od)∗. If this is not the case, ϕ2 is surjective and O∗4d
has index 3 in O∗d. In this situation, x+ y

√
d = 2ε2

d yields a solution in odd
integers in (1). This shows that (1), (2) and (3) are equivalent.

For (4), we observe that the natural map between the class groups of the
orders O4d and Od yields an exact sequence

(1.3) 0→ (Od/2Od)∗/ϕ2[O∗d]→ Cl(O4d)→ Cl(Od)→ 0.

We conclude that h(4d) equals h(d) if ϕ2 is surjective, and that h(4d) equals
3h(d) in the situation of (2).

Even if we believe that there is no simple criterion that enables us to
decide a priori whether the equivalent statements in Lemma 1.1 hold for a
given integer d ≡ 5 mod 8, there are related questions one might hope to
be able to solve. The most obvious question is probably the determination
of the size of the set of d’s for which the statements in Lemma 1.1 hold.
In the fundamental case, i.e., when d ≡ 5 mod 8 is squarefree, extensive
computations have been performed by Stephens and Williams [9]. Let us
denote the set of positive squarefree integers congruent to 5 modulo 8 by D
and write E for the Eisenstein set of integers d ∈ D that satisfy the equiva-
lent conditions of Lemma 1.1. As the reduction map ϕ2 : O∗d → F∗4 in (1.2)
maps εd into a group of order 3, the most natural conjecture would be the
following.
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1.4. Conjecture. The Eisenstein set E has natural density 1/3 in D.

It is unreasonable to expect Conjecture 1.4 to be true without the re-
striction to squarefree values of d. For non-fundamental values d = f2d0 ≡
5 mod 8 with d0 squarefree, the fundamental unit εd is the kth power of εd0 ,
where k is the order of εd0 in (Od0/fOd0)∗/(Z/fZ)∗. It follows that εd is
the unit element in (Od/2Od)∗ = (Od0/2Od0)∗ as soon as 3 divides k. In
fact, starting from the assumption that in the fundamental case, one has
“equidistribution” of εd0 over (Od0/fOd0)∗/(Z/fZ)∗ for each odd f , one
can adapt the argument in [11] to derive a plausible conjectural density for
the general case.

The “natural” conjectural densities for the behavior of quadratic units
modulo a fixed conductor are often in close accordance with numerical data.
In the case of Conjecture 1.4, Stephens and Williams found that for the
values d ∈ D in the interval [108, 109], a fraction 29725316/91189086 ≈ .326
lies in the Eisenstein set E .

In relation with the conjectured densities for the solvability of the neg-
ative Pell equation [11], similar distribution phenomena for quadratic units
were numerically studied in [1]. A close match of conjectural and numerical
data was found.

Another famous example of a conjectured distribution is the behavior
modulo 16 of the quadratic unit εp for prime numbers p ≡ 1 mod 8. The class
number h(−4p) of the imaginary quadratic field Q(

√−p) is divisible by 4 for
such p, and εp lies in the unit class of (Op/4Op)∗/{±1}. It can be shown that
h(−4p) is divisible by 8 exactly when εp is trivial in (Op/8Op)∗/{±1}, and
divisible by 16 exactly when pεp is trivial in (Op/16Op)∗/{±1}, cf. [12, 13].
One can show that the set P of primes for which 8 divides h(−4p) has density
1/2 inside the set of primes congruent to 1 modulo 8. However, neither the
set of primes p for which h(−4p) is divisible by 16 nor its complement in P
is known to be infinite. Numerically, h(−4p) appears to be divisible by 16
for 1/2 of the primes in P, cf. [3].

Even though we are still unable to prove anything non-trivial in most
of these distribution problems for quadratic units, there are a few positive
exceptions. It is the purpose of this paper to show that Conjecture 1.4 is
not entirely untractable. More precisely, we will show the following.

1.5. Theorem. The upper density of the Eisenstein set E in D satisfies

lim sup
x→∞

#{d ∈ E : d ≤ x}
#{d ∈ D : d ≤ x} ≤

1
2
.

