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Introduction. It is very interesting to describe the behavior of the
Mordell–Weil group of an abelian variety in a field extension and many
mathematicians study this problem (for instance, see Honda [2] and
Ono [7]). Recently, A. Sato [9] obtained a general result for abelian vari-
eties with certain complex multiplication (the corollaries in Section 2).

In this paper, we shall prove a theorem (Theorem in Section 2), from
which Sato’s results follow. Roughly speaking, our theorem describes the
relation between the Galois descent and twists (see Section 1 for their defi-
nitions) and can be considered as a geometric counterpart of Sato’s.

We will use the following notation throughout this paper.
For a number field k, the separable closure is denoted by ks and we

assume that all algebraic extensions of k lie in ks.
Let A be an abelian variety defined over k. We set, for any finite extension

K of k,

AK = A×Spec(k) Spec(K), A(K) = Mork(Spec(K), A).

The latter forms a group called the Mordell–Weil group of A over K, which
is a finitely generated abelian group. In particular, the Mordell–Weil rank

rank(A;K) = dimQA(K)⊗
Z
Q

is finite. For each m ∈ Z, we denote the multiplication-by-m map on A by
[m]A, where the subscript A is often dropped, if no confusion can arise. The
symbol A[m] stands for its kernel in A(ks) and we set

A[l∞] =
∞⋃

i=1

A[li], A〈n〉 =
⊕

l: prime, (l,n)=1

A[l∞].

We define the Tate module by

Tl(A) = lim←−
n

A[ln],

[51]
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on which the absolute Galois group Γk = Gal(ks/k) of k acts. Here l is a
prime number. If A1 and A2 are abelian varieties defined over k, the natural
map

Homk(A1, A2)→ HomΓk(Tl(A1), Tl(A2))

is also denoted by Tl. Finally, we use µm for the group of mth roots of unity
in ks.

1. In this section, we recall some facts on twists and the Galois descent
(the Weil functor), which will play an important role in our theorem and its
proof. We do not attempt at complete generality and concentrate on what
we need later. See I-§3 of Satake’s monograph [8] or 1.3 of Weil’s lecture
notes [11] for details.

1.1. Twist. Let A be an abelian variety defined over a number field k and
K a finite Galois extension of k in ks with Galois group Γ = Gal(K/k). For
every element ξ in the first Galois cohomology set H1(Γ,AutK(A)), there
exist an abelian variety Aξ defined over k and an isomorphism θ : Aξ → A
defined over K such that

ξσ = θσ ◦ θ−1 for all σ ∈ Γ.
Here the cocycle (ξσ) represents ξ. The abelian variety Aξ is called the twist
of A by ξ and is uniquely determined by ξ up to isomorphism over k.

1.2. The variety RK/k(A). Let K/k be a finite Galois extension as above.
We put Γk = Gal(ks/k) and ΓK = Gal(ks/K). Thus ΓK is a normal sub-
group of ΓK of finite index d = [K : k]. Choose a coset decomposition Γk =⋃d
i=1 ΓKσi so that σ1 = identity. This time we consider an abelian variety

A defined over K. Now let Ã = Aσ1 × . . .×Aσd . Every τ ∈ Γk permutes the
cosets ΓKσi by right multiplication. We denote this permutation also by τ ,
therefore iτ = j if and only if ΓKσiτ = ΓKσj . For τ ∈ Γk, define an isomor-
phism ϕτ : Ã→ Ãσ = Aσ1τ × . . .×Aσdτ by ϕτ (g1, . . . , gd) = (g1τ , . . . , gdτ ).
In this setting, it is known that there exist an abelian variety RK/k(A) de-
fined over k and an isomorphism ψ : RK/k(A) → Ã defined over K such
that

(∗) ϕτ = ψτ ◦ ψ−1 for all τ ∈ Γk.
We call the abelian variety RK/k(A) the Galois descent of A by the Ga-
lois extension K/k, which is unique up to isomorphism over k. Note that
dimRK/k(A) = [K : k] · dimA. For the future use, we denote by πi the
projection of Ã onto its ith factor and define π = π1 ◦ ψ. They satisfy the
following relations:

πτi ◦ ϕτ = πiτ for all τ ∈ Γk; πi ◦ ψ = πσi .
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2. Let A be an abelian variety defined over a number field k and
K a Galois extension of k of finite degree d in ks. As before, we set
Γk = Gal(ks/k), ΓK = Gal(ks/K) and choose a coset decomposition
Γk =

⋃d
i=1 ΓKσi such that σ1 = identity. In the following, we sometimes

identify the set {σ1, . . . , σd} with the Galois group Γ = Gal(K/k) via an
isomorphism Γ ∼= Γk/ΓK .

