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1. The interest of several mathematicians has been attracted by Cheby-
shev’s classical result to the effect that the greatest prime factor of∏

l≤x(l2 + 1) tends to infinity faster than any constant multiple of x.
Let us turn our attention to the more general question concerning the

order of magnitude of the largest prime factor Px of
∏

l≤x f(l), where f is
any irreducible polynomial of degree greater than 1 with integer coefficients.
T. Nagell was the first to give a non-trivial lower bound for Px. He proved
in [6] that for any a < 1 and for all sufficiently large x,

(1) Px > x(log x)a.

No further progress was made with this problem until P. Erdős ([1]) in
1952 introduced a new method which increased the lower bound in (1) to
x exp{c(f) log2 x · log3 x} with c(f) > 0, where logm x denotes the m-fold
iterated logarithm. Later, a more complicated application of these ideas led
P. Erdős and A. Schinzel in [2] to the conclusion that for large x,

Px > x exp exp{c′(f)(log2 x)1/3} with c′(f) > 0.

Recently, by combining Erdős’ approach with an interesting result about
the average order of Hooley’s ∆-function for polynomials, G. Tenenbaum
showed in [11] that (1) can be improved to

(2) Px > x exp{(log x)a}
for any 0 < a < 2− log 4 if x ≥ x0(a, f).

In the following, let K be a fixed algebraic number field of degree n =
r1 + 2r2 (in the usual notation) over the rationals with discriminant d. ZK

will denote the ring of integers in K.
The primary concern of the present paper is to generalize the inequal-

ity (2) to K in an appropriate way. To this end, we start with an irreducible
polynomial F (x) ∈ ZK [x] of degree g > 1 and replace the integers l ∈ [1, x]
by algebraic integers α ∈ ZK lying in certain lattice point regions: Let
P1, . . . , Pn be sufficiently large positive real numbers satisfying Pk = Pk+r2

[207]
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for k = r1 + 1, . . . , r1 + r2 and put P := P1 . . . Pn. We consider the set

Rc(P ) = {α ∈ ZK : α totally positive, c ≤ |α(k)| ≤ Pk, k = 1, . . . , n},
where c ≥ 0 denotes a fixed constant. Let us write α � 0 to indicate that
α is totally positive. It should be remarked that our arguments also work
without the restriction α � 0, but it is common practice to introduce this
condition. By the theory of units (cf. [9], Hilfssatz 6) there exists a totally
positive unit η of K such that

(3) P 1/n � |η(k)|Pk � P 1/n, k = 1, . . . , n.

We put

V :=
r1∏

k=1

(Pk − c)
r2∏

k=1

(P 2
k+r1

− c2)

and obtain, for mink Pk ≥ 2c,

|η(k)|(Pk − c) � |η(k)|Pk � P 1/n ≥ V 1/n, k = 1, . . . , n.

These observations enable us to apply Hilfssatz 9 of [7], which involves the
formula

(4) |{α ∈ ZK : α � 0, α ≡ γ mod a, c ≤ |α(k)| ≤ Pk, k = 1, . . . , n}|
= |{β ∈ ZK :

β � 0, β ≡ γ · η mod a, c|η(k)| ≤ |β(k)| ≤ |η(k)|Pk, k = 1, . . . , n}|

=
(2π)r2

|
√

d|
· V

Na
+ O

{(
V

Na

)1−1/n

+ 1
}

,

where a stands for an integral ideal of K. Here and in the sequel, | . . . |
denotes the cardinality of a finite set.

Theorem 1. Let F (x) ∈ ZK [x] be an irreducible polynomial of degree
g > 1. Denote by pP a greatest prime ideal factor of

∏
α∈R0(P ) F (α), greatest

in the sense that its norm NpP is maximal. Then for any 0 < a < 2− log 4,

NpP > P exp{(log P )a} if P ≥ P0(a, F,K).

The proof of Theorem 1 is influenced by the cited papers of Nagell,
Erdős and Tenenbaum on the corresponding problem in the rational case.
It is possible to model their main arguments appropriate to our situation.
Let us only explain some of the additional difficulties.

Often one is allowed to assume without loss of generality that the Pk

obey the inequalities P 1/n � Pk � P 1/n for k = 1, . . . , n. However, this
argument does not work in our case, since multiplying α ∈ R0(P ) by the unit
η in (3) results in another polynomial F in Theorem 1, whose coefficients
depend in an indeterminable manner on this unit. We avoid this problem
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by introducing an unusual “one-dimensional” condition in the definition of
the set Sc(P ) in (15). Moreover, in contrast to K = Q, the possibility of
choosing the constant c freely is crucial for our investigations. In particular,
these modifications involve some more careful calculations in comparison
with the rational case.

To explain another novel feature of the present paper a certain amount
of preparation is required. Let us begin by noting that, in view of (4),

(5)
∑

α∈Rc(P )
F (α)≡0 mod a

1 � P

Na

∑
γ mod a

F (γ)≡0 mod a

1

if Na ≤ c0P , where c0 = c0(K) has to be sufficiently small. The constant
c0 does not occur in the rational case.

