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On elementary abelian 2-Sylow K2 of rings of
integers of certain quadratic number fields

by

P. E. Conner and J. Hurrelbrink (Baton Rouge, La.)

I. Introduction. A large number of papers have contributed to deter-
mining the structure of the tame kernel K2OF of algebraic number fields F .
Recently, for quadratic number fields F whose discriminants have at most
three odd prime divisors, 4-rank formulas for K2OF have been made very
explicit by Qin Hourong in terms of the indefinite quadratic form x2 − 2y2

(see [7], [8]).
We have made a successful effort, for quadratic number fields F =

Q(
√±p1p2), to characterize in terms of positive definite binary quadratic

forms, when the 2-Sylow subgroup of the tame kernel of F is elementary
abelian.

This makes determining exactly when the 4-rank of K2OF is zero, com-
putationally even more accessible. For arbitrary algebraic number fields F
with 4-rank of K2OF equal to zero, it has been pointed out that the Leopoldt
conjecture for the prime 2 is valid for F , compare [6].

We consider this paper to be an addendum to the Acta Arithmetica
publications [7], [8]. It grew out of our circulated 1989 notes [3].

Acknowledgements. We gratefully acknowledge fruitful long-term
communications on this topic with Jerzy Browkin.

II. Statement of results. We consider quadratic fields Q(
√±p1p2)

with two odd (positive) prime numbers p1, p2.
For real quadratic fields, concerning the question of when the 2-Sylow

subgroup of the tame kernel is elementary abelian, we concentrate on the
most involved case p1 ≡ p2 ≡ 1 mod 8 and prove:

Theorem 1. Let E=Q(
√
p1p2) with rational primes p1 ≡ p2 ≡ 1 mod 8.

Then 2-Sylow K2OE is elementary abelian if and only if

[59]
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(i) (p1/p2) = −1 and
(ii) exactly one of the two primes p1, p2 fails to be represented over Z by

the quadratic form x2 + 32y2.

For imaginary quadratic fields, we concentrate on the most involved case
(up to the order of p1, p2)

p1 ≡ 7 mod 8, p2 ≡ 1 mod 8 and (p1/p2) = 1

and prove:

Theorem 2. Let L = Q(
√−p1p2) with rational primes p1 ≡ 7 mod 8,

p2 ≡ 1 mod 8, (p1/p2) = 1. Let h(K) denote the class number of
K = Q(

√−2p1). Then 2-Sylow K2OL is elementary abelian if and only
if

p2 = x2 + 32y2 and p
h(K)/4
2 = 2a2 + p1b

2 with b 6≡ 0 mod p2

either both have integral solutions, or neither one has an integral solution.

III. Proof of Theorem 1. We consider E = Q(
√
p1p2) with primes

p1 ≡ p2 ≡ 1 mod 8. By definition, 2-Sylow K2OE is elementary abelian if
and only if the 4-rank of K2OE is zero. By [4, 2.3] we have

(1) 4-rkK2OE = 0 if and only if 2-rk kerχ = 1

where χ : HE → CS(E)/CS(E)2 is the homomorphism given in [4, 2.1].
Here CS(E) denotes the S-ideal class group of E with S being the set of
infinite and dyadic places of E. Since the square class of 2 lies in the kernel
of χ we can restate (1) as

(2) 4-rk K2OE = 0 if and only if kerχ is generated by the class of 2 in
E∗/E∗2.

Let C(E) denote the (ordinary) ideal class group of E. We have 2-rk
C(E) = 1, compare [2, 18.3] and 2-rkCS(E) = 1 also since CS(E)/CS(E)2

∼= C(E)/C(E)2. Let P1 denote the prime ideal of OE lying over the ramified
prime p1, say.

