On cyclotomic \mathbb{Z}_p-extensions of real quadratic fields

by

Hisao Taya (Tokyo)

Dedicated to my father Kyuji Taya
on his sixtieth birthday

1. Introduction. Let p be a fixed odd prime number and \mathbb{Z}_p the ring of p-adic integers. Let k be a real quadratic field in which p splits, say $(p) = pp'$ in k, where $p \neq p'$. In the previous paper [6] we studied Greenberg’s conjecture for k and p; the conjecture asserts that both $\lambda_l(K)$ and $\mu_l(K)$ always vanish for any totally real number field K and any prime number l (cf. [8]). Here, and in what follows, for an algebraic number field K and a prime number l, $\lambda_l(K)$ and $\mu_l(K)$ denote the Iwasawa λ- and μ-invariants, respectively, of the cyclotomic \mathbb{Z}_l-extension of K (cf. [9]). In our situation that k is a real quadratic field, it is known that $\mu_p(k)$ always vanishes by the Ferrero–Washington theorem (cf. [3]), but it is not known whether $\lambda_p(k)$ also vanishes.

To study Greenberg’s conjecture for real quadratic fields in which p splits, we defined in [12] two invariants $n_0^{(r)}$ and $n_2^{(r)}$ for any integer $r \geq 0$, as follows: For the cyclotomic \mathbb{Z}_p-extension

$$k = k_0 \subset k_1 \subset \cdots \subset k_n \subset \cdots \subset k_\infty$$

with Galois group $\Gamma = \text{Gal}(k_\infty/k)$, let E_n be the group of units in k_n, p_n (resp. p'_n) the unique prime ideal of k_n lying over p (resp. p') and d_n the order of the ideal class $\text{Cl}(p'_n)$ represented by p'_n in the ideal class group of k_n (this equals the order of $\text{Cl}(p_n)$). For each $m \geq n \geq 0$, we denote by $N_{m,n}$ the norm map from k_m to k_n. Then, for any integer $r \geq 0$, we can choose $\alpha_r \in k_r$ such that $p_r^{d_r} = (\alpha_r)$. Let ε be the fundamental unit of k. Now two

Key words and phrases: Iwasawa invariants, real quadratic fields, unit groups, ambiguous ideal class groups.

Research supported in part by Waseda University Grant for Special Research Projects 94A-129.

[107]
positive integers $n_0^{(r)}$ and $n_2^{(r)}$, which are invariants of k, are defined by

\[p^{n_0^{(r)}} \parallel (N_{r,0}(\alpha_r)^{p-1} - 1) \text{ in } k \quad \text{and} \quad p^{n_2^{(r)}} = p^{n_2}(E_0 : N_{r,0}(E_r)), \]

where n_2 denotes the positive integer such that $p^{n_2} \parallel (\varepsilon^{p-1} - 1)$ in k (see also [5] and [6]). Though α_r is not unique, $n_0^{(r)}$ is uniquely determined under the condition $n_0^{(r)} \leq n_2^{(r)}$. We put $n_0 = n_0^{(0)}$, noting that $n_2 = n_2^{(0)}$.

In the present paper, we shall study the properties of the invariants $n_0^{(r)}$ and $n_2^{(r)}$, and give a certain criterion for the vanishing of $\lambda_p(k)$ in terms of $n_0^{(r)}$. To be more precise, we first show in Section 2 an alternative definition of $n_0^{(r)}$ and $n_2^{(r)}$, which seems more natural than the former one (cf. Lemma 2 and Remark 1). Secondly, by determining the structure of certain quotient groups of the p-unit group (resp. the unit group) of k_r (cf. Lemmas 5 and 7), we give in Section 3 the ambiguous p-class number formula (resp. the ambiguous class number formula) of intermediate fields of k_∞/k_r in terms of $n_0^{(r)}$ (resp. $n_2^{(r)}$) (cf. Theorems 1 and 2). In Section 3 we also mention the p-adic L-function and the order of certain Galois groups (cf. Proposition 1). Thirdly, we give in Section 4 the following criterion which is the main theorem of this paper:

Theorem (cf. Theorem 4). Let p and k be as above. Let A_0 be the p-Sylow subgroup of the ideal class group of k. Then $\lambda_p(k)$ vanishes if and only if the following two conditions are satisfied:

1. Every ideal class of A_0 becomes principal in k_n for some integer $n \geq 0$.
2. $n_0^{(r)} = r + 1$ for some integer $r \geq 0$.