For brevity we put I = [c0P/2, c0P ] and denote by D(α, I) the number
of ideal divisors a of α ∈ ZK satisfying Na ∈ I. Suitable extensions of some
results of [1] and [2] lead us to

(6) NpP > P exp
{
|
√

d|
(2π)r2

· 1
g
· log P

V
·N(P )

}
if P log2 P = o(N(P ) log P ) as P →∞, where N(P ) is defined by

N(P ) = |{α ∈ Rc(P ) : D(F (α), I) ≥ 1}|.
Consequently, our problem has been reduced to that of establishing a suit-
able lower bound for N(P ). To this end, we apply a method which is an
extension of the one developed by Tenenbaum in [11]. A key step, which
is of some interest in itself, is the determination of an upper bound for the
sum

(7)
∑

α∈R0(P )

∆(F (α))t, t ≥ 1,

where in our terminology Hooley’s ∆-function is of the form

∆(a) = max
u∈R

|{b | a : u < log Nb ≤ u + 1}|.

Theorem 2. For any real number t ≥ 1 we have∑
α∈R0(P )

∆(F (α))t �t P (log P )2
t−t−1+o(1), P →∞.

It turns out that one of the main difficulties arises in connection with
the transformation of the multidimensional sum (7) into the one-dimensional
expression

(8)
∑

Na≤X

L(a)
Na

∆(a)t, t ≥ 1,
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where L(a) denotes the number of solutions of the congruence F (α) ≡
0 mod a. Using a suitable algebraic Selberg-type sieve we succeed in car-
rying out this reduction. The argument presented here further shows that
the full rational theory developed by Tenenbaum in [10] in a more general
context can be avoided. Evolving a direct proof of Theorem 2 many simpli-
fications are possible. The procedure for the estimation of (8) is now very
similar to that in the rational case.

The numbers c1, . . . , c26 coming up in the sequel are positive constants
which depend at most on the field K and on the coefficients and degree
of F . Throughout, small German letters stand for integral ideals of K; in
particular, p always denotes a prime ideal.

2. Let F (x) ∈ ZK [x] be an irreducible polynomial of degree g > 1.
Denote by θ the discriminant of F and by L(a) the number of (incongruent)
solutions in ZK of F (α) ≡ 0 mod a. We quote from [8] the relations∑

Np≤X

L(p) = liX + O{X exp(−c1

√
log X)},(9)

∑
Na≤X

L(a) = c2X + O(X1−b), 0 < b ≤ 1/2,(10)

L(pl) ≤ min{g,Np− 1}, p - θ0 := θF (1), l ≥ 1.(11)

In (11) we have used the fact that L(p) < Np if p - F (1). Moreover, it is
easily seen that L(pl) � 1 if p | θ0.

A straightforward partial summation shows that (9) implies

(12)
∑

Np≤X

L(p)
log Np

Np
= log X + O(1)

and ∑
Np≤X

L(p)
Np

= log log X + c3 + O{exp(−c4

√
log X)},

so that in particular

(13)
1
2

log
log Y

log X
≤

∑
X<Np≤Y

L(p)
Np

≤ 2 log
log Y

log X
, Y ≥ 2X ≥ X0.

We begin our investigations by deriving the bound (6) for NpP . To this
end, let us decompose (F (α)) 6= (1) for α ∈ ZK in the form

(14) (F (α)) = q1(α)q2(α),

where all prime ideal factors of q1(α) (resp. q2(α)) have norms ≤ Z (resp.
> Z). The parameter Z ≥ 2 will be chosen later.
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We introduce the set Sc(P ) of all integers α ∈ Rc(P ) subject to the
condition

Nα > P (log P )−r1−r2 ,

for which F (α) has no prime ideal factor p satisfying c0P < Np ≤ c6c0P ,
where c6 ≥ 1 is chosen in such a way that c7 = 1

2c0(c0c6)g−1 ≥ 1 and

(15)
P g

(log P )(r1+r2)g
� |N(F (α))| ≤ c7P

g for α ∈ Sc(P ).

For sufficiently large c = c(F,K) occurring in the definition of Rc(P ) this
can clearly be done.

Let us pause to determine the cardinality of this set Sc(P ). Using (4)
and (11) we obtain

|Sc(P )| =
∑

α∈Rc(P )

1 + O
{ ∑

α∈R0(P )

Nα≤P (log P )−r1−r2

1 +
∑

c0P<Np≤c0c6P

∑
α∈R0(P )

F (α)≡0 mod p

1
}

=
(2π)r2

|
√

d|
V

+ O

{
P 1−1/n +

∑
α∈R0(P )

Nα≤P (log P )−r1−r2

1 +
∑

c0P<Np≤c0c6P

(
P

Np
+ 1

)}

=
(2π)r2

|
√

d|
V + O

{ ∑
α∈R0(P )

Nα≤P (log P )−r1−r2

1 + P (log P )−1
}

.

It remains to evaluate the sum occurring in the remainder term on the
right. To this end we first note that∑

α∈R0(P )

Nα≤P (log P )−r1−r2

1

≤ |{β ∈ ZK , |β(k)| ≤ |η(k)|Pk, k = 1, . . . , n, |Nβ| ≤ P (log P )−r1−r2}|

=
∑
(β)

N(β)≤(log P )−r1−r2

∑
ε

|ε(k)β(k)|≤|η(k)|Pk

1,

where the outer sum is taken over all principal ideals (β) with norms ≤
P (log P )−r1−r2 . The inner sum gives the number L(β) of units ε of K such
that |ε(k)β(k)| ≤ |η(k)|Pk for k = 1, . . . , n. By choosing a fixed generator β
of (β) satisfying |Nβ|1/n � |β(k)| � |Nβ|1/n, k = 1, . . . , n, it follows from
(3) that
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P

|Nβ|

)1/n−1

�
∏
j 6=k

|ε(j)|−1 = |ε(k)|

≤ |η(k)|Pk

|β(k)|
�

(
P

|Nβ|

)1/n

, k = 1, . . . , n.