I have not been able to prove a positive lower bound for the lower density
of E in D. As it is elementary to show that D satisfies limx→∞ x−1#{d ∈
D : d ≤ x} = π−2, one would need to show that #{d ∈ E : d ≤ x} grows
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linearly with x. We can, however, prove the following weaker result. Even
though it is not an optimal result, it does show that E is infinite.

1.6. Theorem. The Eisenstein set E satisfies

#{d ∈ E : d ≤ x} � x1/2.

The proofs of Theorems 1.5 and 1.6, which can be found in Section 3, are
based on the class field theoretic interpretation of the exact sequence (1.3),
which allows us to construct elements of the Eisenstein set from suitable
cubic number fields, and a method of Davenport and Heilbronn to count
cubic number fields [5, 6]. As we use the method of Davenport and Heil-
bronn rather than their theorems, we have collected the various results on
the counting of cubic fields that form the basis of our proof in a separate
section. When combined with the main result (Theorem 3.3) of Section 3,
they readily yield 1.5 and 1.6.

2. Counting cubic number fields. Let K be a cubic number field,
i.e., a cubic extension of the rational number field Q. Then we can associate
a binary cubic form FK ∈ Z[X,Y ] with K by writing its ring of integers on
a Z-basis as OK = Z+ Zµ+ Zν and putting

FK(X,Y ) = |∆K |−1/2|∆(µX + νY )|1/2

= |∆K |−1/2
∣∣∣
∏

σ 6=τ
(σ(µ)− τ(µ))X + (σ(ν)− τ(ν))Y

∣∣∣
1/2
.

Here ∆K is the discriminant of K, and σ and τ range over the distinct
embeddings of K into Q. As is shown in [5], the form FK is an irreducible
primitive binary cubic form of discriminant ∆K in Z[X,Y ]. It is only deter-
mined up to sign by the choice of µ and ν, but the induced “fundamental
mapping” from the set of Q-isomorphism classes of cubic fields to the set
Φ of GL2(Z)-orbits of irreducible integral primitive binary cubic forms is
injective. A precise description of the classes of the field forms that make
up the image of this mapping is given in [6]. These are the classes that lie
for each rational prime p in a subset Up ⊂ Φ consisting of classes of forms
whose reduction modulo p2Z is of a certain type. The growth of the number
of equivalence classes of binary forms of discriminant in either [−x, 0] or
[0, x] for x → ∞ had already been determined by Davenport in the early
fifties, and Davenport and Heilbronn combine this with a sieving argument
to obtain an asymptotic estimate for the number of non-isomorphic cubic
fields with discriminant in [−x, 0] or [0, x]. In the current paper, we will only
need to count cubic fields K of discriminant 4d, where d ∈ D is a squarefree
positive integer congruent to 5 modulo 8. Once we have the alternative de-
scription of such K furnished by the following lemma, this can be done by
a slight modification of the original argument of Davenport and Heilbronn.
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2.1. Lemma. Let K be a totally real cubic field. Then 2 is the only rational
prime that is totally ramified in K/Q if and only if the discriminant ∆K of
K satisfies ∆K/4 ∈ D.

P r o o f. We use some generalities on cubic fields that may be found in [8].
For K a cubic number field, we can write the discriminant as ∆K = f2d for
some fundamental quadratic discriminant d. Note that d is positive exactly
when K is totally real. A rational prime p is totally ramified in K if and
only if p divides f , so 2 is the only totally ramified prime in K/Q if ∆K/4
lies in D.

