On a form of the Erdős–Turán inequality

by

JEFFREY J. HOLT (Houghton, Mich.)

1. Introduction. Let $\mathcal{P} = \{x_1, \ldots, x_N\}$ be a set of points in \mathbb{R}, and define the \mathbb{Z}-periodic set

$\mathcal{P}^* = \{x + m : x \in \mathcal{P}, m \in \mathbb{Z}\}$.

The discrepancy $D(\mathcal{P})$ gives a measure of how evenly (or unevenly) distributed \mathcal{P} is in \mathbb{R}/\mathbb{Z}. There are a number of ways to define the discrepancy (see, for instance, [2, 8, 13]); a common form is as follows: Let s, t be real numbers which satisfy $s < t < s + 1$, and let $\chi_{s,t}(x)$ denote the characteristic function of the interval $[s, t]$. Then we define

$D(\mathcal{P}) = \sup_{s < t < s + 1} \left| \sum_{x \in \mathcal{P}^*} \chi_{s,t}(x) - N(t - s) \right|.$

In 1948, P. Erdős and P. Turán [4] established a quantitative connection between $D(\mathcal{P})$ and the exponential sums $\left| \sum_{n=1}^{N} e(mx_n) \right|$, where m is a nonzero integer and $e(\theta) = e^{2\pi i \theta}$. Specifically, they showed that there exist absolute constants C_1 and C_2 such that

$D(\mathcal{P}) \leq C_1 NM^{-1} + C_2 \sum_{m=1}^{M} m^{-1} \left| \sum_{n=1}^{N} e(mx_n) \right|$

holds for all integers $M \geq 1$. Explicit values for C_1 and C_2 are given in ([8], pp. 112–114) and ([12], Theorem 20).

The notion of the discrepancy of a point set has been generalized to a wide variety of settings. Bounds in the style of (1.2) have been given in several cases (see [3, 5, 11]), and are typically referred to as “Erdős–Turán” inequalities. Here we establish such an inequality for points distributed on the unit torus $\mathbb{R}^k/\mathbb{Z}^k$, where $k \geq 2$. In a manner analogous to the one-dimensional case, we let $\mathcal{P} = \{x_1, \ldots, x_N\}$ be a set of points in \mathbb{R}^k and then
define
\[\mathcal{P}^* = \{ \mathbf{x} + \mathbf{m} : \mathbf{x} \in \mathcal{P}, \mathbf{m} \in \mathbb{Z}^k \}. \]

For \(r > 0 \) and \(\mathbf{c} \in \mathbb{R} \), let \(B_k(r, \mathbf{c}) \) denote the closed ball of radius \(r \) centered at \(\mathbf{c} \) given by
\[B_k(r, \mathbf{c}) = \{ \mathbf{x} \in \mathbb{R}^k : |\mathbf{x} - \mathbf{c}| \leq r \}, \]
where \(| \cdot |\) denotes the usual Euclidean metric on \(\mathbb{R}^k \).

For each such \(r \) and \(\mathbf{c} \), define
\[\Delta[\mathcal{P}; B_k(r, \mathbf{c})] = Z[\mathcal{P}^*; B_k(r, \mathbf{c})] - N \mu(B_k(r, \mathbf{c})), \]
where \(Z[Q; A] \) denotes the number of points of a discrete set \(Q \subset \mathbb{R}^k \) which fall in a compact set \(A \subset \mathbb{R}^k \), and \(\mu \) is the usual Euclidean volume. For each \(r > 0 \) we then define the discrepancy \(D_r(\mathcal{P}) \) by
\[D_r(\mathcal{P}) = \sup_{\mathbf{c} \in \mathbb{R}^k} |\Delta[\mathcal{P}; B_k(r, \mathbf{c})]|. \]

By applying an observation of H. L. Montgomery (see [1], Section 2.3) together with functions constructed by J. Vaaler and the author [7], we establish the following bound:

Theorem 1. Let \(r > 0 \) and \(\mathcal{P} = \{ \mathbf{x}_1, \ldots, \mathbf{x}_N \} \) be a subset of \(\mathbb{R}^k \). Then
\[D_r(\mathcal{P}) \leq NA_k(r, s) + \sum_{|\mathbf{m}| < s} \left\{ A_k(r, s) + (r/|\mathbf{m}|)^{k/2} |J_{k/2}(2\pi r|\mathbf{m}|)| \right\} \left| \sum_{n=1}^N e(\mathbf{m} \cdot \mathbf{x}_n) \right| \]
for all \(s > 0 \), where
\[A_k(r, s) = \omega_k s^{-1} r^{k-1} \left\{ \pi rs(J_{k-2}/2(\pi rs)^2) + J_{k/2}(\pi rs)^2 \right\} - (k - 1)J_{k-2}/2(\pi rs)J_{k/2}(\pi rs), \]
\(J_{\nu}(x) \) is the \(\nu \)-th order Bessel function and \(\omega_k = 4\pi^{(k-2)/2} \Gamma(k/2)^{-1} \).

In 1969, W. Schmidt [9] showed that the discrepancy cannot be uniformly small. Suppose that \(\varepsilon > 0 \) and that \(\delta \) satisfies \(N \delta^k \geq 1 \). Schmidt proved that there exists a ball \(B_k(r, \mathbf{c}) \) with \(r \leq \delta \) such that
\[|\Delta[\mathcal{P}; B_k(r, \mathbf{c})]| > c_1(k, \varepsilon)(N\delta^k)^{(k-1)/2k-\varepsilon}. \]

On the other hand, J. Beck ([2], Theorem 14) has shown that there exists an infinite sequence \(\mathbf{x}_1, \mathbf{x}_2, \ldots \) such that for all \(N \geq 2 \) and any ball \(B_k(r, \mathbf{c}) \) with \(r \leq 1 \) and \(N \delta^k \geq 1 \), we have
\[|\Delta[\{ \mathbf{x}_1, \ldots, \mathbf{x}_N \}; B_k(r, \mathbf{c})]| \leq c_2(k)(N\delta^k)^{(k-1)/2k}(\log N)^{3/2}. \]

In view of Schmidt’s lower bound, we see that (1.6) must be close to best possible. Applying Theorem 1 and a simple averaging procedure, we may establish the existence of a set of \(p \) points in \(\mathbb{R}^k \) (here \(p \) is a prime) which
has modest discrepancy. (A similar application is given in [8], pp. 154–157.) Although our result is not as sharp as Beck’s, our proof is much simpler and we do not have the requirement that \(r \leq 1 \). For \(h \in \mathbb{Z}^k \), let \(\mathcal{P}_h \) be the collection of \(p \) points of the form \((n/p)h, n = 1, \ldots, p\).

Theorem 2. Let \(p \) be a prime number, and suppose that \(r \geq p^{-1/k} \). Then there exists a lattice point \(h \in \mathbb{Z}^k \) such that \(|h| < p\) and

\[
D_r(\mathcal{P}_h) \leq c_3(k)(pr^k)^{(k-1)/k}.
\]

Notation. We use the definition for Fourier transforms and series of Stein and Weiss [10]. For \(x \in \mathbb{R}^k \) and \(r > 0 \), \(\chi_r(x) \) denotes the characteristic function of \(B_k(r, 0) \). To simplify expressions, we adopt the convention that \(m \) appearing in a sum will always be a point in \(\mathbb{Z}^k \). Finally, \(\sum' \) means that the term in the sum corresponding to \(m = 0 \) is omitted.

2. Proof of theorems

Proof of Theorem 1. We require two auxiliary functions. Combining the results in ([7], Theorem 3) and a \(k \)-dimensional form of the Paley–Wiener theorem ([10], Chapter III, Theorem 4.9), we see that for \(r > 0 \) and \(s > 0 \) there exist functions \(\mathcal{F}_k(x; r, s) \) and \(\mathcal{G}_k(x; r, s) \) that satisfy

\[
\begin{align*}
\mathcal{F}_k(x; r, s) &\leq \chi_r(x) \leq \mathcal{G}_k(x; r, s) \quad \text{for all } x \in \mathbb{R}^k, \\
\mathcal{F}_k(t; r, s) &\mathcal{G}_k(t; r, s) = 0 \quad \text{for all } |t| \geq s, \\
\int_{\mathbb{R}^k} (\mathcal{G}_k(x; r, s) - \mathcal{F}_k(x; r, s)) \, dx &= A_k(r, s),
\end{align*}
\]

where \(A_k(r, s) \) is defined in the statement of the theorem. From (1.3) we see that for \(c \in \mathbb{R}^k \),

\[
\Delta[\mathcal{B}_k(r, c)] = \sum_{n=1}^{N} \sum_{m} \chi_r(x_n - c + m) - N\mu(B_k(r, 0)).
\]

