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1. Introduction. For centuries there has been a fascination with prime-
producing quadratic polynomials. We will describe the relationship between
such polynomials and class groups of complex quadratic fields with expo-
nent 1 or 2. In Section 2, we set up the notation and preliminaries includ-
ing a consequence of a result which we proved in [15], namely Theorem
2.3. We illustrate how all the consecutive prime-producing polynomials of
Euler–Rabinowitsch type (Definition 2.2) are known under the generalized
Riemann hypothesis (GRH). This was inspired by the seminal work of Frobe-
nius [7].

In Section 3, we provide a necessary and sufficient condition for the class
group to have exponent 1 or 2 in terms of the split primes less than a
Minkowski bound (see Theorem 3.1). This provides some revealing conse-
quences (see Corollary 3.1).

The last three results (one for each discriminant congruent to 5, 4 or
0 modulo 8) together with examples give a complete description of the el-
ementary abelian 2-subgroups of the class groups of a complex quadratic
field by explicitly listing the elements of the group; and this is done directly
from the representatives of the discriminant as a difference of two squares.
This has significant consequences when the exponent of the class group is 2.

Numerous examples, descriptions, sufficient conditions and delineation
of consequences are included to show the richness of the theory, as well as
to make the path for the reader an easily trod one.

2. Notation and preliminaries. Let D < 0 be a square-free integer,
and ∆ = 4D/σ2 where σ = 2 if D ≡ 1 (mod 4)andσ = 1 otherwise, then ∆
is called a discriminant with radicand D. Let [α, β] = αZ+βZ with α, β ∈ K
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= Q(
√
D) for a radicand D, then the maximal order of K is O∆ = [1, w∆],

where w∆ = (σ − 1 +
√
D)/σ. If α ∈ K we use α′ to denote the algebraic

conjugate of α, N(α) = αα′ to denote the norm of α, and Tr(α) = α + α′

to denote the trace of α.
An ideal of O∆ can be written as I = [a, b + cw∆] where a, b, c ∈ Z

with a, c > 0, c | a, c | b, and ac |N(b+ cw∆). Furthermore, if a, b, c ∈ Z with
c | b, c | a and ac |N(b+ cw∆), then I = [a, b+ cw∆] is an ideal of O∆. The
ideal I is called primitive if it has no rational integer factors other than ±1,
and in this case c = 1. The norm of an ideal I = [a, b + w∆] is defined as
a = N(I), and the conjugate ideal is denoted by I ′ = [a, b+ w′∆]. If I = I ′,
then I is called an ambiguous ideal of O∆, and if I ∼ I ′ (where ∼ denotes
equivalence of ideals in the class group C∆ of O∆ ), then I is said to be in
an ambiguous class of O∆. The class number, or order of C∆, is denoted by
h∆. An ideal of O∆ is said to be reduced if I is primitive and there does not
exist a non-zero β ∈ I such that |β| < N(I), where |β|2 = ββ′ = N(β).

The following useful fact is well known (for example see [4]). In what
follows, the symbol (∗/∗) will denote the Kronecker symbol.

Theorem 2.1. If ∆ < 0 is a discriminant , then

(1) Every class of C∆ contains a primitive ideal I with N(I) < M∆ =√
−∆/3 (M∆ is called a Minkowski bound).
(2) The class group C∆ is generated by the non-inert prime ideals P with

N(P) < M∆ (where non-inert means that (∆/p) 6= −1).

Note that throughout the paper we will use the phrase “a split prime
p” to mean a prime P in O∆ above p such that (∆/p) = 1, i.e. (p) = PP ′,
P 6= P ′.

All of the results of this section can be found in this author’s book [13],
including a proof of the following result, for which no other ideal-theoretic
proof exists in the literature.

Theorem 2.2. If ∆ < 0 is a discriminant , then

(1) If I is a primitive ideal of O∆, then there exists some β ∈ I with
I = [N(I), β] and |Tr(β)| ≤ N(I). Furthermore, |Tr(β)| is unique (i.e. if
I = [N(I), β] = [N(I), β0] and |Tr(β)| ≤ N(I), |Tr(β0)| ≤ N(I), then
|Tr(β)| = |Tr(β0)|).

