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On a form of the Erdős–Turán inequality
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1. Introduction. Let P = {x1, . . . , xN} be a set of points in R, and
define the Z-periodic set

P∗ = {x+m : x ∈ P , m ∈ Z}.
The discrepancy D(P) gives a measure of how evenly (or unevenly) dis-
tributed P is in R/Z. There are a number of ways to define the discrepancy
(see, for instance, [2, 8, 13]); a common form is as follows: Let s, t be real
numbers which satisfy s < t < s+1, and let χs,t(x) denote the characteristic
function of the interval [s, t]. Then we define

(1.1) D(P) = sup
s<t<s+1

∣∣∣
∑

x∈P∗
χs,t(x)−N(t− s)

∣∣∣.

In 1948, P. Erdős and P. Turán [4] established a quantitative connection
between D(P) and the exponential sums

∣∣∣
N∑
n=1

e(mxn)
∣∣∣,

where m is a nonzero integer and e(θ) = e2πiθ. Specifically, they showed
that there exist absolute constants C1 and C2 such that

(1.2) D(P) ≤ C1NM
−1 + C2

M∑
m=1

m−1
∣∣∣
N∑
n=1

e(mxn)
∣∣∣

holds for all integers M ≥ 1. Explicit values for C1 and C2 are given in ([8],
pp. 112–114) and ([12], Theorem 20).

The notion of the discrepancy of a point set has been generalized to a
wide variety of settings. Bounds in the style of (1.2) have been given in
several cases (see [3, 5, 11]), and are typically referred to as “Erdős–Turán”
inequalities. Here we establish such an inequality for points distributed on
the unit torus Rk/Zk, where k ≥ 2. In a manner analogous to the one-
dimensional case, we let P = {x1, . . . ,xN} be a set of points in Rk and then
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define
P∗ = {x + m : x ∈ P, m ∈ Zk}.

For r > 0 and c ∈ R, let Bk(r, c) denote the closed ball of radius r centered
at c given by

Bk(r, c) = {x ∈ Rk : |x− c| ≤ r},
where | · | denotes the usual Euclidean metric on Rk. For each such r and c,
define

(1.3) ∆[P;Bk(r, c)] = Z[P∗;Bk(r, c)]−Nµ(Bk(r, c)),

where Z[Q;A] denotes the number of points of a discrete set Q ⊂ Rk which
fall in a compact set A ⊂ Rk, and µ is the usual Euclidean volume. For each
r > 0 we then define the discrepancy Dr(P) by

(1.4) Dr(P) = sup
c∈Rk

|∆[P;Bk(r, c)]|.

By applying an observation of H. L. Montgomery (see [1], Section 2.3) to-
gether with functions constructed by J. Vaaler and the author [7], we estab-
lish the following bound:

Theorem 1. Let r > 0 and P = {x1, . . . ,xN} be a subset of Rk. Then

(1.5) Dr(P)

≤ NAk(r, s) +
∑′

|m|<s
{Ak(r, s) + (r/|m|)k/2|Jk/2(2πr|m|)|}

∣∣∣
N∑
n=1

e(m · xn)
∣∣∣

for all s > 0, where

Ak(r, s) = ωks
−1rk−1{πrs(J(k−2)/2(πrs)2 + Jk/2(πrs)2)

− (k − 1)J(k−2)/2(πrs)Jk/2(πrs)}−1,

Jν(x) is the ν-th order Bessel function and ωk = 4π(k−2)/2Γ (k/2)−1.

In 1969, W. Schmidt [9] showed that the discrepancy cannot be uniformly
small. Suppose that ε > 0 and that δ satisfies Nδk ≥ 1. Schmidt proved that
there exists a ball Bk(r, c) with r ≤ δ such that

|∆[P;Bk(r, c)]| > c1(k, ε)(Nδk)(k−1)/2k−ε.