Now suppose that for a given \(r \) and \(c \) we have \(\Delta[\mathcal{B}_k(r, c)] \geq 0 \). Then by (2.1), the Poisson summation formula and the triangle inequality we have

\[
\begin{align*}
\Delta[\mathcal{B}_k(r, c)] &\leq \sum_{n=1}^{N} \sum_{m} \mathcal{G}_k(x_n - c + m; r, s) - N\mu(B(r, 0)) \\
&= \sum_{n=1}^{N} \sum_{m} \mathcal{G}_k(m; r, s) \delta_m((x_n - c)) - N\chi_r(0)
\end{align*}
\]
Thus it follows from \((2.4)\) and \((2.5)\) that

\[\sum_{|m| < s} \hat{G}_k(m; r, s)e(-m \cdot c) \sum_{n=1}^{N} e(m \cdot x_n) - N \hat{\chi}_r(0) \]

\[\leq N(\hat{G}_k(0; r, s) - \hat{\chi}_r(0)) + \sum_{|m| < s} |\hat{G}_k(m; r, s)| \left| \sum_{n=1}^{N} e(m \cdot x_n) \right|. \]

From \((2.1)\) and \((2.3)\) we know that

\[\hat{G}_k(0; r, s) - \hat{\chi}_r(0) = \int_{\mathbb{R}^k} (\hat{G}_k(x; r, s) - \chi_r(x)) \, dx \leq A_k(r, s). \]

A general expression for \(\hat{G}_k(t; r, s)\) seems difficult to find. However, we can obtain an estimate that will do for our purposes. First note that

\[\hat{\chi}_r(t) = \int_{\mathbb{R}^k} \chi_r(x)e(-t \cdot x) \, dx = (r/|t|)^{k/2}J_{k/2}(2\pi r|t|). \]

Applying the triangle inequality together with \((2.5)\) and the above identity, we see that

\[|\hat{G}_k(t; r, s)| \]

\[\leq \left| \int_{\mathbb{R}^k} (\hat{G}_k(x; r, s) - \chi_r(x))e(-t \cdot x) \, dx \right| + \left| \int_{\mathbb{R}^k} \chi_r(x)e(-t \cdot x) \, dx \right| \]

\[\leq (\hat{G}_k(0; r, s) - \hat{\chi}_r(0)) + |\hat{\chi}_r(t)| \]

\[\leq A_k(r, s) + (r/|t|)^{k/2}|J_{k/2}(2\pi r|t|)|. \]

Thus it follows from \((2.4)\) and \((2.5)\) that

\[\Delta[\mathcal{P}; B_k(r, c)] \]

\[\leq NA_k(r, s) + \sum_{|m| < s} \left\{ A_k(r, s) + (r/|m|)^{k/2}|J_{k/2}(2\pi r|m|)| \right\} \left| \sum_{n=1}^{N} e(m \cdot x_n) \right|. \]

If it should happen that for a given \(r\) and \(c\) we have \(\Delta[\mathcal{P}; B_k(r, c)] < 0\), then following the preceding analysis using \(\mathcal{F}_k(x; r, s)\) in place of \(\hat{G}_k(x; r, s)\) yields inequality \((2.6)\) with a minus sign attached to the left-hand term. Combining these bounds verifies \((1.5)\) and completes the proof.

