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On the diophantine equation
xm − 1
x− 1

= yn

by

Li Yu and Maohua Le (Zhanjiang)

1. Introduction. Let Z, N, Q be the sets of integers, positive integers
and rational numbers respectively. The solutions (x, y,m, n) of the equation

(1)
xm − 1
x− 1

= yn, x, y,m, n ∈ N, x > 1, y > 1, m > 2, n > 1,

were investigated in many papers. In this respect, Ljunggren [6] proved that
equation (1) has only the solutions (x, y,m, n) = (3, 11, 5, 2) and (7, 20, 4, 2)
with n = 2. Shorey and Tijdeman [10, Theorem 12·5] showed that equation
(1) has only finitely many solutions (x, y,m, n) if at least one of the following
conditions holds: (i) x is fixed, (ii) m is fixed, (iii) n has a fixed prime factor,
(iv) y has a fixed prime factor. Moreover, all the solutions can be effectively
determined. In general, Shorey and Tijdeman conjectured that equation (1)
has only finitely many solutions (x, y,m, n). This problem has not been
resolved yet.

Recently, Le [4] proved that if (x, y,m, n) is a solution of (1) such that
x is a prime power and y ≡ 1 (mod x), then xm < C, where C is an effec-
tively computable absolute constant. In this paper we improve this result as
follows:

Theorem 1. The equation (1) has no solution (x, y,m, n) with y ≡ 1
(mod x).

For fixed a, b ∈ N with gcd(a, b) = 1, we denote by ordb a the least
positive integer value of t for which at ≡ 1 (mod b). In [1], Edgar showed
that if (x, y,m, n) is a solution of (1), then m = ordy x. Simultaneously, he
asked if

(2) n = ordx y.

Edgar offered $50.00 for settling this problem. On using Theorem 1, we can
completely solve this problem as follows:
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Theorem 2. Every solution of (1) satisfies (2).

Let P be the set of odd primes. Edgar asked if there exists a solu-
tion (x, y,m, n) of (1) which satisfies x, y ∈ P, m ≥ 5 and (x, y,m, n) 6=
(3, 11, 5, 2) (see [2, Problem D10]). Shi [8] posed a similar problem for x = 3.
In this paper we prove the following result.

Theorem 3. If (x, y,m, n) is a solution of (1) with x ∈ P, then
gcd(x(x − 1), n) = 1. Moreover , the equation (1) has only the solution
(x, y,m, n) = (3, 11, 5, 2) with x = 3.

Let a,m ∈ N with 1 ≤ a ≤ 9 and m > 1, and let Na(m) = a + 10a +
. . .+ 10m−1a. Obláth [7] proved that if a > 1, then Na(m) is never a perfect
power. Shorey and Tijdeman [9, Theorem 6] proved that N1(m) is not a pth
power for any p ∈ P with p ≤ 19. In this respect, we have:

Theorem 4. N1(m) is never a perfect power.

All the above-mentioned results are in tune with the conjecture of Shorey
and Tijdeman.

2. Proofs of Theorems 1 and 2

P r o o f o f T h e o r e m 1. Let (x, y,m, n) be a solution of (1) with y ≡
1 (mod x). By [6], the only solutions of (1) with 2 |n are (x, y,m, n) =
(3, 11, 5, 2) and (7, 20, 4, 2). We may assume that 2 -n. Since n > 1, n must
has an odd prime factor p. Then (x, yn/p,m, p) is a solution of (1) satisfying
yn/p ≡ 1 (mod x) and p is an odd prime. Therefore, it suffices to consider
the case that n is an odd prime.

If n |x and nα ‖x, then from yn − 1 = x(xm−2 + . . . + x + 1) we get
nα ‖ yn − 1, hence nα−1 ‖ y − 1, which contradicts y ≡ 1 (mod x). So we
have n -x.

If x − 1 is an nth power, then x − 1 = yn1 , and xm − 1 = (y1y)n for
some y1 ∈ N. This is impossible by the proof of [10, Theorem 12.3]. Thus
(x− 1)1/n 6∈ Q.

Let θ = (x − 1)1/n, and let K = Q(θ). Then K is an algebraic number
field of degree n. Let OK and UK be the algebraic integer ring and the unit
group of K respectively. For α1, . . . , αr ∈ OK , let [α1, . . . , αr] be the ideal
of K generated by α1, . . . , αr, and let N([α1, . . . , αr]) denote the norm of
[α1, . . . , αr]. Since θ = (x− 1)1/n, we have

(3) [x] = [1 + θn] = [1 + θ]
[

1 + θn

1 + θ

]
.

On the other hand, by (1), we get

(4) [x]m = [1 + ynθn] = [1 + yθ]
[

1 + ynθn

1 + yθ

]
.
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Since y ≡ 1 (mod x), we have

(5) [1 + θ] | [1 + yθ].

Further, since n -x, the ideals [1+yθ] and [(1+ynθn)/(1+yθ)] are coprime.
Therefore, by (4) and (5), we get

(6) [1 + θ]m | [1 + yθ].

Notice that N([1 + θ]) = x and N([1 + yθ]) = xm. We find from (6) that
[1 + yθ] = [1 + θ]m. So we have

(7) 1 + yθ = (1 + θ)mε, ε ∈ UK , NK/Q(ε) = 1,

where NK/Q(ε) is the norm of ε. By the proof of [5, Theorem], (7) is impossi-
ble. Thus, the equation (1) has no solution (x, y,m, n) with y ≡ 1 (mod x).
The theorem is proved.

P r o o f o f T h e o r e m 2. Let k = ordx y. If (x, y,m, n) is a solution
of (1), then we have yn ≡ 1 (mod x) and n ≡ 0 (mod k). Let n′ = n/k
and y′ = yk. If n′ > 1, then (x, y′,m, n′) is a solution of (1) with y′ ≡ 1
(mod x). By Theorem 1, this is impossible. Thus n′ = 1 and the theorem is
proved.

3. Proofs of Theorems 3 and 4. Theorems 3 and 4 are based on the
following result from [5]:

Lemma. Equation (1) has no solution (x, y,m, n) with gcd(xϕ(x), n) = 1,
where ϕ(x) is Euler’s totient function of x.

P r o o f o f T h e o r e m 3. Since ϕ(x) = x − 1 for any x ∈ P, the first
part of Theorem 3 is an immediate consequence of the Lemma.

By the Lemma with x = 3, we get either 2 |n or 3 |n. By [6], the equation
(1) has only the solution (x, y,m, n) = (3, 11, 5, 2) with x = 3 and 2 |n.
In [3], Inkeri showed that equation (1) has only the solution (x, y,m, n) =
(18, 7, 3, 3) with 1 < x < 70 and 3 |n. Thus the theorem is proved.

P r o o f o f T h e o r e m 4. If N1(m) is a perfect power, then equation
(1) has a solution (x, y,m, n) with x = 10. By the Lemma, we get either
2 |n or 5 |n. By [9, Theorem 6], this is impossible. The proof is complete.
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