In the previous paper [6], we gave a certain necessary and sufficient condition for the vanishing of $\lambda_p(k)$ under an assumption under which it is easily seen that condition (1) holds (see Theorem 2 of [6] or Corollary 4). The criterion stated in our main theorem is a generalization of Theorem 2 of [6] (and hence of Theorem of [4] and Theorem 1 of [5]). Making a comparison with the case where p does not split in k, the criterion shows the difference of situations between the splitting case and the non-splitting case (cf. Remark 2). Finally, in the last section, we make an additional remark about the verification of the vanishing of $\lambda_p(k)$ based on our main theorem.

The notation introduced above will be used in the same meaning throughout this paper. Moreover, we denote by $\alpha_r \in k_r$ a generator of $p_r^{d_r}$ satisfying

\[p^{n_0^{(r)}} \parallel (N_{r,0}(\alpha_r)^{p-1} - 1) \quad \text{and} \quad n_0^{(r)} \leq n_2^{(r)}, \]

that is to say, $\alpha_r \in k_r$ is a generator of $p_r^{d_r}$ which determines $n_0^{(r)}$.

2. Some lemmas. In this section, we shall describe some properties of $n_0^{(r)}$ and $n_2^{(r)}$. The following lemma, which is a basic fact, is an immediate consequence of the definitions of $n_0^{(r)}$ and $n_2^{(r)}$.

Lemma 1. For each integer $r \geq 0$,
1. $r + 1 \leq n_0^{(r)} \leq n_2^{(r)}$,
2. $n_0^{(r)} \leq n_0^{(r+1)} \leq n_0^{(r)} + 1$,
3. $n_2^{(r)} \leq n_2^{(r+1)} \leq n_2^{(r)} + 1$.

In particular, if $n_0^{(r)} = r + 1$ (resp. $n_2^{(r)} = r + 1$) for some integer $r \geq 0$, then $n_0^{(s)} = s + 1$ (resp. $n_2^{(s)} = s + 1$) for all integers $s \geq r$.

Let k_p be the completion of a real quadratic field k at p and fix a prime element of k_p throughout this section. Let Ω_p denote the completion of the algebraic closure of k_p and \hat{D} the subgroup of the multiplicative group Ω_p^{\times} consisting of elements $u \in \Omega_p$ such that $v_p(u - 1) > 0$, v_p being the p-adic normalized valuation on Ω_p. Moreover, we denote by \log_p the p-adic logarithm extended to Ω_p so that $\log_p(v) = 0$ for all $v \in \Omega_p \setminus \hat{D}$ and that $\log_p(u) = \log_p(u) + \log_p(v)$ for all $u, v \in \Omega_p$ (cf. [10] or [13]). Since p splits in k, k_p is isomorphic to the field \mathbb{Q}_p of p-adic numbers. Therefore, v_p and \log_p can be essentially identified with the p-adic valuation v_p and the p-adic logarithm \log_p, respectively. However, we will use the former notation to specify the fixed prime.

Let E_n be the group of p-units in k_n, i.e., the group of elements ε_n of k_n with $v_p(\varepsilon_n) = 0$ for all prime ideals \mathfrak{p} of k_n outside p. The following lemma is now obvious, but its proof will be given for the sake of completeness.

Lemma 2. For each integer $r \geq 0$,
1. $n_0^{(r)} = \min \{ v_p(\log_p(N_{r,0}(\varepsilon^*_r))) \mid \varepsilon^*_r \in E_r^* \}$,
2. $n_2^{(r)} = \min \{ v_p(\log_p(N_{r,0}(\varepsilon_r))) \mid \varepsilon_r \in E_r \}$.

Proof. We first prove (2). Let $\varepsilon_r \in E_r$. Then $N_{r,0}(\varepsilon_r) = \pm \varepsilon^{a(E_0:N_{r,0}(E_r))}$, where ε denotes the fundamental unit of k and $a \in \mathbb{Z}$. If $a = 0$, then $v_p(\log_p(N_{r,0}(\varepsilon_r))) = \infty$. Thus we may assume that $a \neq 0$. From the definition of n_2 and Lemma 5.5 of [13], it follows that $v_p(\log_p(\varepsilon)) = n_2$, which implies that
$$v_p(\log_p(N_{r,0}(\varepsilon_r))) = v_p(aE_0 : N_{r,0}(E_r)) \log_p(\varepsilon)$$
$$= v_p(a) + v_p((E_0 : N_{r,0}(E_r))) + n_2$$
$$= v_p(a) + n_2^{(r)} \geq n_2^{(r)}.$$
On the other hand, there exists an element ε_r of E_r such that $N_{r,0}(\varepsilon_r) = \pm \varepsilon(E_0 : N_{r,0}(E_r))$, so that $a = 1$. Hence the assertion holds.
Next we prove (1). Let $\varepsilon_r^* \in E_r^*$. Then we can write $\varepsilon_r^* = \varepsilon_r \alpha_r^b$ with $\varepsilon_r \in E_r$ and $b \in \mathbb{Z}$. Here α_r denotes a generator of $p_r^{d_r}$ which determines $n_0^{(r)}$ as in the introduction. Similarly, it follows that $v_p(\log_p(N_{r,0}(\alpha_r))) = n_0^{(r)}$. Further, we have