Proof of Theorem 2. We begin by using some estimates to simplify the bound given in Theorem 1. If \(rs \geq 1\), then \(A_k(r, s) \ll s^{-1}r^{k-1}\) (see [7], Theorem 1). Combining this with the bound \(|J_\nu(x)| \leq 1\) for \(\nu > 0\) and \(x > 0\) reduces \((1.5)\) to

\[D_r(\mathcal{P}) \llk Ns^{-1}r^{k-1} + \sum_{|m| < s} \{s^{-1}r^{k-1} + (r/|m|)^{k/2}\} \left| \sum_{n=1}^{N} e(m \cdot x_n) \right|. \]
For a prime p, if \mathbf{h} and \mathbf{m} are lattice points, then
\[
\sum_{n=1}^{p} e((n/p) \mathbf{h} \cdot \mathbf{m}) = \begin{cases}
0 & \text{if } \mathbf{h} \cdot \mathbf{m} \not\equiv 0 \pmod{p}, \\
p & \text{if } \mathbf{h} \cdot \mathbf{m} \equiv 0 \pmod{p}.
\end{cases}
\]
Therefore we have
\[
(2.7) \quad D_r(\mathcal{P}_\mathbf{h}) \ll_k p s^{-1} r^{k-1} + \sum_{\substack{|\mathbf{m}| \leq s \\ \mathbf{h} \cdot \mathbf{m} \equiv 0}} \{s^{-1} r^{k-1} + (r/|\mathbf{m}|)^{k/2}\} p.
\]
The sum above is difficult to handle alone, but the problem simplifies if we average over all lattice points \mathbf{h} such that $|\mathbf{h}| \leq p$. On doing so, the right side of (2.7) is equal to
\[
(2.8) \quad ps^{-1} r^{k-1} + p(\mathbb{Z}^k; B_k(p, 0))^{-1} \sum_{|\mathbf{h}| \leq p} \sum_{\substack{|\mathbf{m}| < s \\ \mathbf{h} \cdot \mathbf{m} \equiv 0}} \{s^{-1} r^{k-1} + (r/|\mathbf{m}|)^{k/2}\} \sum_{|\mathbf{m}| < s} 1.
\]
For each \mathbf{m} in the outer sum on the right side of (2.8), there is at least one nonzero component m_g. We fix such an \mathbf{m}, and consider the inner sum. For a given \mathbf{h}, once the components $h_1, \ldots, h_{g-1}, h_{g+1}, \ldots, h_k$ are set, there is only one choice for h_g (mod p) for which $\mathbf{h} \cdot \mathbf{m} \equiv 0 \pmod{p}$. Since $|\mathbf{h}| \leq p$, there are at most three possible choices for h_g. Furthermore, the other components $h_1, \ldots, h_{g-1}, h_{g+1}, \ldots, h_k$ must satisfy $|h_j| \leq p$ for each appropriate j. Thus for $\mathbf{m} \neq 0$,
\[
(2.9) \quad \sum_{\substack{|\mathbf{h}| \leq p \\ \mathbf{h} \cdot \mathbf{m} \equiv 0}} 1 \ll_k p^{k-1}.
\]
We also note that for each $i \geq 2$, there exist constants $c_4(i)$ and $c_5(i)$ such that
\[
(2.10) \quad c_4(i) p^i \leq Z[\mathbb{Z}^i; B_i(p, 0)] \leq c_5(i) p^i.
\]
(See [6], Theorem 339, for a discussion of the case $i = 2$.) As we are averaging, we see that (2.7)–(2.10) imply there exists a lattice point \mathbf{h} with $|\mathbf{h}| \leq p$ such that
\[
D_r(\mathcal{P}_\mathbf{h}) \ll_k ps^{-1} r^{k-1} + \sum_{|\mathbf{m}| < s} \{s^{-1} r^{k-1} + (r/|\mathbf{m}|)^{k/2}\}.
\]
Applying the inequality
\[
\sum_{|\mathbf{m}| < s} |\mathbf{m}|^{-k/2} \ll s^{k/2}
\]
and assuming that \(rs \geq 1 \) (required for our bound on \(A_k(r,s) \) to be valid), we find that
\[
D_r(P_h) \ll_k ps^{-1}r^{k-1} + (sr)^{k-1}.
\]
The expression on the right above is minimized upon setting \(s = p^{1/k} \), which yields
\[
D_r(P_h) \ll_k (pr^k)^{(k-1)/k},
\]
and completes the proof.

References