On the other hand, J. Beck ([2], Theorem 14) has shown that there exists
an infinite sequence x1,x2, . . . such that for all N ≥ 2 and any ball Bk(r, c)
with r ≤ 1 and Nrk ≥ 1, we have

(1.6) |∆[{x1, . . . ,xN};Bk(r, c)]| ≤ c2(k)(Nrk)(k−1)/2k(logN)3/2.

In view of Schmidt’s lower bound, we see that (1.6) must be close to best
possible. Applying Theorem 1 and a simple averaging procedure, we may
establish the existence of a set of p points in Rk (here p is a prime) which
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has modest discrepancy. (A similar application is given in [8], pp. 154–157.)
Although our result is not as sharp as Beck’s, our proof is much simpler
and we do not have the requirement that r ≤ 1. For h ∈ Zk, let Ph be the
collection of p points of the form (n/p)h, n = 1, . . . , p.

Theorem 2. Let p be a prime number , and suppose that r ≥ p−1/k.
Then there exists a lattice point h ∈ Zk such that |h| < p and

(1.7) Dr(Ph) ≤ c3(k)(prk)(k−1)/k.

Notation. We use the definition for Fourier transforms and series of Stein
and Weiss [10]. For x ∈ Rk and r > 0, χr(x) denotes the characteristic
function of Bk(r,0). To simplify expressions, we adopt the convention that
m appearing in a sum will always be a point in Zk. Finally,

∑′ means that
the term in the sum corresponding to m = 0 is omitted.

2. Proof of theorems

P r o o f o f T h e o r e m 1. We require two auxiliary functions. Combin-
ing the results in ([7], Theorem 3) and a k-dimensional form of the Paley–
Wiener theorem ([10], Chapter III, Theorem 4.9), we see that for r > 0 and
s > 0 there exist functions Fk(x; r, s) and Gk(x; r, s) that satisfy

Fk(x; r, s) ≤ χr(x) ≤ Gk(x; r, s) for all x ∈ Rk,(2.1)

F̂k(t; r, s) = Ĝk(t; r, s) = 0 for all |t| ≥ s,(2.2) ∫
Rk

(Gk(x; r, s)−Fk(x; r, s)) dx = Ak(r, s),(2.3)

where Ak(r, s) is defined in the statement of the theorem. From (1.3) we see
that for c ∈ Rk,

∆[P;Bk(r, c)] =
N∑
n=1

∑
m

χr(xn − c + m)−Nµ(Bk(r,0)).

Now suppose that for a given r and c we have ∆[P;Bk(r, c)] ≥ 0. Then by
(2.1), the Poisson summation formula and the triangle inequality we have

∆[P;Bk(r, c)] ≤
N∑
n=1

∑
m

Gk(xn − c + m; r, s)−Nµ(B(r,0))(2.4)

=
N∑
n=1

∑
m

Ĝk(m; r, s)e(m · (xn − c))−Nχ̂r(0)
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=
∑

|m|<s
Ĝk(m; r, s)e(−m · c)

N∑
n=1

e(m · xn)−Nχ̂r(0)

≤ N(Ĝk(0; r, s)− χ̂r(0)) +
∑′

|m|<s
|Ĝk(m; r, s)|

∣∣∣
N∑
n=1

e(m · xn)
∣∣∣.

From (2.1) and (2.3) we know that

(2.5) Ĝk(0; r, s)− χ̂r(0) =
∫
Rk

(Gk(x; r, s)− χr(x)) dx ≤ Ak(r, s).

A general expression for Ĝk(t; r, s) seems difficult to find. However, we can
obtain an estimate that will do for our purposes. First note that

χ̂r(t) =
∫
Rk

χr(x)e(−t · x) dx = (r/|t|)k/2Jk/2(2πr|t|).

Applying the triangle inequality together with (2.5) and the above identity,
we see that

|Ĝk(t; r, s)|
≤
∣∣∣
∫
Rk

(Gk(x; r, s)− χr(x))e(−t · x) dx
∣∣∣+
∣∣∣
∫
Rk

χr(x)e(−t · x) dx
∣∣∣

≤ (Ĝk(0; r, s)− χ̂r(0)) + |χ̂r(t)|
≤ Ak(r, s) + (r/|t|)k/2|Jk/2(2πr|t|)|.