Let ε1, . . . , εr be the fundamental units of K so that

|ε(k)| = |ε(k)l1
1 . . . ε(k)lr

r |, lj ∈ Z, j = 1, . . . , r := r1 + r2 − 1.

This leads us immediately to the inequalities∣∣∣ r∑
j=1

lj log |ε(k)
j |

∣∣∣ � log
P

|Nβ|
, k = 1, . . . , n.

Since the rank of the matrix A = (log |ε(k)
j |)(r,n) is equal to r, there exists a

matrix B = (bjk)(n,r) such that the product AB is the unit matrix. Hence

|lq| =
∣∣∣ n∑

k=1

bkq

r∑
j=1

lj log |ε(k)
j |

∣∣∣ � log
P

|Nβ|
, q = 1, . . . , r

and therefore

L(β) �
(

log
P

|Nβ|

)r1+r2−1

.

It should be noted that the contribution of the roots of unity here gives
nothing important. Returning to our starting problem we obtain∑

α∈R0(P )

Nα≤P (log P )−r1−r2

1 � (log P )r1+r2−1
∑

Na≤P (log P )−r1−r2

1 � P (log P )−1

so that finally

(16) |Sc(P )| = (2π)r2

|
√

d|
V + O{P (log P )−1}.

The key idea is now to consider the expression
∑

α∈Rc(P ) log Nq1(α).
A fairly simple argument is sufficient to derive an upper bound for this sum.
Starting from the inequality∑

α∈Rc(P )

log Nq1(α) ≤
∑

Np≤Z

log Np

M(P,p)∑
m=1

∑
α∈Rc(P )

F (α)≡0 mod pm

1,

where

M(P, p) = max
α∈Rc(P )

max
pm|F (α)

m � log P

log Np
+ 1,



A problem of Chebyshev 213

we have, in view of (4), (11) and (12),

(17)
∑

α∈Rc(P )

log Nq1(α)

≤
∑

Np≤Z

log Np
∑

γ mod p
F (γ)≡0 mod p

∑
α∈Rc(P )

α≡γ mod p

1

+ O

{ ∑
Np≤Z

log Np

M(P,p)∑
m=2

(
P

Npm
+ 1

)}

=
(2π)r2

|
√

d|
V

∑
Np≤Z

L(p)
log Np

Np
+ O

{
P 1−1/n

∑
Np≤Z

log Np

Np1−1/n

}

+ O

{
Z + P

∑
Np≤Z

log Np

Np2
+ Z

log P

log Z

}

=
(2π)r2

|
√

d|
V log Z + O

{
P 1−1/nZ1/n + Z + P + Z

log P

log Z

}
.

The comparison of the upper bound (17) with a lower bound will yield
the stated estimate for NpP in (6). The proof requires, however, some
preparation.

Lemma 1. If α ∈ Sc(P ) and Z = c0P in (14), then

Nq1(α) ≥ c8P
g

(log P )(r1+r2)gNpg−1
P

.

P r o o f. If Z = c0P , then all prime ideal factors p of q2(α) in (14) satisfy
Np > c6c0P for α ∈ Sc(P ), so that, in view of our choice of c6, q2(α) can
have at most g − 1 prime ideal divisors, counted according to multiplicity.
From this fact and (15) we deduce readily

Nq1(α) =
|N(F (α))|
Nq2(α)

≥ c8P
g

(log P )(r1+r2)gNpg−1
P

.

Lemma 2. Choose Z = c0P in (14) and let α ∈ Sc(P ) satisfy D(F (α), I)
≥ 1, then

Nq1(α) ≥ c8P
g

(log P )(r1+r2)gNpg−2
P

.

P r o o f. Since there exists an ideal factor a of F (α) with c0P/2 ≤ Na ≤
c0P we have by (15) and our choice of c6,

Nq2(α) =
|N(F (α))|
Nq1(α)

≤ 2c7

c0
P g−1 = (c0c6P )g−1.
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On the other hand, for α ∈ Sc(P ), all prime ideal divisors p of q2(α) satisfy
Np > c0c6P , so that q2(α) can have at most g − 2 prime ideal factors,
multiple factors counted multiple. Hence, by (15),

Nq1(α) =
|N(F (α))|
Nq2(α)

≥ c8P
g

(log P )(r1+r2)gNpg−2
P

.

We are now in a position to derive a suitable lower bound for the sum
under consideration. An appeal to Lemmas 1 and 2 leads us at once to∑
α∈Sc(P )

log Nq1(α)

≥ (g log P − (r1 + r2)g log2 P − (g − 2) log NpP + log c8)
∑

α∈Sc(P )
D(F (α),I)≥1

1

+ (g log P − (r1 + r2)g log2 P − (g − 1) log NpP + log c8)
∑

α∈Sc(P )
D(F (α),I)=0

1

= log NpP ·
∑

α∈Sc(P )
D(F (α),I)≥1

1

+ (g log P − (r1 + r2)g log2 P − (g − 1) log NpP + log c8)
∑

α∈Sc(P )

1.

We further note the inequality∑
α∈Sc(P )

D(F (α),I)≥1

1 ≥ N(P )−
{ ∑

α∈Rc(P )

1−
∑

α∈Sc(P )

1
}

,

so that finally by (4), (15) and (16),

(18)
∑

α∈Sc(P )

log Nq1(α)

≥ log NpP · {N(P )− c9P (log P )−1}

+ (g log P − (r1 + r2)g log2 P − (g − 1) log NpP + log c8)

×
(

(2π)r2

|
√

d|
V − c10P (log P )−1

)
≥ (2π)r2

|
√

d|
(gV log P − (r1 + r2)gP log2 P − (g − 1)V log NpP )

+ N(P ) log NpP − c11P.
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If we combine (18) with (17) for Z = c0P , we arrive at

(19)
(2π)r2

|
√

d|
(g − 1)V log

NpP

P
≥ N(P ) log NpP − c12P log2 P − c13P.