(2) If I is a primitive ideal of O∆ and I = [N(I), β] with |Tr(β)| ≤
N(I), then I is a reduced ideal if and only if |β| ≥ N(I).

(3) If I is a reduced ideal of O∆, then N(I) <
√
|∆|/3.

(4) If I is a primitive ideal of O∆ and N(I) <
√
|∆|/4, then I is a

reduced ideal.
(5) There are at most two reduced ideals in any given equivalence class

of ideals, i.e. if I and J are reduced ideals of O∆ such that I = [N(I), β] ∼
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J = [N(J), β0] with |Tr(β)| ≤ N(I) and |Tr(β0)| ≤ N(J), then N(I) =
N(J) and |Tr(β)| = |Tr(β0)|.

(6) If I = [N(I), β] is a reduced ideal of O∆ with |Tr(β)| ≤ N(I), and
if I is in an ambiguous class of O∆, then either N(I) or 2N(I) + |Tr(β)|
is a divisor of ∆.

(7) Every ambiguous class of C∆ contains an ambiguous ideal.

We remind the reader of

Definition 2.1. The exponent e∆ of C∆ is the least positive integer
such that Ie∆ ∼ 1 for every ideal I representing a class of C∆.

Definition 2.2. Let ∆ < 0 be a discriminant and let q ≥ 1 be a square-
free divisor of ∆. Set α = 1 if 4q divides ∆ and α = 2 otherwise. We call

F∆,q(x) = qx2 + (α− 1)qx+ ((α− 1)q2 −∆)/(4q)

the q-th Euler–Rabinowitsch polynomial.

We may consider the following a generalization of the Ono invariant
(see [15]).

Definition 2.3. Let ∆ and q be as in Definition 2.2, and let Ω(n) =∑m
i=1 ei where n =

∏m
i=1 p

ei
i is the canonical prime factorization of positive

n ∈ Z. Set

F (∆, q) = max{Ω(F∆,q(x)) : 0 ≤ x ≤ b|∆|/(4q)− 1c}.
The following is a straightforward consequence of [15, Theorem 1,

p. 179].

Theorem 2.3. Let ∆ < 0 (∆ 6= −3,−4) be a discriminant divisible by
exactly N + 1 (N ≥ 0) distinct primes qi (1 ≤ i ≤ N + 1), with qN+1 being
the largest. If q =

∏N
i=1 qi, then the following are equivalent :

(1) e∆ ≤ 2.
(2) F (∆, q) = 1 and h∆ = 2N .

Before illustrating Theorem 2.3 with several applications, we make an
assumption, as a notational device, which we will cite in order to avoid
repetition. After the applications, we will explain the role of the GRH in all
of this.

Assumption 2.1. Let ∆ < 0 be a discriminant (∆ 6= −3,−4) divisible
by exactly N + 1 (N ≥ 0) distinct primes with qN+1 the largest and set
q =

∏N
i=1 qi, the product of the remaining prime divisors of ∆ (with q = 1

if N = 0).

Application 2.1. If ∆ ≡ 4 (mod 8) satisfies Assumption 2.1, then

F∆,q(x) = qx2 + qx+ (q2 −∆)/(4q)
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is prime for all non-negative integers x < qN+1/2 − 1 whenever e∆ ≤ 2.
Under the assumption of GRH, the largest string of primes occurs when
D = −177 and q = 6, where

F∆,6(x) = 6x2 + 6x+ 31

is prime for x = 0, 1, . . . , 28. This example was observed by Van der Pol and
Speziali (via Coxe) [24] and motivated this result.

Application 2.2. If ∆ ≡ 0 (mod 8) satisfies Assumption 2.1, then if
e∆ ≤ 2,

F∆,q(x) = qx2 + qN+1

is prime whenever 0 ≤ x ≤ qN+1 − 1. Under the assumption of GRH, the
largest such string is given by D = −58 and q = 2, where

F∆,2(x) = 2x2 + 29

is prime for 0 ≤ x ≤ 28. This example was cited by Sierpiński in [21]
(probably known to Euler) and motivated this result.

