On prime primitive roots

by

Amora Nongkynrih (Madras)

Notation. The letters p, q and l denote prime numbers. For a positive real number H, $N(H, p)$ denotes the number of primes $q \leq H$ which are primitive roots \pmod{p}. $N(\sigma, T, \chi)$ denotes the number of zeros of the Dirichlet L-function $L(s, \chi)$ in the rectangle $\sigma \leq \Re s \leq 1$, $-T \leq \Im s \leq T$.

For a given prime p, let

$$F_p(s) = \prod_{\chi \pmod{p}} L(s, \chi).$$

For any positive integer k, $\log_k x$ is defined as follows: $\log_1 x := \log x$ and for $k \geq 2$, we inductively define $\log_k x = \log_{k-1} \log x$.

$[x]$ denotes the integral part of x.

1. Introduction. The purpose of this paper is to prove a result on the distribution of primitive roots, similar to one which appeared in a paper of Elliott [3], in which he obtained an asymptotic formula for $N(H, p)$, valid for “almost all” primes p. More precisely, he obtained the following (Theorem 1 of [3]):

Let ε and B be arbitrary positive constants. Then there is a set of primes E, and a positive constant $F = F(\varepsilon, B)$, so that for all p not in E the estimate

$$N(H, p) = \phi(p - 1) \frac{\pi(H)}{p - 1} \left\{ 1 + O\left(\frac{1}{(\log H)^B} \right) \right\}$$

holds uniformly for $H \geq \exp(F \log \log p)$. Moreover, the sequence E satisfies $E(x) = O(x^\varepsilon)$ for all large values of x.

In proving the result, Elliott had applied the first fundamental lemma (Lemma 4 of [3]), but there appears to be some discrepancy in the choice of the parameters in the application of the lemma. In this paper, we use a zero density estimate for L-functions and Brun’s sieve to obtain an asymptotic formula for $N(H, p)$ which holds uniformly, for “almost all” primes p, in a
larger range for H than that stated in [3]. This arises as a special case of the asymptotic formula for $N(H, p)$ which holds for “almost all” p, in a wider range for H at the expense of a weaker error term.

The theorem to be proved is the following:

Theorem 1.1. Let α be a real number satisfying $0 < \alpha e^{1+\alpha} \leq 1$. Then for almost all primes p, the following statement is true:

Let $\alpha \geq c/(\log p)^{1/2}$, for a suitable constant c. Then, given $B > 0$, there exists $C = C(B)$ such that whenever $H \geq \exp((C \log_2 p)/\alpha)$,

$$(1) \quad N(H, p) = \frac{\phi(p - 1)}{p - 1} \pi(H) (1 + O(\alpha^{B/\alpha})).$$

Furthermore, the number of primes up to Y for which (1) does not hold is

$$O\left(\exp \left(G \log Y \frac{\log_2 Y}{\log H} \right) \right)$$

where G is a constant.

Choosing $\alpha = \log_4 p / \log_3 p$ in Theorem 1.1, we get the following:

Theorem 1.2. Let ε and B be arbitrary constants. Then for almost all primes p, the following holds:

$$(2) \quad N(H, p) = \frac{\phi(p - 1)}{p - 1} \pi(H) \left(1 + O\left(\frac{1}{(\log H)^{\varepsilon}} \right) \right)$$

whenever

$$H \geq \exp \left(C \log_2 p \log_3 p \right),$$

for some constant $C = C(\varepsilon, B)$. Furthermore, the number of primes up to Y for which (2) does not hold is $O(Y^{\varepsilon})$.

Corollary 1.3. If $E(Y)$ denotes the number of primes up to Y for which (1) does not hold, then $E(Y) = O((\log Y)^{F})$ when $H \geq Y^{\delta}$, for some δ and for some F, with $0 < \delta < 1$ and $F = F(\delta)$.

2. **The exceptional primes.** Call a prime p an exceptional prime if (1) does not hold for p.

We need a lemma which was proved in a paper of Burgess and Elliott [1]. However, for our purposes, we require a different approach. We shall use Perron’s formula to prove this lemma, and then apply a zero density estimate for L-functions. This will show that the number of exceptional primes is small.