Conversely, suppose that 2 is the only totally ramified prime in K/Q.
Then all primes p 6= 2 that ramify in K/Q divide d but not f , so they
divide ∆K at most once. (This also follows from the fact that they have a
single tamely ramified extension of ramification index 2 in K.) The extension
K(
√
d)/Q(

√
d) is an abelian extension of degree 3 that is totally and tamely

ramified at the primes over 2, and unramified at all other primes. Class field
theory tells us that the Galois group of this extension is a quotient of the
ray class group of Q(

√
d) of conductor 2. The natural image of (Od/2Od)∗ in

this ray class group is the subgroup generated by inertia above 2. We deduce
that (Od/2Od)∗ maps surjectively to the Galois group of K(

√
d)/Q(

√
d). It

follows that 2 is inert in Q(
√
d)/Q, so d is squarefree and congruent to

5 mod 8. Moreover, the integer f , which is the conductor of the extension
K(
√
d)/Q(

√
d), is equal to 2. This gives ∆K/4 ∈ D.

2.2. Proposition. Let K be the set of isomorphism classes of cubic fields
K for which the discriminant satisfies ∆K/4 ∈ D. Then

lim
x→∞

x−1#{K ∈ K : ∆K/4 ≤ x} = 1/(3π2).

P r o o f. In [6], the growth of the set of isomorphism classes of cubic fields
that are not totally ramified at any rational prime is studied in detail. The
forms corresponding to these fields are characterized by the fact that their
discriminants occur as discriminants of quadratic fields, i.e., they are not
divisible by p2 for p ≥ 3, and either odd or congruent to 8 or 12 mod 16. In
the notation of [6], this can be translated by saying that such forms lie in Vp
for all primes p. The number of isomorphism classes of such fields of positive
discriminant < x grows asymptotically like x/(2π2) (see [6, Prop. 3]). For
our current set of fields, Lemma 2.1 tells us that we have to replace the local
condition at the prime 2 by a different one: we are looking at forms F that
have a triple root modulo 2 and discriminant congruent to 4 modulo 8. In the
notation of [6], this means that locally at 2, we want forms that lie in the class
U2 of the field forms but not in the class V2 of forms corresponding to fields
that are not totally ramified at 2. We can now deduce from [6, Lemmas 4 and
5] that we have to replace the local factor 3/5 at the prime 2 (corresponding
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to V2) by a factor 1/10 (corresponding to U2\V2) in order to find the growth
rate of the set K: it contains asymptotically 5

3 · 1
10 · x/(2π2) = x/(12π2)

isomorphism classes of cubic fields K of discriminant ∆K < x. If we count
up to 4x, we get the constant of the proposition.

A cubic field K of discriminant d is not totally ramified at any ratio-
nal prime if and only if the cubic extension K(

√
d)/Q(

√
d) is an unramified

cyclic extension. This observation enables Davenport and Heilbronn to count
the average number of unramified cubic cyclic extensions K(

√
d)/Q(

√
d) for

quadratic fields Q(
√
d). For given fundamental discriminant d, it is easy

to see that there are (h∗3(d)− 1)/2 such extensions of Q(
√
d) that are pair-

wise non-isomorphic. Here h∗3(d) denotes the order of the 3-torsion subgroup
Cl(Od)[3] of Cl(Od). By counting the number of cubic forms that have no
total ramification at any prime p (i.e., forms that lie in Vp for all p), it is
shown [6, Theorem 3] that for d ranging over the set of discriminants of real
quadratic fields, the average value of h∗3(d) equals 4/3. We need to adapt
this result to our smaller set of discriminants D.

2.3. Proposition. The average value of h∗3(d) for d ∈ D equals

lim
x→∞

∑
d∈D:d≤x h

∗
3(d)∑

d∈D:d≤x 1
=

4
3
.

P r o o f. There are asymptotically
∏
p>2 prime(1−p−2)x = 8x/π2 integers

d < x that are not divisible by the square of any odd prime, and these
integers are equidistributed over the residue classes modulo 16. The real
quadratic field discriminants are those d that lie in the six residue classes
1, 5, 8, 9, 12, 13 mod 16, so there are asymptotically 6

16 · 8x/π2 = 3x/π2 real
quadratic field discriminants d < x. If we restrict to discriminants in d ∈ D,
which are congruent to 5 modulo 8, only 2 residue classes out of 6 are
allowed, so we lose a factor 3 and find a main term x/π2.

