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1. Introduction. Let p be a fixed odd prime number and Zp the ring
of p-adic integers. Let k be a real quadratic field in which p splits, say
(p) = pp′ in k, where p 6= p′. In the previous paper [6] we studied Greenberg’s
conjecture for k and p: the conjecture asserts that both λl(K) and µl(K)
always vanish for any totally real number field K and any prime number l
(cf. [8]). Here, and in what follows, for an algebraic number field K and a
prime number l, λl(K) and µl(K) denote the Iwasawa λ- and µ-invariants,
respectively, of the cyclotomic Zl-extension of K (cf. [9]). In our situation
that k is a real quadratic field, it is known that µp(k) always vanishes by
the Ferrero–Washington theorem (cf. [3]), but it is not known whether λp(k)
also vanishes.

To study Greenberg’s conjecture for real quadratic fields in which p splits,
we defined in [12] two invariants n(r)

0 and n
(r)
2 for any integer r ≥ 0, as

follows: For the cyclotomic Zp-extension

k = k0 ⊂ k1 ⊂ . . . ⊂ kn ⊂ . . . ⊂ k∞
with Galois group Γ = Gal(k∞/k), let En be the group of units in kn, pn
(resp. p′n) the unique prime ideal of kn lying over p (resp. p′) and dn the
order of the ideal class Cl(p′n) represented by p′n in the ideal class group of
kn (this equals the order of Cl(pn)). For each m ≥ n ≥ 0, we denote by Nm,n
the norm map from km to kn. Then, for any integer r ≥ 0, we can choose
αr ∈ kr such that p′r

dr = (αr). Let ε be the fundamental unit of k. Now two
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positive integers n(r)
0 and n

(r)
2 , which are invariants of k, are defined by

pn
(r)
0 ‖ (Nr,0(αr)p−1 − 1) in k and pn

(r)
2 = pn2(E0 : Nr,0(Er)),

where n2 denotes the positive integer such that pn2 ‖ (εp−1 − 1) in k (see
also [5] and [6]). Though αr is not unique, n(r)

0 is uniquely determined under
the condition n

(r)
0 ≤ n(r)

2 . We put n0 = n
(0)
0 , noting that n2 = n

(0)
2 .

In the present paper, we shall study the properties of the invariants
n

(r)
0 and n

(r)
2 , and give a certain criterion for the vanishing of λp(k) in

terms of n(r)
0 . To be more precise, we first show in Section 2 an alternative

definition of n(r)
0 and n

(r)
2 , which seems more natural than the former one

(cf. Lemma 2 and Remark 1). Secondly, by determining the structure of
certain quotient groups of the p-unit group (resp. the unit group) of kr (cf.
Lemmas 5 and 7), we give in Section 3 the ambiguous p-class number formula
(resp. the ambiguous class number formula) of intermediate fields of k∞/kr
in terms of n(r)

0 (resp. n(r)
2 ) (cf. Theorems 1 and 2). In Section 3 we also

mention the p-adic L-function and the order of certain Galois groups (cf.
Proposition 1). Thirdly, we give in Section 4 the following criterion which is
the main theorem of this paper:

Theorem (cf. Theorem 4). Let p and k be as above. Let A0 be the p-Sylow
subgroup of the ideal class group of k. Then λp(k) vanishes if and only if the
following two conditions are satisfied :

(1) Every ideal class of A0 becomes principal in kn for some integer
n ≥ 0.

(2) n(r)
0 = r + 1 for some integer r ≥ 0.

In the previous paper [6], we gave a certain necessary and sufficient con-
dition for the vanishing of λp(k) under an assumption under which it is
easily seen that condition (1) holds (see Theorem 2 of [6] or Corollary 4).
The criterion stated in our main theorem is a generalization of Theorem 2
of [6] (and hence of Theorem of [4] and Theorem 1 of [5]). Making a com-
parison with the case where p does not split in k, the criterion shows the
difference of situations between the splitting case and the non-splitting case
(cf. Remark 2). Finally, in the last section, we make an additional remark
about the verification of the vanishing of λp(k) based on our main theo-
rem.