To start with, we recall below the notation of Burgess and Elliott [1]: Let $\{\beta_{d, p}\}$ denote a double sequence of real numbers satisfying

$$0 \leq \beta_{d, p} \leq 1/\phi(d).$$
Define
\[T_p = \sum_{d \mid p-1} \beta_{d,p} \sum_{\chi_d \mod p} \left| \sum_{q \leq H} \chi_d(q) \right| \]
where \(\chi_d \) runs through the characters \(\mod p \) whose order is \(d \). Let
\[g(p) = \sum_{d \mid p-1} \beta_{d,p} > 0. \]

Let \(\lambda, R \) be positive real numbers, \(Y \geq 3 \). Define
\[S_1 = \{ p \leq Y : g(p) < R, T_p > \pi(H)/\lambda \}. \]

Lemma 2.1. If \(p \) is a prime for which \(L(s, \chi) \) does not vanish for any character \(\chi \) modulo \(p \) (that is, \(F_p(s) \neq 0 \)) in \(\Re s > 1 - \varepsilon \), and \(g(p) < R \), then \(T_p = O(\pi(H)/\lambda) \), provided \(\varepsilon \geq \max \left(\frac{4 \log R}{\log H} - \frac{2 \log \lambda}{\log H} + \frac{12 \log_2 p}{\log H} \right) \).

Proof. Let \(a \) and \(T \) be real numbers such that \(a > 1 \) and \(T \) is sufficiently large. By Perron’s formula, we have
\[
\sum_{n \leq H} \chi_d(n) \Lambda(n) = \frac{1}{2\pi i} \int_{\alpha-iT}^{\alpha+iT} \{ L'(s, \chi_d)/L(s, \chi_d) \} \frac{H^s}{s} ds + O\left(\frac{H^{a} \log^2 p T}{T} \right)
\]
since \(L'(s, \chi_d)/L(s, \chi_d) = O(\log^2 p T) \) in \(-1 < \Re s \leq 2 \), for a suitable choice of \(\Im s = T \). (See, for example, [2].) Choose \(a = 1 + 1/\log H \).

Since we are considering only primes \(p \) with \(F_p(s) \neq 0 \) in \(\Re s > 1 - \varepsilon \), moving the line of integration to \(\Re s = 1 - \varepsilon \) gives
\[
\sum_{n \leq H} \chi_d(n) \Lambda(n) = \frac{1}{2\pi i} \int_{1-\varepsilon-iT}^{1-\varepsilon+iT} \{ L'(s, \chi_d)/L(s, \chi_d) \} \frac{H^s}{s} ds + O\left(\frac{H \log^2 p T T}{T} \right)
\]
is a simple way of expressing the fact that
\[\sum_{n \leq H} \chi_d(n) \Lambda(n) = O(H^{1-\varepsilon} \log^2 p T T). \]
In particular, choosing \(T = p \), we get
\[(3) \sum_{n \leq H} \chi_d(n) \Lambda(n) = O(H^{1-\varepsilon} \log^3 p). \]
Notice that
\[\sum_{q < H} \chi_d(q) \log q = \sum_{n < H} \chi_d(n) \Lambda(n) + O(H^{1/2}) \]
and that
\[\sum_{n < m} \chi_d(n) \Lambda(n) = O(m^{1-\varepsilon} \log^3 p) \quad \text{for all } m < H. \]
Thus, using Abel’s identity and (3) it follows that
\(\sum_{q < H} \chi_d(q) = O(H^{1-\varepsilon} \log^3 p). \)

Therefore,
\[
T_p = \sum_{d \mid p-1} \beta_{d,p} \sum_{d > 1} \chi_{d, \text{mod } p} \left| \sum_{q < H} \chi_d(q) \right|
\ll H^{1-\varepsilon} \log^3 p \sum_{d \mid p-1} \beta_{d,p} \phi(d) = H^{1-\varepsilon} \log^3 p \left(\sum_{\beta_{d,p} > 0} 1 \right)
= H^{1-\varepsilon}(\log^3 p)R = H^{1-\varepsilon/4} \lambda^{-1}(H^{-\varepsilon/2}\lambda)(H^{-\varepsilon/4}R) \log^3 p.
\]

Hence \(T_p = O(\pi(H)/\lambda) \) whenever the following conditions hold: (i) \(H^{-\varepsilon/2}\lambda < 1 \), (ii) \(H^{-\varepsilon/4}R < 1 \) and (iii) \(\log^3 p < H^{\varepsilon/4} \).

This completes the proof of the lemma.

We choose \(R = (\log p)^4 \), where \(A \) is a sufficiently large constant, and \(\lambda > R^2 \); the value of \(\lambda \) will be chosen in due course.