$$v_p(\log_p(N_{r,0}(\varepsilon_{r}^*))) = v_p(\log_p(N_{r,0}(\varepsilon_r)) + b \log_p(N_{r,0}(\alpha_r)))$$

$$\geq \min\{v_p(\log_p(N_{r,0}(\varepsilon_r))), v_p(b \log_p(N_{r,0}(\alpha_r)))\}$$

$$\geq \min\{n_2^{(r)}, n_0^{(r)}\} \geq n_0^{(r)}.$$

Therefore we obtain the desired result. □

Remark 1. We may define the invariants $n_0^{(r)}$ and $n_2^{(r)}$ by (1) and (2), respectively, in Lemma 2.

3. The ambiguous class number formulae. In [4], Fukuda and Komatsu explicitly gave the genus formula for the p-part of ambiguous class groups of intermediate fields of k_∞/k in terms of n_2 (cf. Proposition 1 of [4] or Corollary 2). In this section, for any integer $r \geq 0$, we generalize this formula in terms of $n_2^{(r)}$ and also give an analogous formula in terms of $n_0^{(r)}$.

For the cyclotomic \mathbb{Z}_p-extension k_∞ of a real quadratic field k, let k_n be the unique intermediate field of k_∞/k of degree p^n, k_{p_n} the completion of k_n at p_n and E_{p_n} the group of units in k_{p_n}. Since p splits in k, we may identify k_p with \mathbb{Q}_p in what follows. Thus, by embedding k in \mathbb{Q}_p, we may write $N_{r,0}(\alpha_r)^{p-1} \in k$ in the form of a p-adic integer as follows:

$$N_{r,0}(\alpha_r)^{p-1} = 1 + p^{n_0^{(r)}} x_r, \quad x_r \in \mathbb{Z}_p^\times.$$

Here $\alpha_r \in k_r$ is the same as in the last part of the introduction. Now we put

$$U_n = \{u \in E_{p_n} \mid u \equiv 1 \pmod{p_n}\}$$

and

$$U_n^{(r)} = \{u \in U_n \mid N_{n,0}(u) \equiv 1 \pmod{p^{n+r+1}}\}$$

for any integer $n, r \geq 0$. Then we easily see that

$$U_n \supset U_n^{(0)} \supset U_n^{(1)} \supset \ldots \supset U_n^{(r)} \supset \ldots$$

Applying local class field theory, we can prove the following (see, e.g., [11] in which we assumed that $r \geq s$, but, in fact, its proof works without such an assumption).

Lemma 3. Let r be a non-negative integer. Then $N_{r+s,r}(U_{r+s}) = U_{r}^{(s)}$ for all integers $s \geq 0$.

First, we shall give the genus formula for the p-part of ambiguous p-class groups of intermediate fields of k_∞/k_r in terms of $n_0^{(r)}$, which is analogous to a generalization of Proposition 1 of [4]. Let Γ_r be the Galois group
Gal(k_∞/k_r) of k_∞ over k_r (so $\Gamma = \Gamma_0$), A'_n the p-Sylow subgroup of the p-ideal class group of k_n and $A'_n \Gamma$ the subgroup of A'_n consisting of p-ideal classes which are invariant under the action of Γ, namely, the p-part of the ambiguous p-class group of k_n over k_r. Here, by the p-ideal class group of k_n, we mean the ideal class group of the ring of p-integers in k_n: a p-integer in k_n means an element α of k_n with $v_l(\alpha) \geq 0$ for all prime ideals l of k_n outside p, namely, outside p_n and p'_n. Note that if A_n denotes the p-Sylow subgroup of the ideal class group of k_n and D_n the subgroup of A_n consisting of ideal classes represented by products of prime ideals of k_n lying over p, then $A'_n \simeq A_n/D_n$.

Moreover, let E'_n be the group of p-units in k_n, i.e., the group of elements ε_n of k_n with $v_l(\varepsilon_n) = 0$ for all prime ideals l of k_n outside p, namely, outside p_n and p'_n. Using the above lemma, we show two lemmas.