Application 2.3. If ∆ ≡ 1 (mod 4) satisfies Assumption 2.1, then
whenever e∆ ≤ 2,

F∆,q(x) = qx2 + qx+ (q2 −∆)/(4q)

is prime for all non-negative integers x < bqN+1/4− 1c. Under the assump-
tion of GRH, the largest string occurs when D = −267 and q = 3, where

F∆,3(x) = 3x2 + 3x+ 23

is prime whenever 0 ≤ x ≤ 21. A version of this example was noticed by
Lévy [11] in 1914, and motivated our result.

From the work of Weinberger [25], all ∆ < 0 with e∆ = 2 are known
under the GRH assumption. There are 56 values of ∆ with ∆ = −3315
being the largest. Hence, each of these values together with their respective
q values provide all possible consecutive, distinct, prime-producing F∆,q(x).
The optimal ones for each congruence class modulo 4 are provided in Ap-
plications 2.1–2.3, which have been ubiquitous in the literature without an
explanation as to why they occur. The reason is e∆ = 2. (See [13] for a
complete list of the F∆,q(x).)

Recall that, if ∆ ≡ 1 (mod 8), then e∆ = 2 implies that ∆ = −7 or −15.
To see this in a one-line proof: Since (2) = PP ′ with P 6= P ′ and P2 ∼ 1,
then there exists an α ∈ O∆, α 6∈ Z, with N(α) = 4, i.e. 16 = x2 −∆y2 for
some x, y ∈ Z, y 6= 0; so |∆| ≤ 15. Also, recall that if h∆ ≤ 4 and e∆ = 2,
then we do not need the GRH, i.e. all of such ∆ < 0 values are known. This
is a result of the h∆ ≤ 2 solution of Baker [2]–[3], Stark [22]–[23], and the
h∆ = 4 solution of Arno [1].
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This concludes the discussion of the non-monic prime-producing quadra-
tic polynomials. The most celebrated of the monic prime-producing polyno-
mials is Euler’s polynomial f(x) = x2 − x + 41 discovered in 1772
(see [6]). This polynomial is prime for x = 1, 2, . . . , 40. Similarly, Legen-
dre [9] observed that the polynomial g(x) = x2 + x + 41 is prime for all
integers x = 0, 1, . . . , 39. However, g(x) has come to be known as the Euler
polynomial (e.g. see [19, p. 24], [10], and [4, p. 155]). In any case, the prime-
producing capacity of these polynomials has less to do with their specific
form than it does with their discriminant ∆ = −163. This is explained by
Rabinowitsch’s criterion [17]–[18] (which Theorem 2.3 generalizes), together
with the Baker [2], Heegner [8], and Stark [22] solution of the class number
one problem of Gauss for ∆ < 0. It follows from this that f∆(x) = x2 +x+A
cannot be consecutively prime for x = 0, 1, 2, . . . , A − 2 when A > 41. The
reason, of course, is that A = (1 − ∆)/4 and ∆ = −163 is the last com-
plex quadratic field with h∆ = 1. Hence, Euler’s polynomial tops the list
of the consecutive, distinct prime-producing monic polynomials of negative
discriminant. If one allows repetitions, then we can get larger strings of con-
secutive primes in an initial range of x values. For example, we can transform
x2 + x + 41 via x → x − 40 into x2 − 79x + 1601, discovered by Escott [5]
in 1899. The latter polynomial is prime for the 80 values x = 0, 1, 2, . . . , 79
with each prime repeated twice.

We conclude by noting that if ∆ > 0 then quadratic prime-producers
have been found which supplant Euler’s polynomial. Among them are h(x) =
47x2 − 2247x + 21647 and k(x) = 36x2 − 810x + 2753. The former is
called the Fung polynomial which is prime for x = 0, 1, . . . , 42, and the
latter is called the Ruby polynomial which is prime for x = 0, 1, . . . , 44
(see [13]).

3. Quadratic prime-producers and class groups. The following
technical lemmata will be required in what follows. (For the definition of
M∆ see Theorem 2.1, and for that of α and F∆,q(x) see Definition 2.2.)

Lemma 3.1. Let ∆ < 0 be a discriminant and let q ≥ 1 be a square-free
divisor of it. If p < M∆ is any non-inert prime which does not divide q,
then there exists a non-negative integer x < (M∆ − α + 1)/2 such that p
divides F∆,q(x).