The notation introduced above will be used in the same meaning through-
out this paper. Moreover, we denote by αr ∈ kr a generator of p′drr satis-
fying

pn
(r)
0 ‖ (Nr,0(αr)p−1 − 1) and n

(r)
0 ≤ n(r)

2 ,

that is to say, αr ∈ kr is a generator of p′drr which determines n(r)
0 .
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2. Some lemmas. In this section, we shall describe some properties of
n

(r)
0 and n

(r)
2 . The following lemma, which is a basic fact, is an immediate

consequence of the definitions of n(r)
0 and n

(r)
2 .

Lemma 1. For each integer r ≥ 0,
(1) r + 1 ≤ n(r)

0 ≤ n(r)
2 ,

(2) n(r)
0 ≤ n(r+1)

0 ≤ n(r)
0 + 1,

(3) n(r)
2 ≤ n(r+1)

2 ≤ n(r)
2 + 1.

In particular , if n(r)
0 = r + 1 (resp. n(r)

2 = r + 1) for some integer r ≥ 0,
then n

(s)
0 = s+ 1 (resp. n(s)

2 = s+ 1) for all integers s ≥ r.
Let kp be the completion of a real quadratic field k at p and fix a prime

element of kp throughout this section. Let Ωp denote the completion of
the algebraic closure of kp and D̃ the subgroup of the multiplicative group
Ω×p consisting of elements u ∈ Ωp such that vp(u − 1) > 0, vp being the
p-adic normalized valuation on Ωp. Moreover, we denote by logp the p-adic
logarithm extended to Ωp so that logp (v) = 0 for all v ∈ Ωp \ D̃ and that
logp(uv) = logp(u) + logp(v) for all u, v ∈ Ωp (cf. [10] or [13]). Since p splits
in k, kp is isomorphic to the field Qp of p-adic numbers. Therefore, vp and
logp can be essentially identified with the p-adic valuation vp and the p-adic
logarithm logp, respectively. However, we will use the former notation to
specify the fixed prime.

Let E∗n be the group of p-units in kn, i.e., the group of elements εn of kn
with vl(εn) = 0 for all prime ideals l of kn outside p. The following lemma
is now obvious, but its proof will be given for the sake of completeness.

Lemma 2. For each integer r ≥ 0,

(1) n(r)
0 = min{vp(logp(Nr,0(ε∗r))) | ε∗r ∈ E∗r},

(2) n(r)
2 = min{vp(logp(Nr,0(εr))) | εr ∈ Er}.

P r o o f. We first prove (2). Let εr ∈ Er. ThenNr,0(εr) = ±εa(E0:Nr,0(Er)),
where ε denotes the fundamental unit of k and a ∈ Z. If a = 0, then
vp(logp(Nr,0(εr))) = ∞. Thus we may assume that a 6= 0. From the defi-
nition of n2 and Lemma 5.5 of [13], it follows that vp(logp(ε)) = n2, which
implies that

vp(logp(Nr,0(εr))) = vp(a(E0 : Nr,0(Er)) logp(ε))

= vp(a) + vp((E0 : Nr,0(Er))) + n2

= vp(a) + n
(r)
2 ≥ n(r)

2 .

On the other hand, there exists an element εr of Er such that Nr,0(εr) =
±ε(E0:Nr,0(Er)), so that a = 1. Hence the assertion holds.
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Next we prove (1). Let ε∗r ∈ E∗r . Then we can write ε∗r = εrα
b
r with

εr ∈ Er and b ∈ Z. Here αr denotes a generator of p′r
dr which determines n(r)

0

as in the introduction. Similarly, it follows that vp(logp(Nr,0(αr))) = n
(r)
0 .

Further, we have

vp(logp(Nr,0(ε∗r))) = vp(logp(Nr,0(εr)) + b logp(Nr,0(αr)))

≥ min{vp(logp(Nr,0(εr))), vp(b logp(Nr,0(αr)))}
≥ min{n(r)

2 , n
(r)
0 } ≥ n(r)

0 .

Therefore we obtain the desired result.

R e m a r k 1. We may define the invariants n(r)
0 and n(r)

2 by (1) and (2),
respectively, in Lemma 2.

3. The ambiguous class number formulae. In [4], Fukuda and Ko-
matsu explicitly gave the genus formula for the p-part of ambiguous class
groups of intermediate fields of k∞/k in terms of n2 (cf. Proposition 1 of
[4] or Corollary 2). In this section, for any integer r ≥ 0, we generalize this
formula in terms of n(r)

2 and also give an analogous formula in terms of n(r)
0 .