Lemma 4. Let r be a non-negative integer. Then $E'_r = E'_r \cap N_{n,r}(k_n^\times)$ for all integers n with $r \leq n \leq n_0^{(r)} - 1$.

Proof. First we prove the case where $n = n_0^{(r)} - 1$. Let Q_r be the unique intermediate field of the cyclotomic Z_p-extension of Q with degree p^r and π_r the image of $1 - \zeta_{p^{r+1}}$ under the norm map from $Q(\zeta_{p^{r+1}})$ to Q_r, where $\zeta_{p^{r+1}}$ denotes a primitive p^{r+1}th root of unity. Then we see that E'_r is generated by E_r, α_r and π_r. Since π_r is a global norm from k_n, it suffices to prove that any element of the p-unit group E'_r is a global norm from k_n.

Let $\varepsilon'_r \in E'_r$. Then Lemma 2 shows that $N_{r,0}(\varepsilon'_r)^{p-1} = 1/p^{\nu_0^{(r)}(y_r)}$ with $y_r \in Z_p$, so that

$$N_{r,0}(\varepsilon'_r)^{p-1} \equiv 1 \pmod{p^{r+(n_0^{(r)}-r-1)+1}}.$$

Thus $\varepsilon'_r \in U_r^{(n_0^{(r)}-r-1)}$. By Lemma 3, $\varepsilon'_r \in N_{n_0^{(r)}-1,r}(U_r^{(n_0^{(r)}-1)})$. Since any prime ideal which does not lie over p is unramified in k_∞/k, the product formula for the norm residue symbol and Hasse’s norm theorem imply that ε'_r is a global norm from $k_{n_0^{(r)}-1}$, and so is ε'_r. Therefore $E'_r \subset N_{n_0^{(r)}-1,r}(k_{n_0^{(r)}-1}^\times)$, and hence $E'_r \subset N_{n_0^{(r)}-1,r}(k_{n_0^{(r)}-1}^\times)$. Thus the assertion follows.

Now assume that n is an integer with $r \leq n < n_0^{(r)} - 1$. Since

$$N_{n_0^{(r)}-1,r}(k_{n_0^{(r)}-1}^\times) \subset N_{n,r}(k_n^\times),$$

it follows that $E'_r \subset N_{n,r}(k_n^\times)$. This completes the proof.

It is well known that E'_r is a finitely generated abelian group of Z-rank $2p^r + 1$. However, the following lemma holds.
Lemma 5. Let \(r \) be a non-negative integer. Then

\[
E'_r / (E'_r \cap N_{n,r}(k_n^\times)) \simeq \mathbb{Z}/p^{n-n_0(r)} + 1 \mathbb{Z}
\]

for all integers \(n \geq n_0(r) \).

Proof. For an element \(\alpha_r \) of \(E'_r \) which is used to determine \(n_0(r) \), we see that

\[
N_{r,0}(\alpha_r)^{(p-1)p^{n-n_0(r)}} = 1 + p^n x_r, \quad x_r \in \mathbb{Z}_p^\times.
\]

Now assume that \(\alpha_r^{(p-1)p^{n-n_0(r)}} \in N_{n,r}(k_n^\times) \) for some \(n \geq n_0(r) \). Then, since \(\alpha_r^{(p-1)p^{n-n_0(r)}} = N_{n,r}(\beta_n) \) for some \(\beta_n \in k_n \), we have

\[
N_{r,0}(\alpha_r^{n-n_0(r)})^{p-1} = N_{n,0}(\beta_n)^{p-1} = 1 + p^{n+1} y_r, \quad y_r \in \mathbb{Z}_p,
\]

which contradicts the above equality. Hence \(\alpha_r^{(p-1)p^{n-n_0(r)}} \) is not a global norm from \(k_n \), and neither is \(\alpha_r^{n-n_0(r)} \). However, since

\[
N_{r,0}(\alpha_r^{(p-1)p^{n-n_0(r)}+1}) = 1 \pmod{p^{r+(n-r)+1}}.
\]

It follows from Lemma 3 that \(\alpha_r^{p^{n-n_0(r)+1}} \) is a local norm from \(k_{p_n} \). Thus the product formula for the norm residue symbol and Hasse’s norm theorem imply that \(\alpha_r^{p^{n-n_0(r)+1}} \) is a global norm from \(k_n \). Therefore we find that \(E'_r / (E'_r \cap N_{n,r}(k_n^\times)) \) has an element of order \(p^{n-n_0(r)+1} \).