P r o o f. If p = 2, then q is odd. If α = 1 and D ≡ 3 (mod 4), then
F∆,q(1) is even. If D ≡ 0 (mod 2), then F∆,q(0) is even. If α = 2, then
σ = 2, so ∆ ≡ 1 (mod 8). Thus, F∆,q(0) is even. We may now assume that
p > 2. By [14, Lemma 2.1, p. 46], there is an integer x ≥ 0 such that p
divides F∆,q(x). Thus, q2(2x + α − 1)2 ≡ ∆ (mod p). Therefore, we may
assume without loss of generality that 0 ≤ 2x+α−1 < p (since we may take
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the least non-negative residue modulo p, and when α = 2 we may assume
that the residue is odd since p is odd). Hence, 0 ≤ x < (M∆ − α+ 1)/2.

Lemma 3.2. Let ∆ < 0 be a discriminant with q ≥ 1 a square-free divisor
of |∆|. If a > 0 is an integer with F∆,q(x) = a, where x is any non-negative
integer , then Q ∼ A, an O∆-ideal above a.

P r o o f. Form the ideal AQ = [aq, (b+
√
∆)/2], where b = (2x+α− 1)q.

Then N
(
(b+
√
∆)/2

)
= qF∆,q(x) = aq. Therefore, AQ =

(
(b+
√
∆)/2

)
, i.e.

Q ∼ A.

The reader will recognize that Lemma 3.2 basically says that represen-
tation of integers is tantamount to equivalence of ideals.

R e m a r k 3.1. It is worth pointing out that Lemma 3.2 tells us that
when q = 1, then A ∼ 1. What this means is that the factorization of the
Euler–Rabinowitsch polynomial F∆,1(x) = F∆(x) up to the Rabinowitsch
bound (|∆|/4 − 1) as given by Theorem 2.3, yields the equivalence classes
in C∆. For instance, we have

Example 3.1. Let ∆ = −3315. Then F∆(x) = x2 +x+ 829 and h∆ = 8,
and the Rabinowitsch bound is b|∆|/4 − 1c = 827. The only split primes
p < M∆ are 29 and 31 (see Table 3.1 below), and since F∆(19) = 3 · 13 · 31,
thenQ3Q13 ∼ Q31, whereQq lies over q inO∆. Also since F∆(25) = 3·17·29,
then Q3Q17 ∼ Q29. In fact, Theorem 3.1 below says a great deal about
e∆ ≤ 2 and the number of split primes p < M∆.

Lemma 3.3. If ∆ < 0 is a discriminant and I = [a, b+ω∆] is a primitive
ideal of O∆ with N(b + ω∆) < N(ω∆)2, then I is a principal ideal if and
only if a = 1 or a = N(b+ ω∆).

P r o o f. See [20] (and [15] for a generalization which also appears
in [13]).

R e m a r k 3.2. No such criterion exists if ∆ > 0. In fact, it often happens
that when ∆ > 0 we have [a, b + ω∆] ∼ 1, yet N(w∆)2 > N(b + ω∆) >
a > 1. For instance, if ∆ = 4 · 19, then P = [2,−1 +

√
19] ∼ 1. In fact,

P = (13 + 3
√

19) but there is no representation of P in the form [2, b+ ω∆]
with N(b+ ω∆) = 2.

Now we provide a necessary and sufficient condition for e∆ ≤ 2.

Theorem 3.1. If ∆ < 0 is a discriminant , then the following are equiv-
alent :

(1) e∆ ≤ 2.
(2) For every split prime p < M∆ there exists a proper square-free divisor

q > p of |∆| such that ∆ = q2 − 4pq.
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P r o o f. If (2) holds, then (1) follows from Theorem 2.1 and Lemma 3.2,
since F∆,q(0) = p when ∆ 6≡ 0 (mod 8), which we may assume, since such
a split prime p does not exist otherwise.

Conversely, if (1) holds and p < M∆ is any split prime, then there exists
an O∆-ideal I = [p, β], where β = (b+

√
∆)/2 for some b ∈ Z with |b| < p,

since we may choose any appropriate b with ∆ ≡ b2 (mod p). By Theo-
rem 2.2(7), there exists an ambiguous ideal J ∼ I with q = N(J) <

√
|∆|,

and J = [q, (εq +
√
∆)/2], where ε = 1 if ∆/q is square-free, and ε = 0

otherwise. Since IJ ∼ 1, we have IJ = (γ) for some γ ∈ J (since ideals
which “divide” are those which “contain”, i.e. J | (γ) implies γ ∈ J). There-
fore, there exist x, y ∈ Z such that 2γ = qx + y

√
∆. By taking norms and

dividing by q we have

4p = qx2 − y2∆/q < 4
√
|∆|/3.