Since, for sufficiently large P , (13) implies the existence of a prime ideal p
satisfying c0P/2 < Np ≤ c0P and L(p) > 0, we deduce at once from (5)
that

(20) NpP > c0P/2 for P ≥ P0(F,K).
Let us now assume that P log2 P = o(N(P ) log P ) as P →∞. Then we

have, for sufficiently large P ,

c12P log2 P + c13P <
1
g
N(P ) log P + N(P ) log

c0

2
.

By (19) and (20), this leads us to
(2π)r2

|
√

d|
(g − 1)V log

NpP

P
>

g − 1
g

N(P ) log P,

so that

NpP > P exp
{
|
√

d|
(2π)r2

· 1
g
·N(P ) · log P

V

}
,

which completes the proof of (6).
It remains to deal with N(P ). These investigations are longer and con-

stitute the main problem to be overcome. We begin by observing that
certainly

N(P ) =
∑

α∈Rc(P )
D(F (α),I)≥1

1 ≥ (log P )−b
∑

α∈Rc(P )

D(F (α),I)≤(log P )b

D(F (α), I),

where b > 0 will be chosen later. Recalling the definiton

D(α, I) = |{a |α : c0P/2 ≤ Na ≤ c0P}|
already given in the introduction, an application of (5) and (10) leads us to∑

α∈Rc(P )

D(F (α), I) �
∑

c0P/2≤Na≤c0P

L(a) � P,

so that

(21) N(P ) � P (log P )−b − (log P )−b
∑

α∈Rc(P )

D(F (α),I)>(log P )b

D(F (α), I).

It remains to establish an upper bound for the sum

(22)
∑

α∈Rc(P )

D(F (α),I)>(log P )b

D(F (α), I) ≤
∑

α∈Rc(P )

∆(F (α))>(log P )b

∆(F (α)).
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For s > 0, we have

(23)
∑

α∈Rc(P )

∆(F (α))>(log P )b

∆(F (α)) ≤ (log P )−bs
∑

α∈R0(P )

∆(F (α))1+s,

so that our problem has been reduced to that of proving Theorem 2. To
this end, a certain amount of preparation is required. The results below
form the basis of the method. We start by extending to number fields a
well-known theorem due to van der Corput.

Lemma 3. For any positive real number r we have∑
α∈R0(P )

{ ∑
a|F (α)

1
}r

�r P (log P )2
gr

.

P r o o f. We generalize to K an argument of B. Landreau [5], who gives
in the rational case a simple proof of van der Corput’s result. The method
starts from the following inequality, which holds for any positive integer j:

(24)
( ∑

a|b

)r

≤ jj(j−1)r
∑
a|b

Na≤(Nb)1/j

( ∑
c|a

)jr

.

In order to justify this inequality, the procedure is in all ways analogous to
that at the corresponding stage of [5]. We therefore omit the proof.

Using (15) and (24), we obtain at once∑
α∈R0(P )

{ ∑
a|F (α)

1
}r

≤ jj(j−1)r
∑

Na�P g/j

( ∑
c|a

1
)jr ∑

α∈R0(P )
F (α)≡0 mod a

1.

If we choose j = g and take (4) into account, the sum under consideration
is of order

�r P
∑

Na�P

D(a)gr L(a)
Na

,

where D(a) denotes the number of ideal divisors of a. It remains to deal
with the sum ∑

Na≤X

D(a)m L(a)
Na

, m ∈ N.

Here, we proceed by induction on m. Let us only consider the case m = 1.
An appeal to (10) shows that∑

Na≤X

D(a)
L(a)
Na

≤
∑

Nb≤X

L(b)
Nb

∑
Na≤X/Nb

L(a)
Na

� log2 X.
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In general we obtain ∑
Na≤X

D(a)m L(a)
Na

� (log X)2
m

.

This completes the proof of Lemma 3.
The second main tool in the proof of Theorem 2 is the following result

which is based on a sieve technique.

Lemma 4. If Y ≥ Y0(F,K) ≥ 2, then

|{α ∈ R0(P ) : F (α) ≡ 0 mod a, p |F (α) ⇒ Np > Y or p | aθ0}|

≤ w

2r1hR
· N(θ0)

φ(θ0)

∏
p - θ0

1− L(p)/Np

1− 1/Np

×
∏

p|a, p - θ0

(
1− L(p)

Np

)−1
L(a)
Na

· P

log Y

×
{

1 + O

(
log log 3Na

log Y

)}
+ O

{
L(a)

( P

Na

)1−1/n

Y 2/n log3 Y + L(a)Y 2

}
,

where w denotes the number of roots of unity , h the class number and R the
regulator of the field K.

P r o o f. We make use of a Selberg-type upper bound sieve in K, as
described in [8] (see also [4]). Let us take as the sequence to be sifted

A = {F (α) : α ∈ R0(P ), F (α) ≡ 0 mod a},

and as the sifting set

P = {p ⊂ ZK : Np ≤ Y, p - aθ0}.

Using the abbreviation

T (Y ) =
∏
p∈P

L(p) 6=0

p,

we see at once that

(25)
∑

α∈R0(P )
F (α)≡0 mod a

p|F (α)⇒Np>Y or p|aθ0

1 ≤
∑

α∈R0(P )
F (α)≡0 mod a
(F (α),T (Y ))=1

1.