We now impose the following two conditions on the abelian variety A
and the extension K/k:

(C1) There exists a homomorphism ι : Z[µm]→ Endk(A);
(C2) The extension K/k is abelian of exponent dividing m,

where m is an integer greater than one.

R e m a r k. These are essentially the same conditions as Sato used in his
paper [9]. See Remarks 2.1 and 2.2 in that paper for comments on these
conditions.

Let χ be any element of the character group Γ̂ of Γ . By the condition
(C2), we may think that the values of χ lie in µm ⊂ ks. By (C1), the com-
posite map ι ◦ χ gives an element of Hom(Γ,Autk(A)) ⊂ H1(Γ,AutK(A)).
Therefore, by the result quoted in the previous section, there exist an abelian
variety Aχ (= the twist by χ) and an isomorphism θχ : Aχ → A defined
over K such that

(ι ◦ χ)(σi) = θσiχ ◦ θ−1
χ for all σi ∈ Γ.

On the other hand, for the variety AK , there exist the Galois descent
RK/k(AK) and an isomorphism ψ : RK/k(AK) → ÃK satisfying the condi-
tion (∗).

Our theorem is as follows.

Theorem. Let A be an abelian variety defined over a number field k and
K a finite Galois extension of k in ks with Galois group Γ . Suppose that A
and K/k are subject to the conditions (C1) and (C2) stated above. Then the
abelian variety RK/k(AK) is isogenous over k to the product

∏
χ∈Γ̂ Aχ of

the twists of A, where the product is taken over all elements in the character
group Γ̂ . Furthermore, the degree of the isogeny divides a power of the degree
d = [K : k] of the field extension.

We give a proof of the theorem in the next section. Here we show that
Sato’s results follow from it.

Since we can identify RK/k(AK)(k) with A(K) via the map π, the fol-
lowing two corollaries are immediate consequences of the theorem.

Corollary 1 (A. Sato [9], Theorem 2.3 and Corollary 2.4). The isogeny
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in the theorem induces a group isomorphism

A(K)⊗
Z
Q ∼=

⊕

χ∈Γ̂
(Aχ(k)⊗

Z
Q).

In particular , this implies rank(A;K) =
∑
χ∈Γ̂ rank(Aχ; k).

Some examples of explicit rank calculations by using this corollary are
given in [9] and [3].

Corollary 2 (A. Sato [9], Corollary 2.6). The isogeny induces an iso-
morphism

A(K)〈d〉 ∼=
⊕

χ∈Γ̂
Aχ(k)〈d〉.

As is well known, the L-function L(A,K; s) of an abelian variety A (de-
fined over a subfield k of K) over K is defined by

L(A,K; s) =
∏
v

det(1− (Nv)−s · Fv|Tl(AK))−1,

where the product runs over almost all finite places of K, and Nv and Fv
denote the number of elements of the residue class field and the Frobenius
endomorphism modulo v, respectively.

We have another corollary of the theorem.

Corollary 3 (A. Sato [9], Theorem 5.1). Let A and K/k be as in the
theorem. Then

L(A,K; s) ∼
∏

χ∈Γ̂
L(Aχ, k; s).

Here the symbol ∼ denotes coincidence up to a finite number of Euler factors.

To show this, we need the following lemmata.

Lemma 1. Let A1, A2 be abelian varieties defined over k. Then

L(A1 ×A2, k; s) ∼ L(A1, k; s)× L(A2, k; s).

P r o o f. It is readily seen that Tl(A1 × A2) ∼= Tl(A1) ⊕ Tl(A2) as Γk-
modules. From this, the result follows.