Lemma 2.2.

\[#S_1 \ll \log^{14} Y \exp \left(C \frac{\log \lambda \log Y}{\log H} \right). \]

Proof. Let \(\varepsilon = 2 \log \lambda / \log H \). Then
\[
\varepsilon \geq \max \left(\frac{4 \log R}{\log H}, \frac{2 \log \lambda}{\log H}, \frac{12 \log_2 p}{\log H} \right).
\]

Further, for any \(p \in S_1 \), \(T_p > \pi(H)/\lambda \). Therefore, by Lemma 2.1, it follows that
\[S_1 \subseteq \{ p \leq Y : F_p(s) = 0 \text{ for some } s \text{ in the rectangle} \}
\]
\[1 - \varepsilon \leq \Re s \leq 1, \quad -Y \leq \Im s \leq Y \} \).

Using the estimate
\[
\sum_{p \leq Y} \sum_{\chi} N(\sigma, T, \chi) \ll (Y^2 T)^{2(1-\sigma)/\sigma} (\log YT)^{14}
\]
(here \(\sum_{\chi} \) is the sum over all primitive characters \(\chi \) modulo \(p \)) for \(4/5 \leq \sigma \leq 1 \) (cf. Montgomery [5], p. 99), and also using our specific choice of \(\varepsilon \), we see that
\[
\sum_{Y < p \leq 2Y} \sum_{\chi \text{ (mod } p)} N(1 - \varepsilon, Y, \chi) \ll (Y^3)^{2\varepsilon/(1-\varepsilon)} (\log Y)^{14}
\ll Y^{C \log \lambda / \log H} (\log Y)^{14}.
\]

Hence \(#S_1 \ll (\log Y)^{14} \exp(C \log \lambda \log Y / \log H) \), which proves the lemma.
3. Derivation of the asymptotic formula. In this section, we consider only those primes for which \(F_p(s) \neq 0 \) in \(\text{Re } s > 1 - \varepsilon \), with \(\varepsilon \) as chosen in Section 2. Given a prime \(p \) with this property, we obtain an asymptotic formula for the number of prime primitive roots (mod \(p \)) which are less than \(H \).

Notice that if \(d | p - 1 \), then

\[
\frac{1}{d} \sum_{\chi \pmod{p} \atop \text{ord } \chi | d} 1 = \begin{cases}
1 & \text{if } d | \text{ind } q, \\
0 & \text{otherwise},
\end{cases}
\]

where “ind \(q \)” stands for the index of \(q \) with respect to a fixed primitive root mod\(p \).

Let \(l \) denote a prime divisor of \(p - 1 \). Then

\[
\#\{q \leq H : q \text{ is not a primitive root (mod } p)\} \leq \sum_{l|p-1} \frac{1}{l} \sum_{\text{ord } \chi | l} \sum_{q \leq H} \chi(q) = \pi(H) \sum_{l|p-1} \frac{1}{l} + \sum_{l|p-1} \frac{1}{l} \sum_{\chi \text{ } q \leq H} \chi(q).
\]

We break each sum into two parts: (i) \(l \leq \log^2 p \), (ii) \(l > \log^2 p \).

Lemma 3.1 below deals with the sum in (i) using Brun’s sieve, and in Lemma 3.2 we estimate the sum in (ii) using Lemma 2.1. With notations as in \([4]\), we state the following theorem, which is Brun’s sieve in the form needed for our application (cf. \([4]\), p. 57).

Theorem 3.1. Assume that the following conditions hold:

(a) \[
1 \leq \frac{1}{1 - \omega(p)/p} \leq A_1
\]

for some suitable constant \(A_1 \geq 1 \).

(b) For suitable constants \(\kappa > 0 \) and \(A_2 \geq 1 \),

\[
\sum_{w < p < z} \frac{\omega(p) \log p}{p} \leq \kappa \log \frac{z}{w} + A_2
\]

if \(2 \leq w \leq z \).

(c) \(|R_d| \leq \omega(d) \) if \(\mu(d) \neq 0 \) and \(\omega(d) \neq 0 \).