For the cyclotomic Zp-extension k∞ of a real quadratic field k, let kn
be the unique intermediate field of k∞/k of degree pn, kpn the completion
of kn at pn and Epn the group of units in kpn . Since p splits in k, we may
identify kp with Qp in what follows. Thus, by embedding k in Qp, we may
write Nr,0(αr)p−1 ∈ k in the form of a p-adic integer as follows:

Nr,0(αr)p−1 = 1 + pn
(r)
0 xr, xr ∈ Z×p .

Here αr ∈ kr is the same as in the last part of the introduction. Now we put

Un = {u ∈ Epn | u ≡ 1 (mod pn)}
and

U (r)
n = {u ∈ Un | Nn,0(u) ≡ 1 (mod pn+r+1)}

for any integer n, r ≥ 0. Then we easily see that

Un ⊃ U (0)
n ⊃ U (1)

n ⊃ . . . ⊃ U (r)
n ⊃ . . .

Applying local class field theory, we can prove the following (see, e.g., [11]
in which we assumed that r ≥ s, but, in fact, its proof works without such
an assumption).

Lemma 3. Let r be a non-negative integer. Then Nr+s,r(Ur+s) = U
(s)
r

for all integers s ≥ 0.

First, we shall give the genus formula for the p-part of ambiguous p-class
groups of intermediate fields of k∞/kr in terms of n(r)

0 , which is analo-
gous to a generalization of Proposition 1 of [4]. Let Γr be the Galois group
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Gal(k∞/kr) of k∞ over kr (so Γ = Γ0), A′n the p-Sylow subgroup of the
p-ideal class group of kn and A′Γrn the subgroup of A′n consisting of p-ideal
classes which are invariant under the action of Γr, namely, the p-part of the
ambiguous p-class group of kn over kr. Here, by the p-ideal class group of
kn, we mean the ideal class group of the ring of p-integers in kn; a p-integer
in kn means an element α of kn with vl(α) ≥ 0 for all prime ideals l of kn
outside p, namely, outside pn and p′n. Note that if An denotes the p-Sylow
subgroup of the ideal class group of kn and Dn the subgroup of An consist-
ing of ideal classes represented by products of prime ideals of kn lying over
p, then A′n ' An/Dn.

Moreover, let E′n be the group of p-units in kn, i.e., the group of elements
εn of kn with vl(εn) = 0 for all prime ideals l of kn outside p, namely, outside
pn and p′n. Using the above lemma, we show two lemmas.

Lemma 4. Let r be a non-negative integer. Then E′r = E′r ∩Nn,r(k×n ) for
all integers n with r ≤ n ≤ n(r)

0 − 1.

P r o o f. First we prove the case where n = n
(r)
0 −1. Let Qr be the unique

intermediate field of the cyclotomic Zp-extension of Q with degree pr and πr
the image of 1−ζpr+1 under the norm map from Q(ζpr+1) to Qr, where ζpr+1

denotes a primitive pr+1th root of unity. Then we see that E′r is generated
by Er, αr and πr. Since πr is a global norm from kn, it suffices to prove that
any element of the p-unit group E∗r is a global norm from kn.

Let ε∗r ∈ E∗r . Then Lemma 2 shows that Nr,0(ε∗r)
p−1 = 1 + pn

(r)
0 yr with

yr ∈ Zp, so that

Nr,0(ε∗r
p−1) ≡ 1 (mod pr+(n(r)

0 −r−1)+1).

Thus ε∗r
p−1 ∈ U (n(r)

0 −r−1)
r . By Lemma 3, ε∗r

p−1 ∈ N
n

(r)
0 −1,r(Un(r)

0 −1). Since

any prime ideal which does not lie over p is unramified in k∞/k, the prod-
uct formula for the norm residue symbol and Hasse’s norm theorem imply
that ε∗r

p−1 is a global norm from k
n

(r)
0 −1, and so is ε∗r . Therefore E∗r ⊂

N
n

(r)
0 −1,r(k

×
n

(r)
0 −1

), and hence E′r ⊂ N
n

(r)
0 −1,r(k

×
n

(r)
0 −1

). Thus the assertion

follows.
Now assume that n is an integer with r ≤ n < n

(r)
0 − 1. Since

N
n

(r)
0 −1,r(k

×
n

(r)
0 −1

) ⊂ Nn,r(k×n ),

it follows that E′r ⊂ Nn,r(k×n ). This completes the proof.