If either x = 0, or y = 0, then p | |∆|, a contradiction. Since q <
√−∆ we

have y2 ≤ 1 so |y| = 1. If |x| ≥ 2, then

4q + |∆|/q < 4p < 4
√
|∆|/3,

so
8|∆| < 16q2 + 8|∆|+∆2/q2 < 16|∆|/3,

a contradiction. Thus |x| = 1, and ∆ = q2 − 4pq, as required. Since p =
(q1 + q)/4 where ∆ = −qq1, it follows that q2

1 − 4pq1 = ∆ = q2 − 4pq.
Therefore, we may assume that q > p since one of q or q1 must be.

Observe that, in the above proof, we did not make any assertion regard-
ing the “reduction” of I, since we did not need it. However, we pose

Conjecture 3.1. If e∆ ≤ 2 and p < M∆ is a split prime, then the
O∆-ideal I = [p, (b+

√
∆)/2] is reduced for some |b| < p.

Corollary 3.1. If ∆ < 0 and e∆ ≤ 2 for a discriminant ∆, then

(1) If ∆ ≡ 4, 5 (mod 8), then any reduced ideal P above a split prime
p < M∆ must be of the form P = [p, (q − 2p +

√
∆)/2], where P ∼ Q, the

unique ideal above q (> p) dividing |∆|, together with its conjugate P ′ =
[p, (q′ − 2p+

√
∆)/2], where q′ = |∆|/q.

(2) If ∆ ≡ 0 (mod 8), then there are no split primes p < M∆.
(3) If ∆ ≡ 1 (mod 8), then ∆ = −7 or −15.
(4) If h∆ = 1, then there are no split primes p < M∆.

P r o o f. All of (1)–(3) are essentially contained in the proof of Theo-
rem 3.1. If h∆ = 1, then Theorem 2.2(5) tells us that the trivial ideal (1) is
the only reduced ideal in the class.

We have not been successful in proving the following conjecture which
holds under the assumption of the GRH.
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Conjecture 3.2. If ∆ < 0 is a discriminant with ∆ ≡ 5 (mod 8)
and e∆ ≤ 2, then there are at most 2 split primes p < M∆, and if
∆ ≡ 4 (mod 8), then there is at most one such prime.

However, we can give the following unconditional proof for a certain case.

Theorem 3.2. If ∆ < 0 is a discriminant satisfying Assumption 2.1
with ∆ 6≡ 0 (mod 8) and F∆,q(x) is prime whenever 0 ≤ x < (M∆ − 1)/2,
then there is at most one split prime p < M∆.

P r o o f. If F∆,q(1) < M∆, then 2q+(q2−∆)/(4q) = (9q+qN+1)/4 < M∆,
if ∆ ≡ 1 (mod 4). Thus, 243q2 + 38qqN+1 + 3q2

N+1 < 0, a contradiction.
Therefore, by Lemma 3.1, the only possible split prime p < M∆ is p =
(q + αqN+1/σ)/4. The case ∆ ≡ 4 (mod 8) is similar.

R e m a r k 3.3. The GRH tells us that the only possible remaining values
(not covered by Theorem 3.2) are −∆ ∈ {195, 595, 627, 715, 1155, 1995, 3003,
3315}, where the first four values have h∆ = 4 and the last four values have
h∆ = 8. The first four values have at most one split prime p < M∆ (namely
7 for −195, 13 for −595, −627, and none for −715). The last four values
have at most two split primes p < M∆ (17 and 19 for −1155, 23 for −1995,
and 29, 31 for both −3003 and −3315).

To illustrate Theorems 3.1–3.2 and Conjecture 3.2, we provide the
list (Table 3.1) for which a split prime p < M∆ exists together with a
value of q such that ∆ = q2−4pq (and its associate q′ where qq′ =

∏N+1
i=1 qi,

with the qi’s being all the distinct primes dividing ∆). The table is split into
2 parts, one for ∆ ≡ 4 (mod 8) and one for ∆ ≡ 5 (mod 8).