Let \(\alpha \) be a real number satisfying \(0 < \alpha e^{1+\alpha} \leq 1 \), and let \(b \) be a positive integer. Then

\[
S(A; \varphi, z) \leq XW(z) \left\{ 1 + 2 \frac{\alpha^{2b+1} e^{2\alpha}}{1 - \alpha^2 e^{2+2\alpha}} \exp \left(\frac{(2b + 3)c_1}{\alpha \log z} \right) \right\}
+ O(z^{2b+(2.01/(e^{2\alpha/\alpha}-1))})
\]
and

\[
S(A; \wp, z) \geq X W(z) \left\{ 1 - 2 \frac{\alpha^{2b}e^{2\alpha}}{1 - \alpha^{2}e^{2+2\alpha}} \exp \left(\frac{(2b + 2)c_1}{\alpha \log z} \right) \right\}
\]

\[+ O(z^{2b-1 + (2.01/\epsilon^{2n/\alpha} - 1)}) \]

where

\[
c_1 = \frac{A_2}{2} \left\{ 1 + A_1 \left(\kappa + \frac{A_2}{\log 2} \right) \right\}.
\]

Remark 1. The constants implied by the use of the \(O\)-notation do not depend on \(b\) and \(\alpha\).

Remark 2. The replacement of the condition (c) of the theorem by the more general \(|R_d| \leq L \omega(d)\) changes the theorem only to the extent of introducing a factor \(L\) into the last error term in each of (5) and (6).

Lemma 3.1 (Application of Brun’s sieve). Let \(p\) be a prime for which \(F_p(s)\) is non-zero in \(\text{Re} s > 1 - (2 \log \lambda / \log H)\). Let \(A = \{\text{ind } q : q \leq H\}\), \(z = \log^2 p\), and \(\wp = \) the set of all prime divisors \(l\) of \(p - 1\). Then

\[
S(A; \wp, z) = \frac{\phi(p-1)}{p-1} \pi(H)(1 + O(\alpha B/\alpha))
\]

where \(\alpha\) is a real number satisfying \(0 < \alpha e^{1+\alpha} \leq 1\), \(\alpha \gg 1/(\log z)^{1/2}\), and \(B\) is a constant.

Proof. With these choices of \(A\), \(\wp\) and \(z\), it follows that

\[
\omega(p) = 1 \quad \text{if } p \in \wp, \quad X = \pi(H), \quad \kappa = 1,
\]

and

\[
W(z) = \prod_{\substack{q|p-1 \\text{\scriptsize such that } q \leq H}} \left(1 - \frac{1}{q} \right).
\]

We see that

\[
\#\{q \leq H : d|q, \ d|p - 1\} = \frac{1}{d} \sum_{q \leq H} \sum_{\chi \pmod{p} \ \text{ord } \chi | d} \chi(q).
\]

Hence,

\[
|A_d| = \frac{1}{d} \sum_{\chi \pmod{p} \ \text{ord } \chi | d} \sum_{q \leq H} \chi(q) = \frac{1}{d} \pi(H) + \frac{1}{d} \sum_{\chi \neq \chi_0 \ \text{ord } \chi | d} \sum_{q \leq H} \chi(q)
\]

\[
= \frac{1}{d} \pi(H) + \frac{1}{d} \sum_{t|d} \sum_{\chi_t \neq \chi_0} \sum_{q \leq H} \chi_t(q)
\]
where χ_t runs through characters of order t. Therefore,

$$R_d = \frac{1}{d} \sum_{\substack{t \mid d \ \chi_t \sum_{q \leq H} \chi_t(q).}}$$

Using (4), we get

$$|R_d| \ll \frac{1}{d} \sum_{\substack{t \mid d \ \chi_t \sum_{q \leq H} \chi_t(q)}} \ll \left(\frac{1}{d} \sum_{\substack{t \mid d \ \chi_t}} \right) H^{1-\varepsilon} \log^3 p$$

$$\ll \left(\frac{1}{d} \sum_{\phi(t)} \right) H^{1-\varepsilon} \log^3 p = H^{1-\varepsilon} \log^3 p \ll \pi(H)/\lambda.$$

The last step follows as in the proof of Lemma 2.1. We take $b = [1/\alpha]$ in

Theorem 3.1, and Brun’s sieve then gives

(7) $S(A; \varphi, z) \leq \pi(H) W(z) \left\{ 1 + 2 \frac{\alpha^{2b+1} e^{2\alpha}}{1 - \alpha^2 e^{2+2\alpha}} \exp \left(\frac{(2b+3)c_1}{\alpha \log z} \right) \right\}$

$$+ O \left(\frac{\pi(H)}{\lambda} z^{2b+\{2.01/(e^{2\alpha}-1)\}} \right)$$

and

(8) $S(A; \varphi, z) \geq \pi(H) W(z) \left\{ 1 - 2 \frac{\alpha^{2b} e^{2\alpha}}{1 - \alpha^2 e^{2+2\alpha}} \exp \left(\frac{(2b+2)c_1}{\alpha \log z} \right) \right\}$

$$+ O \left(\frac{\pi(H)}{\lambda} z^{2b-1+\{2.01/(e^{2\alpha}-1)\}} \right)$$

with

$$W(z) = \prod_{q \mid p-1} \left(1 - \frac{1}{q} \right) \prod_{q \mid p} \left(1 - \frac{1}{q} \right)^{-1}$$

$$= \frac{\phi(p-1)}{p-1} \left(1 + O \left(\frac{1}{\log p \log_2 p} \right) \right).$$