On the other hand, since the relative degrees of \(p_n \) and \(p'_n \) over \(k_r \) are 1, it follows from the genus formula for ambiguous \(p \)-class groups (cf. Appendix in [2]) that

\[
|A'_{n,r}| = |A'_r| \frac{p^{n-r}}{(E'_r : E'_r \cap N_{n,r}(k_n^\times))}.
\]

Hence, by Lemma 4,

\[
|A'_{n,r}| = |A'_r| p^{n_0(r)-1-r} \frac{p^{n-n_0(r)+1}}{(E'_r : E'_r \cap N_{n,r}(k_n^\times))} = |A'_{n,r}| \frac{p^{n-n_0(r)+1}}{(E'_r : E'_r \cap N_{n,r}(k_n^\times))}.
\]

Since \(k_{\infty} / k \) is totally ramified at \(p \), we see by class field theory that \(|A'_{n,r}| \geq |A'_{n_0(r)-1,r}| \), which implies that \((E'_r : E'_r \cap N_{n,r}(k_n^\times)) \leq p^{n-n_0(r)+1} \). Therefore our lemma follows. \(\blacksquare \)
By combining Lemmas 4 and 5, the next theorem is concluded from the genus formula for ambiguous p-class groups (cf. Appendix in [2]).

Theorem 1. Let p be an odd prime number and k a real quadratic field in which p splits. Further, let r be a non-negative integer. Then

$$|A_n^{Fr}| = \begin{cases} |A_r'|p^{n-r} & \text{if } r \leq n < n_0^{(r)} - 1, \\ |A_r'|p^{n_0^{(r)} - r - 1} & \text{if } n \geq n_0^{(r)} - 1. \end{cases}$$

In particular, $|A_n^{Fr}|$ remains bounded as $n \to \infty$.

Putting $r = 0$ in Theorem 1, we obtain the following:

Corollary 1. Let k and p be as in Theorem 1. Then

$$|A_n^F| = \begin{cases} |A'_0|p^n & \text{if } n < n_0 - 1, \\ |A'_0|p^{n_0 - 1} & \text{if } n \geq n_0 - 1. \end{cases}$$

Next, we shall give the genus formula for the p-part of ambiguous class groups of intermediate fields of k_∞/k_r in terms of $n_2^{(r)}$, which is a generalization of Proposition 1 in [4]. Let A_n be the p-Sylow subgroup of the ideal class group of k_n and A_n^{Fr} the subgroup of A_n consisting of ideal classes which are invariant under the action of $\Gamma_r = \text{Gal}(k_\infty/k_r)$, namely, the p-part of ambiguous class group of k_n over k_r. Then, by replacing E_n' by E_r, A_n' by A_r, A_n^{Fr} by A_r^{Fr} and $n_0^{(r)}$ by $n_2^{(r)}$, respectively, the above argument leads to the following two lemmas.

Lemma 6. Let r be a non-negative integer. Then $E_r = E_r \cap N_{n,r}(k_n^\times)$ for all integers n with $r \leq n \leq n_2^{(r)} - 1$.

Lemma 7. Let r be a non-negative integer. Then

$$E_r/(E_r \cap N_{n,r}(k_n^\times)) \cong \mathbb{Z}/p^{n-n_2^{(r)}+1}\mathbb{Z}$$

for all integers $n \geq n_2^{(r)}$.

The unit group E_r is a finitely generated abelian group of \mathbb{Z}-rank $2p^r - 1$. However, we should note that $E_r/(E_r \cap N_{n,r}(k_n^\times))$ is cyclic. By combining Lemmas 6 and 7, we obtain the following:

Theorem 2. Let p be an odd prime number and k a real quadratic field in which p splits. Further, let r be a non-negative integer. Then

$$|A_n^{Fr}| = \begin{cases} |A_r'|p^{n-r} & \text{if } r \leq n < n_2^{(r)} - 1, \\ |A_r'|p^{n_2^{(r)} - r - 1} & \text{if } n \geq n_2^{(r)} - 1. \end{cases}$$

In particular, $|A_n^{Fr}|$ remains bounded as $n \to \infty$.

Also, putting $r = 0$ in Theorem 2, we obtain the following:
Corollary 2 (cf. Proposition 1 of [4] or of [5]). Let k and p be as in Theorem 2. Then

$$|A^p_n| = \begin{cases} |A_0|p^n & \text{if } n < n_2 - 1, \\ |A_0|p^{n_2-1} & \text{if } n \geq n_2 - 1. \end{cases}$$

Finally, we give the following:

Proposition 1. Let k and p be as in Theorem 2, and let χ denote the non-trivial p-adic Dirichlet character associated with k, $L_p(s, \chi)$ the p-adic L-function associated with χ and M the maximal abelian p-extension of k which is unramified outside the prime ideals over p. Then

1. $|A^p_n| = p^{v_p(L_p(1, \chi))}$ for all integers $n \geq n_2 - 1$,
2. $|\text{Gal}(M/k)_{\infty}| = p^{v_p(L_p(1, \chi))}$.