It is well known that E′r is a finitely generated abelian group of Z-rank
2pr + 1. However, the following lemma holds.
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Lemma 5. Let r be a non-negative integer. Then

E′r/(E
′
r ∩Nn,r(k×n )) ' Z/pn−n(r)

0 +1Z
for all integers n ≥ n(r)

0 .

P r o o f. For an element αr of E′r which is used to determine n(r)
0 , we see

that

Nr,0(αr)(p−1)pn−n
(r)
0 = 1 + pnxr, xr ∈ Z×p .

Now assume that α(p−1)pn−n
(r)
0

r ∈ Nn,r(k×n ) for some n ≥ n
(r)
0 . Then, since

α
(p−1)pn−n

(r)
0

r = Nn,r(βn) for some βn ∈ kn, we have

Nr,0(αp
n−n(r)

0
r )p−1 = Nn,0(βn)p−1 = 1 + pn+1yr, yr ∈ Zp,

which contradicts the above equality. Hence α
(p−1)pn−n

(r)
0

r is not a global

norm from kn, and neither is αp
n−n(r)

0
r . However, since

Nr,0(αr)(p−1)pn−n
(r)
0

+1

= 1 + pn+1xr, xr ∈ Z×p ,
for all n ≥ n(r)

0 , we have

Nr,0(α(p−1)pn−n
(r)
0

+1

r ) ≡ 1 (mod pr+(n−r)+1).

It follows from Lemma 3 that αp
n−n(r)

0
+1

r is a local norm from kpn . Thus
the product formula for the norm residue symbol and Hasse’s norm theorem

imply that αp
n−n(r)

0
+1

r is a global norm from kn. Therefore we find that
E′r/(E

′
r ∩Nn,r(k×n )) has an element of order pn−n

(r)
0 +1.

On the other hand, since the relative degrees of pn and p′n over kr are 1,
it follows from the genus formula for ambiguous p-class groups (cf. Appendix
in [2]) that

|A′Γrn | = |A′r|
pn−r

(E′r : E′r ∩Nn,r(k×n ))
.

Hence, by Lemma 4,

|A′Γrn | = |A′r|pn
(r)
0 −1−r pn−n

(r)
0 +1

(E′r : E′r ∩Nn,r(k×n ))

= |A′Γr
n

(r)
0 −1

| pn−n
(r)
0 +1

(E′r : E′r ∩Nn,r(k×n ))
.

Since k∞/k is totally ramified at p, we see by class field theory that |A′Γrn | ≥
|A′Γr
n

(r)
0 −1

|, which implies that (E′r : E′r ∩Nn,r(k×n )) ≤ pn−n
(r)
0 +1. Therefore

our lemma follows.
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By combining Lemmas 4 and 5, the next theorem is concluded from the
genus formula for ambiguous p-class groups (cf. Appendix in [2]).

Theorem 1. Let p be an odd prime number and k a real quadratic field
in which p splits. Further , let r be a non-negative integer. Then

|A′Γrn | =
{
|A′r|pn−r if r ≤ n < n

(r)
0 − 1,

|A′r|pn
(r)
0 −r−1 if n ≥ n(r)

0 − 1.

In particular , |A′Γrn | remains bounded as n→∞.

Putting r = 0 in Theorem 1, we obtain the following:

Corollary 1. Let k and p be as in Theorem 1. Then

|A′Γn | =
{ |A′0|pn if n < n0 − 1,
|A′0|pn0−1 if n ≥ n0 − 1.

Next, we shall give the genus formula for the p-part of ambiguous class
groups of intermediate fields of k∞/kr in terms of n(r)

2 , which is a generaliza-
tion of Proposition 1 in [4]. Let An be the p-Sylow subgroup of the ideal class
group of kn and AΓrn the subgroup of An consisting of ideal classes which
are invariant under the action of Γr = Gal(k∞/kr), namely, the p-part of
ambiguous class group of kn over kr. Then, by replacing E′r by Er, A′r by
Ar, A′Γrn by AΓrn and n(r)

0 by n(r)
2 , respectively, the above argument leads to

the following two lemmas.

Lemma 6. Let r be a non-negative integer. Then Er = Er ∩Nn,r(k×n ) for
all integers n with r ≤ n ≤ n(r)

2 − 1.