Thus it follows from (2.4) and (2.5) that

(2.6) ∆[P;Bk(r, c)]

≤ NAk(r, s) +
∑′

|m|<s
{Ak(r, s) + (r/|m|)k/2|Jk/2(2πr|m|)|}

∣∣∣
N∑
n=1

e(m · xn)
∣∣∣.

If it should happen that for a given r and c we have ∆[P;Bk(r, c)] < 0,
then following the preceding analysis using Fk(x; r, s) in place of Gk(x; r, s)
yields inequality (2.6) with a minus sign attached to the left-hand term.
Combining these bounds verifies (1.5) and completes the proof.

P r o o f o f T h e o r e m 2. We begin by using some estimates to simplify
the bound given in Theorem 1. If rs ≥ 1, then Ak(r, s) �k s

−1rk−1 (see
[7], Theorem 1). Combining this with the bound |Jν(x)| ≤ 1 for ν > 0 and
x > 0 reduces (1.5) to

Dr(P)�k Ns
−1rk−1 +

∑′

|m|<s
{s−1rk−1 + (r/|m|)k/2}

∣∣∣
N∑
n=1

e(m · xn)
∣∣∣.
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For a prime p, if h and m are lattice points, then
p∑

n=1

e((n/p)h ·m) =
{

0 if h ·m 6≡ 0 (mod p),
p if h ·m ≡ 0 (mod p).

Therefore we have

(2.7) Dr(Ph)�k ps
−1rk−1 +

∑′

|m|<s
h·m≡0

{s−1rk−1 + (r/|m|)k/2}p.

The sum above is difficult to handle alone, but the problem simplifies if we
average over all lattice points h such that |h| ≤ p. On doing so, the right
side of (2.7) is equal to

(2.8) ps−1rk−1 + p(Z[Zk;Bk(p,0)])−1
∑

|h|≤p

∑′

|m|<s
h·m≡0

{s−1rk−1 + (r/|m|)k/2}

= ps−1rk−1 + p(Z[Zk;Bk(p,0)])−1
∑′

|m|<s
{s−1rk−1 + (r/|m|)k/2}

∑

|h|≤p
h·m≡0

1.

For each m in the outer sum on the right side of (2.8), there is at least one
nonzero component mg. We fix such an m, and consider the inner sum. For a
given h, once the components h1, . . . , hg−1, hg+1, . . . , hk are set, there is only
one choice for hg (mod p) for which h ·m ≡ 0 (mod p). Since |h| ≤ p, there
are at most three possible choices for hg. Furthermore, the other components
h1, . . . , hg−1, hg+1, . . . , hk must satisfy |hj | ≤ p for each appropriate j. Thus
for m 6= 0,

(2.9)
∑

|h|≤p
h·m≡0

1�k p
k−1.

We also note that for each i ≥ 2, there exist constants c4(i) and c5(i) such
that

(2.10) c4(i)pi ≤ Z[Zi;Bi(p,0)] ≤ c5(i)pi.

(See [6], Theorem 339, for a discussion of the case i = 2.) As we are averag-
ing, we see that (2.7)–(2.10) imply there exists a lattice point h with |h| ≤ p
such that

Dr(Ph)�k ps
−1rk−1 +

∑′

|m|<s
{s−1rk−1 + (r/|m|)k/2}.

Applying the inequality
∑′

|m|<s
|m|−k/2 �k s

k/2
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and assuming that rs ≥ 1 (required for our bound on Ak(r, s) to be valid),
we find that

Dr(Ph)�k ps
−1rk−1 + (sr)k−1.

The expression on the right above is minimized upon setting s = p1/k, which
yields

Dr(Ph)�k (prk)(k−1)/k,

and completes the proof.
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[4] P. Erd ő s and P. Tur án, On a problem in the theory of uniform distribution, I ,

Indag. Math. 10 (1948), 370–378.
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