In particular, if L denotes the maximal abelian unramified p-extension (i.e., the Hilbert p-class field) of k, then $|\text{Gal}(M/k_{\infty}L)| = p^{n_2-1}$. Here v_p denotes the p-adic valuation normalized by $v_p(p) = 1$.

Proof. First we prove (1). Let R_p be the p-adic regulator of k and \log_p the p-adic logarithm. Since $R_p = \log_p(\epsilon)$, we easily see that $v_p(R_p) = n_2$ (cf. Lemma 5.5 of [3]). Let Δ be the discriminant of k and h the class number of k. Then the p-adic class number formula (cf. [13]) implies that

$$L_p(1, \chi) = \frac{2hR_p}{\sqrt{\Delta}} \left(1 - \frac{\chi(p)}{p}\right).$$

Hence $v_p(L_p(1, \chi)) = v_p(h) + n_2 - 1$. Therefore (1) follows from Corollary 2.

We next prove (2). Let N denote the norm map from k to \mathbb{Q} and w the number of the roots of unity contained in $k(\zeta_p)$, where ζ_p is a primitive pth root of unity. Then it follows from the result of Coates (cf. Lemma 8 in Appendix of [1]) that

$$v_p(|\text{Gal}(M/k_{\infty})|) = v_p\left(\frac{whR_p}{\sqrt{\Delta}}(1 - N(p)^{-1})(1 - N(p')^{-1})\right) = v_p(h) + n_2 - 1.$$

This proves (2).

Since k_{∞}/k is totally ramified at p, we have $|\text{Gal}(k_{\infty}L/k_{\infty})| = |\text{Gal}(L/k)|$. Hence the last assertion immediately follows from (1), (2) and Corollary 2. \(\blacksquare\)

4. A criterion for the vanishing of $\lambda_p(k)$. We shall next give a necessary and sufficient condition for $\lambda_p(k)$ to vanish in terms of $n^{(r)}_0$. As in the preceding section, for the cyclotomic \mathbb{Z}_p-extension k_{∞} of a real quadratic field k, let A_n be the p-Sylow subgroup of the ideal class group of k_n, A^p_n the subgroup of A_n consisting of ideal classes which are invariant under the
action of $\Gamma = \text{Gal}(k_\infty/k)$ and D_n the subgroup of A_n consisting of ideal classes represented by products of prime ideals of k_n lying over p. We first refer to the following theorem of Greenberg.

Theorem 3 (cf. Theorems 1 and 2 of [8]). Let K be a totally real number field and l a fixed prime number. Let K_∞ denote the cyclotomic \mathbb{Z}_l-extension of K and K_n the unique intermediate field of K_∞/K of degree l^n.

1. Assume that l splits completely in K and also that Leopoldt’s conjecture is valid for K and l. Then $\lambda_l(K) = \mu_l(K) = 0$ if and only if $A^e_{n_l}(K) = D_n(K)$ for all sufficiently large integers n.

2. Assume that only one prime ideal of K lies over l and also that this prime is totally ramified in K_∞/K. Then $\lambda_l(K) = \mu_l(K) = 0$ if and only if every ideal class of A_0 becomes principal in K_n for some integer $n \geq 0$.

Here, $A^e_{n_l}(K)$ and $D_n(K)$ denote the corresponding objects of K to $A_{\Gamma n}(K)$ and $D_n(K)$ respectively.

In our situation, Corollary 2 gives the explicit description of the order $|A^f_{n_l}|$. Hence, by this theorem, we see that it is important to study $|D_n|$. The following lemma, which was proved in [6] as a key lemma, partially gives the behavior of $|D_n|$.

Lemma 8 (cf. Lemma 7 of [6]). Let r be a non-negative integer, and let s be a non-negative integer and t the integer such that $|D_{r+s}| = p^t|D_r|$. Then $n_0^{(r)} + t \geq \min\{n_0^{(r+s)}, n_2^{(r)}\}$.

For a fixed integer $r \geq 0$, we choose $n \geq n_2^{(r)} - 1$ and write $n = r + s$ with a non-negative integer s. Then it follows from Lemma 1 that $n_0^{(r+s)} \geq r + s + 1 \geq n_2^{(r)}$. Hence Lemma 8 shows that $t \geq n_2^{(r)} - n_0^{(r)}$, where t denotes the same as in Lemma 8. Further, noting that $|D_n|$ remains bounded as $n \to \infty$, we obtain the following as a corollary to Lemma 8.