Lemma 7. Let r be a non-negative integer. Then

Er/(Er ∩Nn,r(k×n )) ' Z/pn−n(r)
2 +1Z

for all integers n ≥ n(r)
2 .

The unit group Er is a finitely generated abelian group of Z-rank 2pr−1.
However, we should note that Er/(Er ∩ Nn,r(k×n )) is cyclic. By combining
Lemmas 6 and 7, we obtain the following:

Theorem 2. Let p be an odd prime number and k a real quadratic field
in which p splits. Further , let r be a non-negative integer. Then

|AΓrn | =
{
|Ar|pn−r if r ≤ n < n

(r)
2 − 1,

|Ar|pn
(r)
2 −r−1 if n ≥ n(r)

2 − 1.

In particular , |AΓrn | remains bounded as n→∞.

Also, putting r = 0 in Theorem 2, we obtain the following:
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Corollary 2 (cf. Proposition 1 of [4] or of [5]). Let k and p be as in
Theorem 2. Then

|AΓn | =
{ |A0|pn if n < n2 − 1,
|A0|pn2−1 if n ≥ n2 − 1.

Finally, we give the following:

Proposition 1. Let k and p be as in Theorem 2, and let χ denote the
non-trivial p-adic Dirichlet character associated with k, Lp(s, χ) the p-adic
L-function associated with χ and M the maximal abelian p-extension of k
which is unramified outside the prime ideals over p. Then

(1) |AΓn | = pvp(Lp(1,χ)) for all integers n ≥ n2 − 1,
(2) |Gal(M/k∞)| = pvp(Lp(1,χ)).

In particular , if L denotes the maximal abelian unramified p-extension (i.e.,
the Hilbert p-class field) of k, then |Gal(M/k∞L)| = pn2−1. Here vp denotes
the p-adic valuation normalized by vp(p) = 1.

P r o o f. First we prove (1). Let Rp be the p-adic regulator of k and logp
the p-adic logarithm. Since Rp = logp(ε), we easily see that vp(Rp) = n2 (cf.
Lemma 5.5 of [3]). Let ∆ be the discriminant of k and h the class number
of k. Then the p-adic class number formula (cf. [13]) implies that

Lp(1, χ) =
2hRp√
∆

(
1− χ(p)

p

)
.

Hence vp(Lp(1, χ)) = vp(h) +n2−1. Therefore (1) follows from Corollary 2.
We next prove (2). Let N denote the norm map from k to Q and w

the number of the roots of unity contained in k(ζp), where ζp is a primitive
pth root of unity. Then it follows from the result of Coates (cf. Lemma 8 in
Appendix of [1]) that

vp(|Gal(M/k∞)|) = vp

(
whRp√
∆

(1−N(p)−1)(1−N(p′)−1)
)

= vp(h) + n2 − 1.

This proves (2).
Since k∞/k is totally ramified at p, we have |Gal(k∞L/k∞)| =

|Gal(L/k)|. Hence the last assertion immediately follows from (1), (2) and
Corollary 2.

4. A criterion for the vanishing of λp(k). We shall next give a
necessary and sufficient condition for λp(k) to vanish in terms of n(r)

0 . As in
the preceding section, for the cyclotomic Zp-extension k∞ of a real quadratic
field k, let An be the p-Sylow subgroup of the ideal class group of kn, AΓn
the subgroup of An consisting of ideal classes which are invariant under the
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action of Γ = Gal(k∞/k) and Dn the subgroup of An consisting of ideal
classes represented by products of prime ideals of kn lying over p. We first
refer to the following theorem of Greenberg.

Theorem 3 (cf. Theorems 1 and 2 of [8]). Let K be a totally real number
field and l a fixed prime number. Let K∞ denote the cyclotomic Zl-extension
of K and Kn the unique intermediate field of K∞/K of degree ln.

(1) Assume that l splits completely in K and also that Leopoldt’s con-
jecture is valid for K and l. Then λl(K) = µl(K) = 0 if and only if
AΓn (K) = Dn(K) for all sufficiently large integers n.

(2) Assume that only one prime ideal of K lies over l and also that this
prime is totally ramified in K∞/K. Then λl(K) = µl(K) = 0 if and only if
every ideal class of A0 becomes principal in Kn for some integer n ≥ 0.