The expression on the right of (25) has already been considered in [8]. There,
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on page 450, we find the estimate∑
α∈R0(P )

F (α)≡0 mod a
(F (α),T (Y ))=1

1 ≤ (2π)r2

|
√

d|
P

L(a)
Na

S−1(a, Y )

+ O

{
L(a)

(
P

Na

)1−1/n

Y 2/n log3 Y + L(a)Y 2

}
,

where

S(a, Y ) =
∑

Nb≤Y
b|T (Y )

L(b)
Nb

∏
p|b

(
1− L(p)

Np

)−1

=
∑

Nb≤Y
(b,aθ0)=1

µ(b)2
L(b)
Nb

∏
p|b

(
1− L(p)

Np

)−1

.

The problem is now to investigate the asymptotic behaviour of the function
S(a, Y ). Arguing in precisely the same way as in Lemma 2.5 of [4] we obtain

S−1(a, Y ) = eγ0
∏
p∈P

(
1− L(p)

Np

){
1 + O

(
log log 3Na

log Y

)}

= eγ0
∏

Np≤Y

p|a,p - θ0

(
1− L(p)

Np

)−1 ∏
Np≤Y

p - θ0

(
1− L(p)

Np

)

×
{

1 + O

(
log log 3Na

log Y

)}
.

A simple calculation shows that∏
Np>Y

p|a, p - θ0

(
1− L(p)

Np

)
= 1 + O

(
log log 3Na

log Y

)
.

This relation is trivial if log 3Na ≥ Y ; otherwise we have by (11),

1 ≥
∏

Np>Y

p|a, p - θ0

(
1− L(p)

Np

)
≥

(
1− g

Y

)v(a)

≥ 1− gv(a)
Y

≥ 1− c14
log Na

Y log log 3Na
≥ 1− c15

log Y
,

where v(a) � Na/log log 3Na denotes the number of distinct prime ideal
divisors of a.
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To complete the proof of Lemma 4 it only remains to apply the formula
(see e.g. [8], Lemma 4.1)∏
Np≤Y

p - θ0

(
1− L(p)

Np

)
= e−γ0

w|
√

d|
(2π)r22r1hR

∏
p - θ0

1− L(p)/Np

1− 1/Np

∏
p|θ0

(
1− 1

Np

)−1

× 1
log Y

{
1 + O

(
1

log Y

)}
.

Finally, in the proof of Theorem 2 we shall make use of the following
result.

Lemma 5. Let t ≥ 1 be a real number. Then∑
Na≤X

L(a)
Na

∆(a)t �t (log X)2
t−t+o(1) as X →∞.

P r o o f. We argue in the same way as Tenenbaum did in [11], Lemma 2.2.
For the sake of completeness let us repeat the main steps.

We start by recalling from the introduction the definition

∆(a) = max
u∈R

∆(a, u),

where
∆(a, u) = |{b | a : u < log Nb ≤ u + 1}|.

For an integer q ≥ 2, consider

Mq(a) =
∞∫

−∞
∆(a, u)q du.

It is easily seen that

(26) 21−q∆(a)q ≤ Mq(a) ≤ D(a)q,

where again D(a) denotes the number of ideal divisors of a. Let us now
introduce the series

L(σ) =
∑

a

µ(a)2Mq(a)t/qL(a)(Na)−σ, 1 < σ ≤ 2.

Making use of (26) and the simple fact that

∆(ab) ≤ ∆(a)D(b),

we obtain at once∑
Na≤X

L(a)
Na

∆(a)t ≤
∑

Na≤X

µ(a)2
∆(a)tL(a)

Na

∑
b

p|b⇒p2|b

D(b)tL(b)
Nb

�t L

(
1 +

1
log X

)
.
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It remains to deal with the function L(σ). To this end we apply the
method of differential inequalities as described in [3], Chapter 7. The
method starts from the following identity, valid for integral ideals a and
prime ideals p not dividing a:

∆(pa, u) = ∆(a, u) + ∆(a, u− log Np).

Raising to the power q and integrating, we deduce that

Mq(pa) =
q∑

j=0

(
q

j

) ∞∫
−∞

∆(a, u− log Np)j∆(a, u)q−j du(27)

= 2Mq(a) + Eq(a, p),
where

Eq(a, p) =
q−1∑
j=1

(
q

j

) ∞∫
−∞

∆(a, u− log Np)j∆(a, u)q−j du.

Let us pause to study the expression Eq(a, p). For 1 ≤ j ≤ q−1, we consider

(28)
∑

p

∆(a, u− log Np)j log Np

Np
,

and we find immediately that an upper bound for this sum is

c16

∑ ′

b1|a

. . .
∑ ′

bj |a

1,

where the dash means the additional summation condition

log( max
m=1,...,j

Nbm)− log( min
m=1,...,j

Nbm) < 1.

Hence the sum in (28) does not exceed

c16

∑
b1|a

. . .
∑
bj |a

(
2− log

maxm Nbm

minm Nbm

)j

= c16

∞∫
−∞

(∆(a, u− 1) + ∆(a, u))j du

≤ c162j
∞∫

−∞
∆(a, u)j du.

This leads us to∑
p

Eq(a, p)
log Np

Np
≤ c16

q−1∑
j=1

(
q

j

)
2j

∞∫
−∞

∆(a, u)j du
∞∫

−∞
∆(a, u)q−j du.