Table 3.1

∆ ≡ 4 (mod 8)

−D p q q′

21 5 14 6
105 11 30 14
133 13 38 14
165 13 30 22
273 17 42 26
345 19 46 30
357 19 42 34

1365 37 78 70

∆ ≡ 5 (mod 8)

−∆ p q q′

35 3 7 5
91 5 13 7

187 7 17 11
195 7 15 13
403 11 31 13
435 11 29 15
483 11 23 21
555 13 37 15
595 13 35 17
627 13 33 19

1155 17 35 33
1155 19 55 21
1995 23 57 35
3003 29 77 39
3003 31 91 33
3315 29 65 51
3315 31 85 39
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R e m a r k 3.4. In [14] we made a conjecture which came close to Theo-
rem 3.1. However, we showed in [15] that the conjecture is false. But, that
conjecture was overly ambitious in that we need not have considered it
necessary to include ramified primes. Theorem 3.1 then proves the lesser
conjecture, namely e∆ ≤ 2 if and only if, for each split p < M∆, there exists
a square-free divisor q of ∆ with F∆,q(x) = p for some x ≥ 0. In fact, we
have done far more. We have shown that we may always choose x = 0!

Now we show how the structure of the elementary abelian 2-subgroup
of C∆ for ∆ < 0 is completely determined by the representation of ∆ as a
difference of two squares. This has some consequences when e∆ = 2, which
we illustrate after the result.

Theorem 3.3. If ∆ ≡ 5 (mod 8) is a discriminant satisfying Assump-
tion 2.1, then ∆ is a difference of squares in exactly 2N distinct ways, namely

∆ = a2
i − 4b2i

with bi ≤ N(ω∆), ai = (qN+1q
(i) ∓ q

(i)
1 )/2 and bi = (qN+1q

(i) ± q
(i)
1 )/4,

where q = q(i)q
(i)
1 runs thorough all 2N−1 distinct factorizations for q(i) ≥ 1.

Furthermore, the primitive ideals [bi, (ai +
√
∆)/2] comprise the elementary

abelian 2-subgroup C∆,2 of C∆. Also, for each i ≤ 2N−1,

∆ = (qN+1q
(i))2 ∓ 4biqN+1q

(i)

(where ∓ corresponds to ± in the definition of bi above).

P r o o f. qN+1, being prime, has exactly one representation as a difference
of two squares, namely

qN+1 = [(qN+1 + 1)/2]2 − [(qN+1 − 1)/2]2.

Moreover, q has exactly 2N−1 distinct such representations, namely

q = [(q(i) + q
(i)
1 )/2]2 − [(q(i) − q(i)

1 )/2]2

for each of the 2N−1 distinct factorizations q = q(i)q
(i)
1 for i = 1, 2, . . . , 2N−1,

with q(i) ≥ 1. Furthermore, each such representation for q yields 2 distinct
such representations for ∆ as follows (where x = (qN+1−1)/2, y = (qN+1 +
1)/2, u = (q(i) + q

(i)
1 )/2 and v = (q(i) − q(i)

1 )/2):

∆ = (x2 − y2)(u2 − v2) = (xu± yv)2 − (yu± xv)2.

Moreover, since ∆ ≡ 5 (mod 8), it follows that yu±xv is divisible by 4 and
yu + xv = (qN+1q

(i) + q
(i)
1 )/2 has its largest possible value at q(i) = q and

q
(i)
1 = 1, i.e. (yu+ xv)/2 = (1−∆)/4 = N(ω∆). Thus, for
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bi = ((qN+1q
(i))2 −∆)/(4qN+1q

(i))

and
b
(1)
i = ((qN+1q

(i))2 −∆)/(4qN+1q
(i)
1 ),

Bi ∼ QN+1Q(i) and B(1)
i ∼ QN+1Q(i)

1 , where Bi, B(1)
i , QN+1, Q(i)

1 and Q(i)

are O∆-primes above bi, b
(1)
i , qN+1, q(i)

1 and q(i) respectively, by Lemma 3.2.
If Bi ∼ Bj or Bi ∼ B(1)

j for any i 6= j (say Bi ∼ Bj for convenience) then
Q(i)Q(j) ∼ 1. However, after possibly removing square factors of ideals from
Q(i)Q(j) (since squares are necessarily principal) we are left with a non-
trivial principal O∆-prime whose norm divides q. This is a contradiction
since the value q is the product of those ramified primes whose O∆-primes
generate C∆,2. Hence the [bi, (a+

√
∆)/2] comprise C∆,2. The last statement

of the theorem is an easy check.