Assume now that 2-Sylow K2OE is elementary abelian. If the class of
P1 were a square in C(E), then the class of p1 would be in the kernel of
both the homomorphisms χ1 and χ2 defined in [4, 2.5 and 3.1] and hence
in the kernel of χ = χ1χ2 (see [4, 3.2]). However by (2), the class of p1 in
E∗/E∗2 does not lie in kerχ. Thus, the class of P1, whose square is 1, is a
nonsquare in C(E). So, 2-Sylow C(E) is generated by the class of P1 and
4-rk C(E) = 0.

We have shown that 2-Sylow C(E) is elementary abelian. This implies
that (p1/p2) = −1 (compare [2, 19.6]), and in that case the norm of the
fundamental unit of E is −1 (see [2, 19.9]). In other words, we concluded
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that the 2-Sylow subgroup of the narrow ideal class group of E is elementary
abelian. In terms of the graph Γ (E) of E (see [5]) this means that Γ (E)
is given by p1•—•p2, which is equivalent to the Legendre symbol (p1/p2)
being −1.

Thus we have:

(3) (p1/p2) = −1 if and only if 2-Sylow C(E) is elementary abelian and
the norm of the fundamental unit of E is −1.

In order to finish the proof of Theorem 1 it now suffices to prove
that under the assumption of 2-Sylow C(E) being elementary abelian and
Nε = −1 for the fundamental unit of ε of E, we have:

2-Sylow K2OE is elementary abelian if and only if exactly one of
the primes p1, p2 fails to be represented over Z by the quadratic form
x2 + 32y2.

Consider the subgroup U+
S of E∗/E∗2 consisting of square classes of

totally positive S-units of E. The 2-rank of U+
S is 2; the kernel of χ is

generated by the class of 2 in E∗/E∗2 if and only if U+
S ∩HE is generated

by the class of 2. Since the elements of HE are square classes of elements in
E∗ which are norms from E(

√−1) over E, we have obtained so far:

(4) 2-Sylow K2OE is elementary abelian if and only if (p1/p2) = −1 and
there exists a totally positive S-unit π of E that fails to be a norm
from E(

√−1) over E.

We will now use reciprocity of Hilbert symbols to relate the last condi-
tion to the positive definite form x2 + 32y2. Let D1 be one of the two
dyadic primes of E. For a totally positive S-unit π of E, all we have to
characterize is

(π,−1)D1 = −1.

Now, (π,−1)D1 = (2, ε)D1 , where ε is the fundamental unit of E. We are
going to characterize

(2, ε)D1 = −1.

Let D be the dyadic prime of E(
√−1) over D1. We have (2, ε)D1 = (1 +

i, ε)D, where i2 = −1. So, exactly when is

(1 + i, ε)D = −1 ?

We want to characterize this in terms of the quadratic field Q(
√−1). Since

ε is of norm −1, there exists a δ in Q(
√−1) such that δ and ε ∈ E have the

same square class in E(
√−1) and NQ(

√−1)/Q(δ) = p1p2 in Q∗/Q∗2. We ask:
when is

(1 + i, δ)D = −1 ?
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With D = (1 + i), the dyadic prime in Q(
√−1), this amounts to: when is

(1 + i, δ)D = −1 ?

Let Pj and P j be the primes of Q(
√−1) lying over pj , j = 1, 2. Since

ordPj (δ)+ ordP j (δ) ≡ 1 mod 2, we may assume that ordPj (δ) ≡ 1 mod 2,
j = 1, 2. Now we can make the essential step: we have

(1 + i, δ)D = (1 + i, δ)P1(1 + i, δ)P2

with the Hilbert symbols on the right hand side given by the 4-th power
symbols

[
2i
Pj

]
4, j = 1, 2. So

(1 + i, δ)D =
[

2i
P1

]

4

[
2i
P2

]

4

and, by [1], the symbol
[

2i
Pj

]
4 is −1 if and only if the rational prime pj is

not of the form x2 + 32y2 over Z.
We have obtained

(5) (π,−1)D1 =
[

2i
p1

]

4

[
2i
p2

]

4
= −1

if and only if exactly one of the primes p1, p2 fails to be represented over Z
by the quadratic form x2 + 32y2.