Here, AΓn (K) and Dn(K) denote the corresponding objects of K to AΓn
and Dn respectively.

In our situation, Corollary 2 gives the explicit description of the order
|AΓn |. Hence, by this theorem, we see that it is important to study |Dn|. The
following lemma, which was proved in [6] as a key lemma, partially gives the
behavior of |Dn|.

Lemma 8 (cf. Lemma 7 of [6]). Let r be a non-negative integer , and let s
be a non-negative integer and t the integer such that |Dr+s| = pt|Dr|. Then

n
(r)
0 + t ≥ min{n(r+s)

0 , n
(r)
2 }.

For a fixed integer r ≥ 0, we choose n ≥ n
(r)
2 − 1 and write n = r + s

with a non-negative integer s. Then it follows from Lemma 1 that n(r+s)
0 ≥

r+ s+ 1 ≥ n(r)
2 . Hence Lemma 8 shows that t ≥ n(r)

2 −n(r)
0 , where t denotes

the same as in Lemma 8. Further, noting that |Dn| remains bounded as
n→∞, we obtain the following as a corollary to Lemma 8.

Corollary 3. Let r be a non-negative integer. Then |Dn| ≥ |Dr|pn
(r)
2 −n

(r)
0

for all integers n ≥ n(r)
2 − 1. In particular , we have n(s)

0 = n
(s)
2 for all suffi-

ciently large integers s.

Let AΓn be the subgroup of An consisting of ideal classes each of which
contains an ideal invariant under the action of Γ = Gal(k∞/k), namely, the
p-part of the ambiguous class group of kn over k containing an ambiguous
ideal. Then the following lemma is an immediate consequence of the genus
formula and the definition of n(r)

2 .

Lemma 9. For each integer r ≥ 0, we have |AΓr | = |A0|pr+n2−n(r)
2 .
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Note that Dn ⊂ AΓn ⊂ AΓn . We first give the following lemma concerning
the relation between AΓn and AΓn .

Lemma 10. The following two statements are equivalent :

(1) AΓr = AΓr for all sufficiently large integers r.
(2) n(r)

0 = r + 1 for some integer r ≥ 0.

P r o o f. Assume that statement (1) is true. Then it follows from Corol-
lary 2 and Lemma 9 that n(r)

2 = r + 1 for all sufficiently large r. Hence, by
Corollary 3, we have n(r)

0 = r + 1 for all sufficiently large r. Therefore (1)
implies (2).

Assume next that statement (2) is true. Then Lemma 1 implies that
n

(s)
0 = s + 1 for all s ≥ r. By Corollary 3, we also have n(s)

2 = s + 1 for all
sufficiently large s. It follows from Lemma 9 that |AΓs | = |A0|pn2−1. Thus by
Corollary 2, AΓs = AΓs for all sufficiently large s. This completes the proof
of our lemma.

Next we give the following lemma concerning the relation between Dn

and AΓn .

Lemma 11. The following two statements are equivalent :

(1) AΓr = Dr for all sufficiently large integers r.
(2) Every ideal class of A0 becomes principal in kn for some integer

n ≥ 0.

P r o o f. Let i0,n denote the natural map from the ideal group of k to that
of kn. First, we note that AΓn = i0,n(A0)Dn. This implies that statement (1)
is equivalent to the assertion that i0,r(A0) ⊂ Dr for all sufficiently large r.
Since every ideal class of Dr becomes principal in kn for all n sufficiently
larger than r, this assertion is equivalent to statement (2). We have thus
proved the lemma.

Recall that µp(k) always vanishes in our situation. Combining Lem-
mas 10 and 11, we immediately conclude the following criterion for the
vanishing of λp(k).

Theorem 4. Let p be an odd prime number and k a real quadratic field in
which p splits. Then λp(k) vanishes if and only if the following two conditions
are satisfied :

(1) Every ideal class of A0 becomes principal in kn for some integer
n ≥ 0.

(2) n(r)
0 = r + 1 for some integer r ≥ 0.

R e m a r k 2. If p remains prime in k or if it is ramified in k, then the
unique prime ideal of k lying over p is totally ramified in k∞/k. Hence, in
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both cases, Greenberg’s theorem (Theorem 3) asserts that λp(k) vanishes if
and only if every ideal class of A0 becomes principal in kn for some integer
n ≥ 0. Thus, Theorem 4 seems to be interesting when compared with the
case where p does not split in k.