We illustrate Theorem 3.3 with the following example.

Example 3.2. Let ∆ = −3315. Then h∆ = 8 (N = 3), qN+1 = 17 =
q2 − 82 and q = 195 = 142 − 12 = 222 − 172 = 342 − 312 = 982 − 972. Hence

∆ = (82 − 92)(142 − 12)

= (8 · 14 + 9 · 1)2 − (9 · 14 + 8 · 1)2

= 1212 − 4 · 672(3.1)

= (8 · 14− 9 · 1)2 − (9 · 14− 8 · 1)2

= 1032 − 4 · 592(3.2)

= (82 − 92)(222 − 172)

= (8 · 22 + 9 · 17)2 − (9 · 22 + 8 · 17)2

= 3292 − 4 · 1672(3.3)

= (8 · 22− 9 · 17)2 − (9 · 22− 8 · 17)2

= 232 − 4 · 312(3.4)

= (82 − 92)(342 − 312)

= (8 · 34 + 9 · 31)2 − (9 · 34 + 8 · 31)2

= 5512 − 4 · 2772(3.5)

= (8 · 34− 9 · 31)2 − (9 · 34− 8 · 31)2

= 72 − 4 · 292(3.6)

= (82 − 92)(982 − 972)

= (8 · 98 + 9 · 97)2 − (9 · 98 + 8 · 97)2

= 16572 − 4 · 8292(3.7)

= (8 · 98− 9 · 97)2 − (9 · 98− 8 · 97)2

= 892 − 4 · 532.(3.8)
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We note that each of the 8 = 2N distinct representatives (3.1)–(3.8),
of ∆ as a difference of squares yield the class group C∆ via the primitive
ideals I1 = [67, (112 +

√
∆)/2], I2 = [59, (103 +

√
∆)/2], I3 = [167, (329 +√

∆)/2], I4 = [31, (23 +
√
∆)/2], I5 = [277, (551 +

√
∆)/2], I6 = [29, (7 +√

∆)/2], I7 = [829, (1657 +
√
∆)/2] and I8 = [53, (89 +

√
∆)/2]. These

ideals are not necessarily reduced but the two representing the split primes
p < M∆, namely I4 and I6 are reduced. Furthermore, via the last statement
of Theorem 3.3 we have

∆ = (qN+1q
(i))2−4biqN+1q

(i) = (17 ·5)2−4 ·31 ·17 ·5 = (17 ·3)2−4 ·29 ·17 ·3,
as predicted by Theorem 3.1. Moreover, it can be shown via the factorization
of the Euler–Rabinowitsch polynomial as given in Theorem 2.3 that I1 ∼
Q13, I2 ∼ Q3Q5, I3 ∼ Q5, I4 ∼ Q3Q13, I5 ∼ Q3, I6 ∼ Q3Q17, I7 ∼ 1, and
I8 ∼ Q17. Thus C∆ = 〈{I1}〉 × 〈{I3}〉 × 〈{I5}〉, where {I} denotes the class
of I in C∆.

Thus Theorem 3.3 provides a description of the class group C∆ via dif-
ferences of squares when e∆ = 2. Note that by Theorem 3.1, if e∆ = 2, then
necessarily all p < M∆ which are split primes must appear as some bi in
Theorem 3.3.

R e m a r k 3.5. If we let q(i) = q/qi and q
(i)
1 = qi in Theorem 3.3 for

i = 1, . . . , N , then we conclude that N differences of squares (xu + yv)2 −
(yu+ xv)2 (for x, y, u and v as given in the proof of Theorem 3.3) give rise
to N generators of C∆,2. Thus, we have

Corollary 3.2. If ∆ ≡ 5 (mod 8) is a discriminant satisfying Assump-
tion 2.1, then C∆,2 is generated by the classes containing [bi, (ai +

√
∆)/2]

for i = 1, . . . , N , where

bi = (q2
i −∆)/(4qi) and ai = −(q2

i +∆)/(2qi).