In view of (4), this completes the proof of Theorem 1.

We have given the proof of Theorem 1 via (3) and (5) in order to suggest
the following generalizations.

IV. Conjectures

Conjecture 1. Let E = Q(
√
p1 . . . pk) with distinct rational primes

pi ≡ 1 mod 8, i = 1, . . . , k. Then 2-Sylow K2OE is elementary abelian if
and only if

(i) 2-Sylow C(E) is elementary abelian and the norm of the fundamental
unit of E is −1 and

(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z
by the quadratic form x2 + 32y2.

Since the analogy with Theorem 1 is so beautiful we are going to state
without proof:

Theorem 1′. Let F=Q(
√

2p1p2) with rational primes p1≡p2≡1 mod 8.
Then 2-Sylow K2OF is elementary abelian if and only if

(i) (p1/p2) = −1 and
(ii) exactly one of the two primes p1, p2 fails to be represented over Z by

the quadratic form x2 + 64y2.
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Regarding Theorem 1′ we suggest the generalization:

Conjecture 1′. Let F = Q(
√

2p1 . . . pk) with distinct rational primes
pi ≡ 1 mod 8, i = 1, . . . , k. Put E = Q(

√
p1 . . . pk). Then 2-Sylow K2OF is

elementary abelian if and only if

(i) 2-Sylow C(E) is elementary abelian and the norm of the fundamental
unit of E is −1 and

(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z
by the quadratic form x2 + 64y2.

By the above and [3], the conjectures are valid for k = 1 and k = 2.
In Theorem 1′ and Conjecture 1′ the quadratic form x2 + 64y2 replaces

naturally the quadratic form x2 +32y2 from Theorem 1 and Conjecture 1 in
view of Gauss’s famous result: For a prime p ≡ 1 mod 8, the fourth power
symbol

[
2
p

]
4 is −1 if and only if p is not of the form x2 + 64y2 over Z; see

e.g. [9, p. 84].

V. Numerical illustration in the real case. Among the three primes
17, 41, and 73, the prime 41 = 32 + 32 · 12 is the only one that is repre-
sented over Z by the form x2 + 32y2. We have (17/41) = (17/73) = −1 and
(41/73) = +1. Hence, by Theorem 1:

For E = Q(
√

17 · 41), 2-Sylow K2OE is elementary abelian.
For E = Q(

√
17 · 73), 2-Sylow K2OE is not elementary abelian.

For E = Q(
√

41 · 73), 2-Sylow K2OE is not elementary abelian.

Among the three primes 17, 41, and 73, the prime 73 = 32 + 64 · 12 is
the only one that is represented over Z by the form x2 + 64y2. Hence, by
Theorem 1′ :

For F = Q(
√

2 · 17 · 41), 2-Sylow K2OF is not elementary abelian.
For F = Q(

√
2 · 17 · 73), 2-Sylow K2OF is elementary abelian.

For F = Q(
√

2 · 41 · 73), 2-Sylow K2OF is not elementary abelian.

VI. Proof of Theorem 2. We consider L = Q(
√−p1p2) with primes

p1 ≡ 7 mod 8, p2 ≡ 1 mod 8 and (p1/p2) = 1. Let S be the set of infinite
and dyadic places of L. The 2-rank of the S-ideal class group of L is 1,
compare [4, 7.1]; let hS(L) denote the S-class number of L. This time, we
have by [4, 2.3]:

(6) 4-rkK2OL = 0 if and only if 2-rk kerχ = 2.