Corollary 3. Let r be a non-negative integer. Then $|D_n| \geq |D_r|p^{n_2^{(r)}-n_0^{(r)}}$ for all integers $n \geq n_2^{(r)} - 1$. In particular, we have $n_0^{(s)} = n_2^{(s)}$ for all sufficiently large integers s.

Let $A^e_{r_l}$ be the subgroup of A_n consisting of ideal classes each of which contains an ideal invariant under the action of $\Gamma = \text{Gal}(k_\infty/k)$, namely, the p-part of the ambiguous class group of k_n over k containing an ambiguous ideal. Then the following lemma is an immediate consequence of the genus formula and the definition of $n_2^{(r)}$.

Lemma 9. For each integer $r \geq 0$, we have $|A^e_{r_l}| = |A_0|p^{r+n_2-n_2^{(r)}}$.
Note that \(D_n \subset \overline{A}_n^p \subset A_n^p \). We first give the following lemma concerning the relation between \(\overline{A}_n^p \) and \(A_n^p \).

Lemma 10. The following two statements are equivalent:

1. \(A_n^p = \overline{A}_n^p \) for all sufficiently large integers \(r \).
2. \(n_0^{(r)} = r + 1 \) for some integer \(r \geq 0 \).

Proof. Assume that statement (1) is true. Then it follows from Corollary 2 and Lemma 9 that \(n_2^{(r)} = r + 1 \) for all sufficiently large \(r \). Hence, by Corollary 3, we have \(n_0^{(r)} = r + 1 \) for all sufficiently large \(r \). Therefore (1) implies (2).

Assume next that statement (2) is true. Then Lemma 1 implies that \(n_0^{(s)} = s + 1 \) for all \(s \geq r \). By Corollary 3, we also have \(n_2^{(s)} = s + 1 \) for all sufficiently large \(s \). It follows from Lemma 9 that \(|\mathcal{A}_s^f| = |\mathcal{A}_0|p^{n_2^{(s)}-1} \). Thus by Corollary 2, \(\mathcal{A}_s^f = A_s^f \) for all sufficiently large \(s \). This completes the proof of our lemma. ■

Next we give the following lemma concerning the relation between \(D_n \) and \(\overline{A}_n^p \).

Lemma 11. The following two statements are equivalent:

1. \(\overline{A}_n^p = D_r \) for all sufficiently large integers \(r \).
2. Every ideal class of \(A_0 \) becomes principal in \(k_n \) for some integer \(n \geq 0 \).

Proof. Let \(i_{0,n} \) denote the natural map from the ideal group of \(k \) to that of \(k_n \). First, we note that \(A_n^p = i_{0,n}(A_0)D_n \). This implies that statement (1) is equivalent to the assertion that \(i_{0,r}(A_0) \subset D_r \) for all sufficiently large \(r \). Since every ideal class of \(D_r \) becomes principal in \(k_n \) for all \(n \) sufficiently larger than \(r \), this assertion is equivalent to statement (2). We have thus proved the lemma. ■

Recall that \(\mu_p(k) \) always vanishes in our situation. Combining Lemmas 10 and 11, we immediately conclude the following criterion for the vanishing of \(\lambda_p(k) \).

Theorem 4. Let \(p \) be an odd prime number and \(k \) a real quadratic field in which \(p \) splits. Then \(\lambda_p(k) \) vanishes if and only if the following two conditions are satisfied:

1. Every ideal class of \(A_0 \) becomes principal in \(k_n \) for some integer \(n \geq 0 \).
2. \(n_0^{(r)} = r + 1 \) for some integer \(r \geq 0 \).

Remark 2. If \(p \) remains prime in \(k \) or if it is ramified in \(k \), then the unique prime ideal of \(k \) lying over \(p \) is totally ramified in \(k_\infty/k \). Hence, in
both cases, Greenberg's theorem (Theorem 3) asserts that $\lambda_p(k)$ vanishes if and only if every ideal class of A_0 becomes principal in k_n for some integer $n \geq 0$. Thus, Theorem 4 seems to be interesting when compared with the case where p does not split in k.

Since every ideal class of D_0 becomes principal in k_n for some sufficiently large n, we obtain the following corollary to Theorem 4. This, which is one of the main results in the previous paper [6], often enables us to obtain numerical examples of k's with $\lambda_p(k) = 0$.