Now Hölder’s inequality gives, for 1 ≤ m ≤ q − 1,
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∞∫
−∞

∆(a, u)m du

≤
{ ∞∫
−∞

∆(a, u) du
}(q−m)/(q−1){ ∞∫

−∞
∆(a, u)q du

}(m−1)/(q−1)

,

so that∑
p

Eq(a, p)
log Np

Np

≤ c16

q−1∑
j=1

(
q

j

)
2j

{ ∞∫
−∞

∆(a, u) du
}q/(q−1){ ∞∫

−∞
∆(a, u)q du

}(q−2)/(q−1)

= c164qD(a)q/(q−1)Mq(a)(q−2)/(q−1).

This completes our treatment of Eq(a, p).
Returning to (27) we obtain for 1 < σ ≤ 2,∑

p

Mq(a, p)
L(p) log Np

Np

≤ 2Mq(a)
∑

p

L(p) log Np

Npσ
+ c174qD(a)q/(q−1)Mq(a)(q−2)/(q−1)

≤ 2Mq(a)
{

1
σ − 1

+ c18

}
+ c174qD(a)q/(q−1)Mq(a)(q−2)/(q−1),

on using (9) in the last step.
An application of the inequalities of Hölder and Minkowski now leads us

to

−L′(σ) =
∑

a

µ(a)2Mq(a)t/q L(a)
Naσ

∑
p|a

log Np

=
∑

p

∑
a

p - a

µ(a)2Mq(pa)t/q L(pa) log Np

(Npa)σ

≤ 2t/qL(σ)
(

1
σ − 1

+ c18

)
+ c19

(
1

σ − 1
+ c18

)1−t/q

×
∑

a

µ(a)2Mq(a)t(q−2)/(q(q−1)) L(a)D(a)t/(q−1)

Naσ
.

Proceeding now in exactly the same way as at the corresponding stage of
[11], we arrive at

−L′(σ) ≤ 2t/qL(σ)(σ − 1)−1 + c20L(σ)(q−2)/(q−1)(σ − 1)t/q−1−2t/(q−1).
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This differential inequality is the heart of the matter. The corresponding
differential equation has solution

T (σ) = Q(σ − 1)t−2t−t/q,

where

Q =
(

c20

2t − t + t/q − 2t/q

)q−1

≤ (c21q)q.

Since L(2) ≤ T (2), we see by Lemma 70.2 of [3] that L(σ) ≤ T (σ) through-
out the range 1 < σ ≤ 2. Thus, to complete the proof of Lemma 5 it only
remains to choose

σ = 1 +
1

log X
, q =

[√
2t log log X

log log log X

]
.

We are now in a position to give the

P r o o f o f T h e o r e m 2. For given t ≥ 1 let q(t) be a sufficiently small
positive parameter that remains to be chosen. We put

(29) Z = exp
{

q(t)
log P

log log P

}
.

Analogously to (14), we decompose (F (α)) 6= (1) for α ∈ R0(P ) in the form

(F (α)) = q1(α)q2(α),

where all prime ideal factors of q1(α) (resp. q2(α)) have norms ≤ Z (resp.
> Z).

Let us first deal with the sum

(30)
∑

α∈R0(P )
Nq1(α)>Y

∆(F (α))t, where Y ≥ Z ≥ 2.

An application of the Cauchy–Schwarz inequality yields

(31)
∑

α∈R0(P )
Nq1(α)>Y

∆(F (α))t ≤
{ ∑

α∈R0(P )
Nq1(α)>Y

1
}1/2{ ∑

α∈R0(P )

∆(F (α))2t
}1/2

.

For the second term on the right of (31) an appeal to Lemma 3 shows that

(32)
∑

α∈R0(P )

∆(F (α))2t ≤
∑

α∈R0(P )

{ ∑
a|F (α)

1
}2t

�t P (log P )4
gt

.

It remains to estimate the first expression on the right of (31). To this
end, we dissect the sum under consideration into two parts S1 and S2 cor-
responding to the additional condition Nk(q1(α)) < Y 1/(3g) or Nk(q1(α)) ≥
Y 1/(3g) respectively, where k(a) =

∏
p|a p denotes the “kernel” of the ideal a.
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If Nq1(α) > Y and Nk(q1(α)) < Y 1/(3g) for α ∈ R0(P ), then∏
pl‖q1(α)

l≥3g

Npl ≥ Nq1(α) · (Nk(q1(α)))−3g+1 > Y 1/(3g),

so that, making also use of (15),

S1 ≤
∑

Y 1/(3g)<Na≤c7P g

pl‖a⇒l≥3g

∑
α∈R0(P )

F (α)≡0 mod a

1.

Here, we mean as usual by pl ‖ a that pl | a, but pl+1 - a. Consequently, (4)
and (11) lead us, for 0 < u < 1, to the estimate

S1 �
∑

Y 1/(3g)<Na≤c7P g

pl‖a⇒l≥3g

L(a)
(

P

Na
+ 1

)

�
∑

Na≤c7P g

pl‖a⇒l≥3g

c
v(a)
22

{
P

Na
(Na · Y −1/(3g))u +

(
P g

Na

)1−u}
,

where v(a) denotes as before the number of distinct prime ideal divisors of
a. Noting that the series ∑

a
pl‖a⇒l≥3g

c
v(a)
22 ·Nau−1

is convergent for u < 1− 1/(3g), we choose for instance u = 1− 1/(2g) and
thus obtain at once

(33) S1 � P · Y − 1
3g (1− 1

2g ) + P 1/2.

Taking Y = P 1/3, we see, by (31) and (32), that the contribution of S1 to the
expression (30) is of order � P 1−1/(18g), which is acceptable in Theorem 2.