In terms of the homomorphism χ2 one concludes:

(7) 2-Sylow K2OL is elementary abelian if and only if either hS(L) ≡
2 mod 4 and χ2 is trivial, or hS(L) ≡ 0 mod 4 and χ2 is nontrivial.
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We can express the 2-rank of the kernel of χ2 in terms of the field L(
√−1)

(see [4, 3.9]):
2-rk kerχ2 = 1 + 2-rkCS(L(

√−1)).
Thus, by [4, 7.3] we find that χ2 is trivial if and only if 2-rkCS(L(

√−1))
= 2 if and only if p2 is represented by x2 + 32y2 over Z. So, we conclude:

(8) 2-Sylow K2OL is elementary abelian if and only if either hS(L) ≡
2 mod 4 and p2 is represented by x2+32y2 over Z, or hS(L) ≡ 0 mod 4
and p2 is not represented by x2 + 32y2 over Z.

The issue left is to identify such pairs of primes p1, p2 for which
hS(L) ≡ 2 mod 4. The 2-Sylow subgroup of the ideal class group of the
quadratic field K = Q(

√−2p1) is cyclic of order divisible by four (see
[2, 18.6 and 19.6]). Hence K admits a unique unramified cyclic extension
N of degree 4 over K. The field N has the following properties: N is a
quadratic extension of Q(

√−p1,
√

2), N is normal over Q, and the Galois
group of N over Q is the dihedral group of order 8.

The rational prime p2 splits in Q(
√−p1,

√
2). Thus the Artin symbol

A(p2, N/Q) is a well-defined central element of Gal(N/Q). In terms of the
Artin symbol we have the following characterization:

(9) hS(L) ≡ 2 mod 4 if and only if A(p2, N/Q) 6= 1 if and only if p2 is
not completely split in N over Q.

The characterization (9) does make it possible to restate result (8) in
definite terms. The prime p2 splits in K and p2 is a norm from K over Q.
We write p2OK = P2P 2; the class of P2 is a square in the ideal class
group C(K). The prime P2 of K splits completely in N over K if and only
if its class is a fourth power in C(K). Since the 2-Sylow subgroup of C(K) is
cyclic we conclude that either cl(P2)h(K)/4 is trivial in C(K), or cl(P2)h(K)/4

is the element of order 2 in C(K).
Thus either Ph(K)/4

2 is principal which occurs if and only if p2 splits
completely in N over Q, or D · Ph(K)/4

2 is principal, where D is the dyadic
prime of K. In view of (9) this yields

(10) hS(L) ≡ 2 mod 4 if and only if ph(K)/4
2 = 2a2 +p1b

2 for some a, b ∈ Z
with b 6≡ 0 mod p2.

Thus, (8) and (10) combined yield the characterization stated in Theo-
rem 2.

We note that Theorem 2 has been given in definite terms, since there
is an effective algorithm to determine the class number of K. If the class
number of K is equal to 4, so h(K)/4 = 1, then we can drop the restriction
b 6≡ 0 mod p2 in the statement of Theorem 2. For example, for p1 = 7 we
obtain:
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Corollary. Let L = Q(
√−7p) with a rational prime p ≡ 1 mod 8,

(7/p) = 1. Then 2-Sylow K2(OL) is elementary abelian if and only if

p = x2 + 32y2 and p = 2a2 + 7b2

either both have integral solutions or neither one has an integral solution.

VII. Numerical illustration in the imaginary case. For p1 = 7 or
23, and p2 = 193 we have (p1/p2) = 1 and K = Q(

√−2p1) has class number
h(K) = 4. We have p2 = 193 = 2 · 32 + 7 · 52 is neither represented by
x2 + 32y2 nor by 2a2 + 23b2 over Z. Hence by Theorem 2:

For L = Q(
√−7 · 193), 2-Sylow K2OL is not elementary abelian.

For L = Q(
√−23 · 193), 2-Sylow K2OL is elementary abelian.

For p1 = 31 and p2 = 193 we have (p1/p2) = 1 and K = Q(
√−2 · 31) has

class number h(K) = 8. Since neither p2 = 193 is represented by x2 + 32y2

nor p2
2 = 1932 is represented by 2a2 + 31b2, we have by Theorem 2:

For L = Q(
√−31 · 193), 2-Sylow K2OL is elementary abelian.
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