Since every ideal class of D0 becomes principal in kn for some sufficiently
large n, we obtain the following corollary to Theorem 4. This, which is one
of the main results in the previous paper [6], often enables us to obtain
numerical examples of k’s with λp(k) = 0.

Corollary 4 (cf. Theorem 2 of [6]). Let k and p be as in Theorem 4.
Assume that A0 = D0. Then λp(k) = 0 if and only if n(r)

0 = r + 1 for some
integer r ≥ 0.

5. An additional remark. We now make a simple remark on verifi-
cation of the vanishing of λp(k) based on Theorem 4. Let k and p be as in
the preceding section. In [7] we introduced the following fact which is an
immediate consequence of Theorem 3, Corollaries 2 and 3.

Lemma 12 (cf. Proposition 2 of [7]). The following two conditions are
equivalent :

(1) λp(k) = 0.

(2) |Dr| = |A0|pn2−1−n(r)
2 +n(r)

0 for some integer r ≥ 0.

Let i0,n denote the natural map from the ideal group of k to that of
the intermediate field kn of the cyclotomic Zp-extension k∞/k. Then the
following holds:

Proposition 2. Let k and p be as in Theorem 4. Let r be a non-negative
integer. Then |Dr| = |A0|pn2−1−n(r)

2 +n(r)
0 if and only if the following two

conditions are satisfied :

(1) i0,r(A0) ⊂ Dr.
(2) n(r)

0 = r + 1.

In particular , if both of the conditions hold , then λp(k) = 0.

P r o o f. Assume that |Dr| = |A0|pn2−1−n(r)
2 +n(r)

0 . Put n(r)
0 = r + s with

an integer s ≥ 1. Then Lemma 9 says that

|AΓr |
|Dr| =

|A0|pr+n2−n(r)
2

|A0|pn2−1−n(r)
2 +n(r)

0

= pr+1−n(r)
0 .

Hence |AΓr | = |Dr|p1−s. On the other hand, since Dn ⊂ AΓn , we see that
1 − s ≥ 0, so s = 1, which means that condition (2) holds. Moreover, this
implies that AΓr = Dr, which is equivalent to condition (1) as mentioned in
the proof of Lemma 11.
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Next assume that both (1) and (2) are satisfied. We have |Dr| =

|A0|pr+n2−n(r)
2 by Lemma 9, because condition (1) holds if and only if

AΓr = Dr. It then follows from (2) that |Dr| = |A0|pn2−1−n(r)
2 +n(r)

0 . Thus
the proof is completed.

Let us put p = 3 and k = Q(
√
m), where m denotes a positive square-

free integer less than 100000 satisfying m ≡ 1 (mod 3). In our previous
papers [6] (1 ≤ m ≤ 10000) and [7] (10000 ≤ m ≤ 100000), we gave the
data of |Ar|, |Dr|, n(r)

0 and n
(r)
2 of k = Q(

√
m) with r ≤ 1 and p = 3,

and found that λ3(k) vanishes for most of these k’s. Although the criterion
given in Theorem 4 could be used to yield many numerical examples of
k’s with λp(k) = 0, no new examples with λ3(k) = 0 among these k’s can
emerge on the ground of those data for r ≤ 1 alone and it is not efficient in
yielding numerical examples given in [6] and [7] more easily (other results
are sometimes more efficient as mentioned in [6]). Here is the reason. In
our previous verification, we used Lemma 12 as a sufficient condition for the
vanishing of λ3(k). Hence, Proposition 2 tells us that if we make use of (1) of
Proposition 2 as a sufficient condition for (1) of Theorem 4 to hold, then no
new examples with λ3(k) = 0 can emerge from those data for r ≤ 1 alone.
Therefore, to get new numerical examples of k’s with λ3(k) = 0 based on
Theorem 4, we have to have the data for r ≥ 2, or we have to find a sharper
sufficient condition to assure that every ideal class of A0 becomes principal
in k∞. But a capitulation problem seems to be difficult in general.

We finally mention that in the case p = 3, Takashi Fukuda is computing
the invariants n(r)

0 and n
(r)
2 with r ≥ 2 to verify whether λ3(k) vanishes for

the remaining k’s in the above range. For further details, see his forthcoming
paper.
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