Let us now turn our attention to

S2 = |{α ∈ R0(P ) : Nq1(α) > Y, Nk(q1(α)) ≥ Y 1/(3g)}|,
where Y = P 1/3.

The estimation of this cardinality runs along the lines of the proof of
Lemma 3.5 in [10]. We start from the inequality

(34) S2 ≤ Y −z/(3g)
∑ ′

α∈R0(P )

Nk(q1(α))z, z = 1/log Z,

where the dash indicates that summation is over those numbers α only for
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which q1(α) 6= (1). Our aim is to show that∑ ′

α∈R0(P )

Nk(q1(α))z � P.

To this end it is convenient to introduce a strongly multiplicative function
H, defined by

(35) H(p) =
{

Npz if Np ≤ Z,
1 if Np > Z,

so that ∑ ′

α∈R0(P )

Nk(p1(α))z =
∑ ′

α∈R0(P )

H(F (α)).

For any α ∈ R0(P ) satisfying q1(α) 6= (1) let us arrange the prime ideal
divisors p of F (α) with p - θ0 according to their norms. The ordering of ideals
with equal norms is irrelevant. We now choose an integer m = m(α) ≥ 1 in
such a way that

Ng(α, m) :=
m∏

j=1

pj |F (α), pj - θ0

Npj ≤ P 1/4, but
m+1∏
j=1

pj |F (α), pj - θ0

Npj > P 1/4.

Remember that, in view of q1(α) 6= (1), there is a prime ideal factor p of
F (α) with Np ≤ Z ≤ P 1/4.

Let us consider separately the sums

(36)
∑ ′

α∈R0(P )

Ng(α,m)≤P 1/6

H(F (α)) and
∑ ′

α∈R0(P )

P 1/6<Ng(α,m)≤P 1/4

H(F (α)).

In the first case we note that, by our choice of m, every prime ideal divisor
pj of F (α) with pj - θ0 and j > m satisfies

Npj > P 1/4 ·Ng(α, m)−1 ≥ P 1/12.

Moreover, we obtain, in view of H(p) ≤ e,

H
( ∏

pl‖F (α)
p|θ0

pl
∏

pl
j‖F (α)

j>m

pl
j

)
� exp

{ ∑
pj |F (α)

j>m

1
}
� exp{12g}.

This leads us to the estimate∑ ′

α∈R0(P )

Ng(α,m)≤P 1/6

H(F (α)) �
∑

Na≤P 1/6

(a,θ0)=1

µ(a)2H(a)
∑

α∈R0(P )
F (α)≡0 mod a

p|F (α)⇒p|aθ0 or Np>P 1/12

1.
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If now we make use of Lemma 4, we are able to conclude that

(37)
∑ ′

α∈R0(P )

Ng(α,m)≤P 1/6

H(F (α))

� P

log P

∑
Na≤P 1/6

(a,θ0)=1

µ(a)2H(a)
L(a)
Na

∏
p|a

(
1− L(p)

Np

)−1

.

By standard calculations it follows at once from (11), (12) and (35) that the
expression on the right-hand side of (37) has the desired order, namely

� P (log P )−1
∏

Np≤P

p - θ0

(
1 + H(p)

L(p)
Np− L(p)

)

� P (log P )−1 exp
{ ∑

Np≤P

(
H(p)

L(p)
Np

+
c23

Np2

)}

� P exp
{ ∑

Np≤Z

(H(p)− 1)
L(p)
Np

}

� P exp
{

e

log Z

∑
Np≤Z

L(p)
log Np

Np

}
� P.

In order to attack the second sum in (36) we first note that, by (15)
and (35),∏

j>m

pj |F (α), pj - θ0

H(pj) ≤ exp
{ ∑

j>m

p|F (α),pj - θ0

1
}
≤ exp

{
(g + 1)

log P

log Npm

}
.

Moreover,

P 1/6 < Ng(α, m) ≤ Npv(g(α,m))
m ≤ Np

c24· log P
log log P

m .

Using these facts we find with c25 = (6c24)−1 that∑ ′

α∈R0(P )

P 1/6<Ng(α,m)≤P 1/4

H(F (α)) �
∑

(log P )c25<Np′≤P 1/4

p′ prime, p′ - θ0

P (g+1)/ log Np′

×
∑

P 1/6<Na≤P 1/4

(a,θ0)=1, p′|a
p|a⇒Np≤Np′

µ(a)2H(a)
∑

α∈R0(P )
F (α)≡0 mod a

p|F (α)⇒p|aθ0 or Np>Np′−1

1.
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An application of Lemma 4 now leads us to the estimate

(38)
∑ ′

α∈R0(P )

P 1/6<Ng(α,m)≤P 1/4

H(F (α)) � P
∑

c26≤Np′≤P 1/4

p′ prime, p′ - θ0

P (g+1)/ log Np′

log Np′

×
∑

P 1/6<Na≤P 1/4

(a,θ0)=1,p′|a
p|a⇒Np≤Np′

µ(a)2H(a)
L(a)
Na

∏
p|a

(
1− L(p)

Np

)−1

.

Using the abbreviation
u0 = 12(g + 1)/ log Np′,

the innermost sum in (38) gives, in view of (11), a contribution of order

≤ H(p′)L(p′)
Np′ − L(p′)

∑
P 1/6/Np′<Nb≤P 1/4/Np′

(b,θ0)=1
p|b⇒Np≤Np′

µ(b)2H(b)
L(b)
Nb

∏
p|b

(
1− L(p)

Np

)−1

�
(

Np′

P 1/6

)u0 1
Np′

∑
(b,θ0)=1

p|b⇒Np≤Np′

µ(b)2H(b)L(b)Nbu0−1
∏
p|b

(
1− L(p)

Np

)−1

� (Np′)u0−1P−u0/6
∏

Np≤Np′

p - θ0

(
1 +

H(p)L(p)
Np− L(p)

Npu0

)

� (Np′)−1P−u0/6 exp
{ ∑

Np≤Np′

H(p)L(p)
Np1−u0

}
.