With our choice of b, we now estimate the error terms in (7). Similar estimates can be obtained for the inequality (8). The estimate for the first error term is

$$\frac{\alpha^{2b+1} e^{2\alpha}}{1 - \alpha^2 e^{2+2\alpha}} \exp \left(\frac{(2b+3)c_1}{\alpha \log z} \right) \ll \alpha^{B/\alpha}$$

whenever $\alpha^2 \gg 1/\log z$. Since α is small, the last O-term satisfies

$$\frac{\pi(H)}{\lambda} \exp((2b + \{2.01/(e^{2\alpha} - 1)\}) \log z) \ll \frac{\pi(H)}{\lambda} z^{B'/\alpha}$$

for a constant B'. We choose $\lambda > z^{B'/\alpha} = (\log p)^{2B'/\alpha}$. For our purposes, we take λ to satisfy $\log \lambda = (C' \log_2 p)/\alpha$, for a sufficiently large constant C'.

Using the estimates in (7) and (8), it follows that

\[
S(\mathcal{A}; \varphi, z) = \frac{\phi(p - 1)}{p - 1} \pi(H) \left(1 + O\left(\frac{1}{\log p \log_2 p}\right)\right) \left(1 + O\left(\alpha^{B/\alpha}\right)\right)
\]

\[
+ O\left(\frac{\pi(H) z^{B'/\alpha}}{\lambda}\right).
\]

Therefore, we get

\[
S(\mathcal{A}; \varphi, z) = \frac{\phi(p - 1)}{p - 1} \pi(H) \left(1 + O\left(\alpha^{B/\alpha}\right)\right),
\]

which proves the lemma.

We now consider the sum in (ii).

Lemma 3.2. Let

\[
L = \sum_{l > \log^2 p} \frac{1}{l} \left(\pi(H) + \sum_{\chi l \leq H} \chi_l(q)\right).
\]

Then \(L = O(\pi(H)/\log p)\).

Proof.

\[
L = \pi(H) \sum_{l > \log^2 p} \frac{1}{l} + \sum_{l > \log^2 p} \frac{1}{l} \sum_{\chi l \leq H} \chi_l(q).
\]

Then

\[
|L| \leq \frac{\pi(H)}{\log p} + \sum_{l > \log^2 p} \frac{1}{l} \sum_{\chi l \leq H} \chi_l(q) \leq \frac{\pi(H)}{\log p} + \frac{\pi(H)}{\lambda},
\]

applying Lemma 2.1 to the second sum on the right with

\[
\beta_{l, p} = \begin{cases} 1/l & \text{if } l \mid p - 1, \ l > \log^2 p, \\ 0 & \text{otherwise}. \end{cases}
\]

Therefore, \(L = O(\pi(H)/\log p)\).

Proof of Theorem 1.1. Lemmas 3.1 and 3.2 imply that for almost all primes \(p\),

\[
N(H, p) = \frac{\phi(p - 1)}{p - 1} \pi(H) \left(1 + O\left(\alpha^{B/\alpha}\right)\right)
\]

where \(\alpha \gg 1/(\log_2 p)^{1/2}\) and whenever \(H \geq \exp((C \log_2 p)/\alpha)\) for some constant \(C = C(B)\). Lemma 2.2 shows that the number of exceptional primes up to \(Y\) is

\[
\ll (\log Y)^{14} \exp\left(\frac{C \log Y \log_3 Y}{\alpha \log H}\right).
\]

This completes the proof of Theorem 1.1. \(\blacksquare\)
Acknowledgements. This paper is the result of a suggestion made by Professor M. Ram Murty. I would like to thank him and Professor R. Balasubramanian for constant guidance and encouragement.

References

THE INSTITUTE OF MATHEMATICAL SCIENCES
C.I.T. CAMPUS
MADRAS 600113, INDIA
E-mail: AMORA@IMSC.ERNET.IN

Received on 10.11.1993
and in revised form on 13.5.1994 (2518)