Lemma 2. Let A and K/k be as in the theorem. Then, as Γk-modules,

Tl(RK/k(AK)) = MK
k Tl(AK),

where MK
k Tl(AK) denotes the Γk-module induced by the ΓK-module Tl(AK)

(cf. [10]). Consequently ,

L(RK/k(AK), k; s) ∼ L(A,K; s).
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P r o o f. Since RK/k(AK) ∼= ⊕d
i=1A

σi
K , it is readily seen that

Tl(RK/k(AK)) =
d⊕

i=1

Tl(AσiK )

as ΓK-modules.
On the other hand, it follows from the construction of RK/k(AK) that

Tl(ϕτ ) (τ ∈ Γk) gives a representation of Γk on
⊕ Tl(AσiK ) that is induced

by that of ΓK on Tl(AK). This shows the first half of the assertion.
Now we shall show the second half. It is, of course, enough to show that

the corresponding local factors are equal. Take a finite place w of k which is
unramified in K/k and at which the abelian variety A has a good reduction.
Let v1, . . . , vg be the places of K lying above w. We set f = d/g and q = Nw.
Thus Nvi = qf and also Fvi = F fw on Tl(AK). Hence what remains to be
shown is that

det(1− q−s · Fw|MK
k Tl(AK)) = det(1− (q−s · Fw)f |Tl(AK))g.

The rest of the proof is essentially the same as that for the equality of the
Artin L-function with an induced character (cf., e.g., Chapter V, Theorem
4.2(iv) in [6]).

Now we can prove Corollary 3.

P r o o f o f C o r o l l a r y 3. Since an L-function is isogeny-invariant, we
have, by our theorem,

L(RK/k(AK), k, s) = L
(∏

χ

Aχ, k, s
)
.

Combining this with Lemmata 1 and 2, we get the desired relation.

R e m a r k. By Faltings’ isogeny theorem ([1], Corollary 2 to Theorems 3
and 4), the following equivalence holds (modulo the assertion on the degree
in the theorem):

Theorem⇔ Corollary 3 + Lemma 1 + Lemma 2.

In other words, our theorem follows from Sato’s Theorem 5.1 plus our lem-
mata.

By the same theorem due to Faltings, the L-functions are equal in Corol-
lary 3. The same is true in Lemmata 1 and 2.

3. In this section, we give a proof of our theorem, which is a geometric
variant of Sato’s (cf. [9], Lemma 1.2).

Let A and K/k be as in the statement of the theorem. We use the
notation in the previous sections except that for short χ̃σ will be used instead
of (ι ◦ χ)(σ). Recall that χ̃σ is defined over k.



56 M. Kida

For each χ ∈ Γ̂ , define the map fχ : RK/k(AK)→ Aχ by

fχ = θ−1
χ ◦

( d∑

i=1

χ̃σi ◦ πσi
)
,

and set

f =
∏

χ∈Γ̂
fχ : RK/k(AK)→

∏

χ∈Γ̂
Aχ.

Then f is a morphism defined over k between abelian varieties of the same
dimension. In fact, for any element τ ∈ Γk, we have

fτχ = (θ−1
χ )τ ◦

( d∑

i=1

χ̃σi ◦ πσiτ
)

= (θ−1
χ )τ ◦ χ̃τ−1 ◦

( d∑

i=1

χ̃σi ◦ πσi
)

= θ−1
χ ◦

( d∑

i=1

χ̃σi ◦ πσi
)

= fχ.

Define

f̂ = π−1 ◦
∑

χ∈Γ̂
θχ :

∏

χ∈Γ̂
Aχ → RK/k(AK).

Then it follows that

f̂ ◦ f = π−1 ◦
∑

χ∈Γ̂
θχ ◦ θ−1

χ ◦
( d∑

i=1

χ̃σi ◦ πσi
)

= π−1 ◦
∑

χ∈Γ̂

( d∑

i=1

χ̃σi ◦ πσi
)

= π−1 ◦ ι(#Γ ) ◦ π = π−1 ◦ [d]A ◦ π = [d]RK/k(A).

The last equality follows from the functorial property of RK/k and the fact
RK/k([d]A) = [d]RK/k(A). This completes the proof.
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