On the side of the field forms FK that have no total ramification at any
rational prime in K/Q, we have to impose the additional restriction at 2
that the discriminant be congruent to 5 mod 8. This is a straightforward
computation. We know from [6, Lemma 4] that the density factor at p = 2
of the forms which have no total ramification at 2 (i.e., they lie in V2) equals
(p2−1)/(p2 +1) = 3/5. An elementary counting argument for forms modulo
p [6, Lemma 1] shows that the density factor at p = 2 of the forms with
discriminant coprime to p equals (p2−p)/(p2 +1) = 2/5. Such discriminants
have∆ ≡ 1 mod 4, and we want to show that ∆ ≡ 1 mod 8 and ∆ ≡ 5 mod 8
both contribute 1/5. If this is the case, we see that we have to replace the
local factor 3/5 at 2 by 1/5, so there is a factor 3 disappearing both on the
cubic form side and on the quadratic field side. The average value of h∗3(d)
then remains unchanged.
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We see from the explicit form of the discriminant

∆(aX3 + bX2Y + cXY 2 + dY 3) = b2c2 + 18abcd− 27a2d2 − 4(b3c+ d3a)

of a cubic form and its reduction ∆ ≡ b2c2 + a2d2 ≡ 1 mod 2 that ∆ is odd
if and only if exactly one of the terms ad and bc is odd. For such ∆ we have

∆ ≡
{

1 mod 8 if ad is odd,
5 mod 8 if ad is even,

so we get the same contribution from the residue classes 1 mod 8 and
5 mod 8.

2.4. Corollary. The lower density of the discriminants d ∈ D for which
3 does not divide h(d) satisfies

lim inf
x→∞

#{d ∈ D : d ≤ x and 3 - h(d)}
#{d ∈ D : d ≤ x} ≥ 5

6
.

P r o o f. Let α be this lower density. Then the subset of discriminants
d ∈ D with h∗3(d) ≥ 3 has upper density≥ 1−α, so we find α+3(1−α) ≤ 4/3.
This immediately yields α ≥ 5/6.

3. Densities for Eisenstein’s problem. In order to apply the counting
of cubic fields performed in the previous section to Eisenstein’s problem as
formulated in Conjecture 1.4, we take the set K of isomorphism classes of
cubic fields from Proposition 2.2 and consider the map

Ψ : K → D, K 7→ ∆K/4.

Theorems 1.5 and 1.6 are based on the study of the map Ψ . The image of
Ψ is closely related to the behavior of the exact sequence of finite abelian
groups

(3.1) 0→ (Od/2Od)∗/ϕ2[O∗d]→ Cl(O4d)→ Cl(Od)→ 0

that we encountered as (1.3) in the proof of Lemma 1.1. We will employ the
class field theoretic interpretation of (3.1) as an exact sequence of Galois
groups

(3.2) 0→ Gal(R2/H)→ Gal(R2/Q(
√
d))→ Gal(H/Q(

√
d))→ 0.

Here H denotes the Hilbert class field of Q(
√
d), and R2 the ring class

field corresponding to the quadratic order of discriminant 4d. We can also
view R2 as the ray class field of conductor 2 of Q(

√
d), since for conduc-

tor f = 2 the group (Z/fZ)∗ = 1 is simply too small to make a difference
between the ray class field and the ring class field of conductor f possi-
ble.
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We recall that for any conductor f ∈ Z>0, the ring class field of conductor
f can be characterized [4, Theorem 9.18] as the maximal subfield of the ray
class field of conductor f that is dihedral over Q. This means that we have
Gal(R2/Q) = Gal(R2/Q(

√
d)) o Z/2Z, where the non-trivial element of

Z/2Z acts by inversion on Gal(R2/Q(
√
d)).

3.3. Theorem. The map Ψ satisfies the following properties.

(1) The image of Ψ lies in the Eisenstein set E ; it consists of those d ∈ E
for which the sequence (3.1) is split.