Corollary 4 (cf. Theorem 2 of [6]). Let k and p be as in Theorem 4. Assume that $A_0 = D_0$. Then $\lambda_p(k) = 0$ if and only if $n_{0(r)} = r + 1$ for some integer $r \geq 0$.

5. **An additional remark.** We now make a simple remark on verification of the vanishing of $\lambda_p(k)$ based on Theorem 4. Let k and p be as in the preceding section. In [7] we introduced the following fact which is an immediate consequence of Theorem 3, Corollaries 2 and 3.

Lemma 12 (cf. Proposition 2 of [7]). The following two conditions are equivalent:

1. $\lambda_p(k) = 0$.
2. $|D_r| = |A_0|p^{n_2-1-n_{2(r)}+n_{0(r)}}$ for some integer $r \geq 0$.

Let $i_{0,n}$ denote the natural map from the ideal group of k to that of the intermediate field k_n of the cyclotomic \mathbb{Z}_p-extension k_∞/k. Then the following holds:

Proposition 2. Let k and p be as in Theorem 4. Let r be a non-negative integer. Then $|D_r| = |A_0|p^{n_2-1-n_{2(r)}+n_{0(r)}}$ if and only if the following two conditions are satisfied:

1. $i_{0,r}(A_0) \subset D_r$.
2. $n_{0(r)} = r + 1$.

In particular, if both of the conditions hold, then $\lambda_p(k) = 0$.

Proof. Assume that $|D_r| = |A_0|p^{n_2-1-n_{2(r)}+n_{0(r)}}$. Put $n_{0(r)} = r + s$ with an integer $s \geq 1$. Then Lemma 9 says that

$$\frac{|A'_r|}{|D_r|} = \frac{|A_0|p^{r+n_2-n_{2(r)}+n_{0(r)}^r}}{|A_0|p^{n_2-1-n_{2(r)}+n_{0(r)}^r}} = p^{r+1-n_{0(r)}}.$$

Hence $|A'_r| = |D_r|^p$. On the other hand, since $D_n \subset A'_n$, we see that $1 - s \geq 0$, so $s = 1$, which means that condition (2) holds. Moreover, this implies that $A'_r = D_r$, which is equivalent to condition (1) as mentioned in the proof of Lemma 11.
Next assume that both (1) and (2) are satisfied. We have $|D_r| = |A_0|p^{n_2 - n_2^{(r)} + n_1^{(r)}}$ by Lemma 9, because condition (1) holds if and only if $\overline{A}^\ell = D_r$. It then follows from (2) that $|D_r| = |A_0|p^{n_2 - 1 - n_2^{(r)} + n_1^{(r)}}$. Thus the proof is completed.

Let us put $p = 3$ and $k = \mathbb{Q}(\sqrt{m})$, where m denotes a positive square-free integer less than 100000 satisfying $m \equiv 1 \pmod{3}$. In our previous papers [6] ($1 \leq m \leq 10000$) and [7] ($10000 \leq m \leq 100000$), we gave the data of $|A_r|$, $|D_r|$, $n_0^{(r)}$ and $n_2^{(r)}$ of $k = \mathbb{Q}(\sqrt{m})$ with $r \leq 1$ and $p = 3$, and found that $\lambda_3(k)$ vanishes for most of these k’s. Although the criterion given in Theorem 4 could be used to yield many numerical examples of k’s with $\lambda_p(k) = 0$, no new examples with $\lambda_3(k) = 0$ among these k’s can emerge on the ground of those data for $r \leq 1$ alone and it is not efficient in yielding numerical examples given in [6] and [7] more easily (other results are sometimes more efficient as mentioned in [6]). Here is the reason. In our previous verification, we used Lemma 12 as a sufficient condition for the vanishing of $\lambda_3(k)$. Hence, Proposition 2 tells us that if we make use of (1) of Proposition 2 as a sufficient condition for (1) of Theorem 4 to hold, then no new examples with $\lambda_3(k) = 0$ can emerge from those data for $r \leq 1$ alone. Therefore, to get new numerical examples of k’s with $\lambda_3(k) = 0$ based on Theorem 4, we have to have the data for $r \geq 2$, or we have to find a sharper sufficient condition to assure that every ideal class of A_0 becomes principal in k_∞. But a capitulation problem seems to be difficult in general.

We finally mention that in the case $p = 3$, Takashi Fukuda is computing the invariants $n_0^{(r)}$ and $n_2^{(r)}$ with $r \geq 2$ to verify whether $\lambda_3(k)$ vanishes for the remaining k’s in the above range. For further details, see his forthcoming paper.

References

Cyclotomic \(\mathbb{Z}_p \)-extensions