We also have similar results for ∆ ≡ 0 (mod 4) which we state without
proof since the verification is similar to that of Theorem 3.3.

Theorem 3.4. If ∆ ≡ 4 (mod 8), ∆ < 0 is a discriminant divisible by
exactly N + 1 distinct primes with q1 = 2 < q2 < . . . < qN+1 then C∆,2 is
generated by the classes containing the ideals [bi, ai +

√
D], where

bi = (q2
i −D)/(2qi) and ai = −(q2

i +D)/(2qi)

for i = 2, . . . , N , and

b1 = (1−D)/2, a1 = −(1 +D)/2.

Note that the ideals in Theorem 3.4 arise from D as a difference of 2
squares in much the same way as Theorem 3.3. For instance, we have

Example 3.3. Let ∆ = −4 · 1365 = −4 · 3 · 5 · 7 · 13, where 105 = q =
3 · 5 · 7 = q2q3q4 and q5 = qN+1 = 13. Also, q = 192 − 162 = 112 − 42 =
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532 − 522 = 132 − 82 and qN+1 = 72 − 62. Hence,

D = (62 − 72)(192 − 162) = 2262 − 2292

= (62 − 72)(112 − 42) = 942 − 1012

= (62 − 72)(532 − 522) = 6822 − 6832

= (62 − 72)(132 − 82) = 1342 − 1392

and these four representations give rise to the generators of C∆, namely I1 =
[229, 226 +

√
D], I2 = [101, 94 +

√
D], I3 = [683, 682 +

√
D], I4 = [139, 134 +√

D]. Also, we observe (from the factorization of the Euler–Rabinowitsch
polynomial as given in Theorem 2.3) that I1 ∼ Q2Q3, I2 ∼ Q2Q7, I3 ∼ Q2,
and I4 ∼ Q2Q5, where Qq is the unique O∆-ideal above q.

We now present a result for ∆ ≡ 0 (mod 8) which we do not prove since
it is again similar to that of the proof of Theorem 3.3.

Theorem 3.5. If ∆ ≡ 0 (mod 8) with ∆ < 0 is a discriminant divisible
by exactly N + 1 distinct primes qi, then C∆,2 is generated by the classes of
the ideals Ii = [bi, ai +

√
∆] for i = 1, . . . , N , where

bi = 2q/qi + qi and ai = −qi
with q being the product of the N distinct odd primes q2, q3, . . . , qN+1.

Theorem 3.5 is illustrated by the following which shows how the ideals
arise from ∆ as a difference of squares.

Example 3.4. Let ∆ = 1848 = 8 · 3 · 7 · 11. Here 8 = 32 − 1 and
231 = 3 · 7 · 11 = 402 − 372 = 202 − 132 = 162 − 52. Thus

∆ = (12 − 32)(402 − 372) = 1512 − 1572

= (12 − 32)(202 − 132) = 592 − 732

= (12 − 32)(162 − 52) = 312 − 532.

If we set q2 = 3, q3 = 7, q4 = 11 and q = 231, then b1 = 157, b2 = 73, and
b3 = 53. Thus the generators are I1 = [157,−3+

√
D] = [157, 154+

√
D], I2 =

[73,−7+
√
D] = [73, 66+

√
D], and I3 = [53,−11+

√
D] = [53, 42+

√
D]. We

observe that, unlike the cases in Examples 3.2–3.3, D cannot be represented
as a difference of two squares since D ≡ 2 (mod 4).

What we have essentially done in Theorems 3.2–3.4 is construct the
group C∆,2.

This concludes our discussion of prime-producing quadratic polynomials
of negative discriminant.

When ∆ > 0 we looked at such restrictions on the number of primes
p < M∆, and obtained complete classifications for certain ∆ when e∆ ≤ 2
in previous work. We will deal with prime-producing quadratics for ∆ > 0
in later work (see [12], and [16] for a precursor).
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mémoire imprimé parmi ceux de 1771 , p. 381, Nouveaux mémoirs de l’Académie des
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