(2) If d ∈ D lies in the image of Ψ , then Ψ−1(d) has h∗3(d) elements.

P r o o f. Let d ∈ D be a discriminant that is in the image of Ψ . Then
there exists a cubic field K of discriminant 4d, and the field K(

√
d) is a

cyclic cubic extension of conductor 2 of Q(
√
d) that is dihedral over Q. This

implies that the ring class field R2 of conductor 2 of Q(
√
d) has degree at

least 3 over the Hilbert class field H, so we have h(4d) = 3h(d), and d is
in the Eisenstein set by (4) of Lemma 1.1. Moreover, the canonical map
Gal(R2/Q(

√
d)) → Gal(K(

√
d)/Q(

√
d)) provides a splitting of the Galois

group version (3.2) of (3.1).
Conversely, if d is in the Eisenstein set and (3.2) is split, there exists

a cyclic cubic extension F/Q(
√
d) of conductor 2 inside the ring class field

extension R2/Q(
√
d) of conductor 2. As F is dihedral over Q, it is of the

form F = K(
√
d) for some cubic field K of discriminant ∆K = 4d. Thus d

is in the image of Ψ , and we have proved (1).
Let now d be in the image of Ψ . Then the argument above shows that the

isomorphism classes of cubic fields in Ψ−1(d) correspond to the cyclic cubic
extensions F of conductor 2 of Q(

√
d) that are contained in the ring class

field R2 of conductor 2 of Q(
√
d). There are (h∗3(4d)− 1)/2 cubic subexten-

sions of R2/Q(
√
d), and (h∗3(d) − 1)/2 of them are unramified over Q(

√
d).

We have h∗3(4d) = 3h∗3(d) because h(4d) equals 3h(d) and (3.1) is split. Sub-
tracting yields (3h∗3(d)−1)/2−(h∗3(d)−1)/2 = h∗3(d) isomorphism classes in
Ψ−1(d). Note that this answer reflects the fact if the classes of K1 and K2 are
in Ψ−1(d), then the extension K1(

√
d)/Q(

√
d) arises from K2(

√
d)/Q(

√
d)

by twisting with an unramified cyclic cubic extension C/Q(
√
d).

P r o o f o f T h e o r e m 1.5. Let D′ denote the set of discriminants
d ∈ D for which the sequence (1.3) is split. If d ∈ D is a discriminant for
which 3 does not divide h(d), then d is clearly in D′. It follows from Corollary
2.4 that the lower density of D′ in D is at least 5/6.

By Theorem 3.3(1), the intersection E ′ = D′∩E of discriminants d in the
Eisenstein set for which the sequence (1.3) is split is exactly the image of
the map Ψ . By Proposition 2.2, the set K contains asymptotically x/(3π2)
isomorphism classes of cubic fields K with ∆K/4 < x. As D itself contains
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asymptotically x/π2 discriminants d < x, we find that the upper density of
E ′ = Ψ [K] in D is at most 1/3. It follows that the lower density of the set
D′ \ E ′ = D′ \ E in D is at least 5/6− 1/3 = 1/2. As D \ E contains D′ \ E ,
the complement D \ E of the Eisenstein set in D also has lower density at
least 1/2. It follows that the upper density of the Eisenstein set itself in D
is bounded by 1/2.

P r o o f o f T h e o r e m 1.6. As the Eisenstein set E contains the set
E ′ = Ψ [K], it suffices to show that the cardinality of the Ψ -image of Kx =
{K ∈ K : ∆K/4 < x} grows at least like a positive constant times x1/2 with
x. If d is in Ψ [Kx], there are exactly h∗3(d) elements in Kx that map to d.
Standard estimates for real quadratic class numbers show that for d < x,
we have h∗3(d) ≤ h(d) ≤ x1/2. As no more than x1/2 isomorphism classes of
cubic fields from Kx map to the same discriminant, we see from the size of
Kx itself given in Proposition 2.2 that, asymptotically, #Ψ [Kx] has at least
x1/2/(3π2) elements.
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