Moreover, by (12),∑
Np≤Np′

H(p)L(p)
Np

(Npu0 − 1) � u0

∑
Np≤Np′

L(p)
Np

log Np � 1.

Returning to (38), these results yield, in view of (12), (35) and eu ≥ u
for u ≥ 0,∑ ′

α∈R0(P )

P 1/6<Ng(α,m)≤P 1/4

H(F (α))

� P
∑

Np′≤P

P−(g+1)/ log Np′

Np′
exp

{ ∑
Np≤Np′

(H(p)− 1)L(p)
Np

}

� P (log P )−1
∑

Np≤P

log Np

Np
exp

{
e

log Z

∑
Np≤Z

L(p)
log Np

Np

}
� P.
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If we combine this with (31), (32), (33) and (34), we arrive readily at∑
α∈R0(P )

Nq1(α)>P 1/3

∆(F (α))t �t P 1/2(log P )2
2gt−1

{P
1
2−

1
36g + P

1
2−

1
18g log Z }

�t P (log P )4
gt−1/(18gq(t)),

where, for the last step, we have used (29). This is acceptable in Theorem
2 if q(t) ≤ 4−gt/(18g), as we henceforth assume.

Thus our problem has been reduced to that of establishing a suitable
bound for the expression ∑

α∈R0(P )

Nq1(α)≤P 1/3

∆(F (α))t,

where q1(α) = (1) if (F (α)) = (1). We start from the obvious inequality

∆(F (α)) ≤ ∆(q1(α))
∑

a|q2(α)

1,

so that, making also use of (24),∑
α∈R0(P )

Nq1(α)≤P 1/3

∆(F (α))t ≤
∑

α∈R0(P )

Nq1(α)≤P 1/3

∆(q1(α))t
( ∑

a|q2(α)

1
)t

�t

∑
α∈R0(P )

Nq1(α)≤P 1/3

∆(q1(α))t

×
∑

a|q2(α)

Na≤Nq2(α)1/(3g+1)

( ∑
c|a

1
)(3g+1)t

.

For α ∈ R0(P ) we have from (15),

Nq2(α)1/(3g+1) ≤ |NF (α)|1/(3g+1) ≤ P 1/3.

This leads us immediately to∑
α∈R0(P )

Nq1(α)≤P 1/3

∆(F (α))t

�t

∑
Na≤P 1/3

p|a⇒Np≤Z

∆(a)t
∑

Nb≤P 1/3

p|b⇒Np>Z

( ∑
c|b

1
)(3g+1)t ∑

α∈R0(P )
F (α)≡0 mod ab

p|F (α)⇒p|a or Np>Z

1.
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We are now again in a position to apply Lemma 4, and we obtain, in view
of (29), ∑

α∈R0(P )

Nq1(α)≤P 1/3

∆(F (α))t �t
P log log P

log P

∑
Na≤P

∆(a)t L(a)
Na

×
∏
p|a

p - θ0

(
1− L(p)

Np

)−1 ∑
Nb≤P

p|b⇒Np>Z

L(b)
Nb

×
( ∑

c|b

1
)(3g+1)t ∏

p|b
p - θ0

(
1− L(p)

Np

)−1

.

It is easy to check (cf. [8], Lemma 4.2) that

∏
p|d

p - θ0

(
1− L(p)

Np

)−1

� log log 3Nd,

so that finally∑
α∈R0(P )

Nq1(α)≤P 1/3

∆(F (α))t �t
P (log log P )3

log P

∑
Na≤P

∆(a)t L(a)
Na

×
∏

Z<Np≤P

( ∞∑
j=0

L(pj)
Npj

(j + 1)(3g+1)t

)

�t P (log P )−1+o(1)
∑

Na≤P

∆(a)t L(a)
Na

as P →∞.

For the last step we have only to observe that, by (12) and our choice of
Z in (29),

∏
Z<Np≤P

( ∞∑
j=0

L(pj)
Npj

(j + 1)(3g+1)t

)
�t exp

{
2(3g+1)t

∑
Z<Np≤P

L(p)
Np

}
�t (log log P )2

(3g+1)t

.

To complete the proof of Theorem 2 it only remains to apply Lemma 5.

P r o o f o f T h e o r e m 1. For b, s > 0 it follows from (21)–(23) that
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N(P ) � P (log P )−b − (log P )−b(s+1)
∑

α∈R0(P )

∆(F (α))1+s.

An appeal to Theorem 2 leads us to the estimate

N(P ) � P (log P )−b − P (log P )2
s+1−s−b(s+1)−2+o(1)

� P (log P )−b − P (log P )2
s+1−(b+1)(s+1)−1+o(1).

Since
2(2s − 1)

s
=

2
s
(es log 2 − 1) > 2 log 2 > 1,

we have

N(P ) � P (log P )−b if b >
2(2s − 1)

s
− 1.

For b > log 4− 1 we choose

s =
1

log 2
log

b + 1
log 4

> 0.

This is admissible because of

2(2s − 1)
s

− 1 <
2 · 2s · s · log 2

s
− 1 = 2s log 4− 1 = b.

Theorem 1 now follows in view of (6).
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