
ACTA ARITHMETICA
LXXI.4 (1995)

A class of transcendental numbers having explicit g-adic
and Jacobi–Perron expansions of arbitrary dimension

by

Jun-ichi Tamura (Tokyo)

1. Introduction. Davison [6] showed the identity

ψ :=
∞∑
n=1

2−bαnc(1.1)

= [0; 20, 21, 21, 22, 23, 25, 28, 213, . . .] (α = (1 +
√

5)/2),

and that the number ψ is transcendental. Here, bxc denotes the integral part
of a real number x, the right-hand side indicates a simple continued fraction,
where the powers of 2 appearing in the partial denominators are Fibonacci
numbers (1). The binary expansion of ψ can be described by the fixed point
of a substitution. For this purpose, we introduce some definitions.

K∗ denotes the set of all finite words over an alphabetK = {a, b, c, . . . , d},
i.e., K∗ is the free monoid generated by K with the operation of concate-
nation and the empty word λ as its unit. K∞ denotes the set of all ω-words
w1w2w3 . . . (wn ∈ K).

A substitution σ (over K) is a monoid endomorphism σ on K∗ extended
to K∞, defined by

σ(w) = σ(w1)σ(w2)σ(w3) . . . for w = w1w2w3 . . . ∈ K∞.
A fixed point of σ is a ω-word w ∈ K∞ such that σ(w) = w. Any substitution
σ over K of the form

σ(a) = au (u 6= λ), σ(x) 6= λ (∀x ∈ K)

has the unique fixed point w prefixed by a, namely, w = auσ(u)σ2(u) . . .
Here, the product τσ denotes the composition of τ and σ, and σn indicates
the n-fold iteration σn−1 ◦ σ (n ≥ 1) with σ0(u) = u (u ∈ K∗ ∪K∞).

(1) Cf. Böhmer [3], Mahler [11], Danilov [5], Adams–Davison [1], Bundschuh [4],
Nishioka–Shiokawa–Tamura [13].
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The base-2 expansion of the number ψ is given by

ψ = 0.1011010110110101101011011010110110 . . . = 0.w1w2w3 . . . ,

where the word w = w1w2w3 . . . ∈ {0, 1}∞ is the unique fixed point of the
substitution σ over {0, 1} defined by σ(1) = 10, σ(0) = 1.

We gave in [19] an analogue of (1.1), where the continued fraction ex-
pansion is replaced by the Jacobi–Perron algorithm of dimension 2:
(

0.101010110101010101011010 . . .
0.111011111101111101111110 . . .

)

=
[

0; 20, 20, 21, 21, 22, 24, 27, 213, . . . , 2fn , . . .
0; 20, 21, 22, 23, 26, 211, 220, 237, . . . , 2gn , . . .

]
,

where the left-hand side denotes the vector of two real numbers 0.τ(w) and
0.υ(w) having the sequence τ(w) and υ(w) as their digits in the binary
expansion respectively with the fixed point w = abacabaabacab . . . of a sub-
stitution over {a, b, c} defined by

σ(a) = ab, σ(b) = ac, σ(c) = a,

and the coding

τ(a) := 1, τ(b) = τ(c) := 0, υ(a) = υ(b) := 1, υ(c) := 0;

the right-hand side denotes the Jacobi–Perron algorithm, and fn, gn denote
linear recurrence sequences with their characteristic polynomial x3 − x2 −
x− 1.

Instead of the fixed point w, we can state theorems similar to the results
in [19, 20] for the fixed point of the substitution σ over {a1, a2, . . . , as+1}
(s ≥ 1) defined by

(1.2) σ(aj) := a
ks−j+1
1 aj+1 (1 ≤ j ≤ s), σ(as+1) := a1

with ks ≥ ks−1 ≥ . . . ≥ k1 ≥ 1 (kj ∈ Z). Namely, we shall give a vec-
tor of s real numbers Ψ (i) (1 ≤ i ≤ s) with its explicit expression in the
Jacobi–Perron algorithm of dimension s such that each expansion of Ψ (i)

in base g can be described by the fixed point of σ. We shall also show the
transcendence, and linear independence of the numbers Ψ (i) in Theorem 1.
We have a more general transcendence result in Theorem 3. For certain
functions connected with the values Ψ (i), we can show the similar results to
those in Theorem 1 in the algorithm defined by Parusnikov, which is the
counterpart of the Jacobi–Perron algorithm for functions, see Theorem 2.
Theorems 1–3 will be stated in Section 3. For the sake of completeness, the
Jacobi–Perron algorithms used in Theorems 1 and 2 will be introduced in
Section 2. We shall give the proofs of Theorems 1–3 in Section 4. We shall
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describe the fixed point of σ in terms of summation sequences defined in
Section 5 (Theorem 4). The identity (1.1) will be found in Section 5 as a
consequence of Theorem 1 in the case of s = 1.

2. Jacobi–Perron and Jacobi–Perron–Parusnikov algorithms. In
this section, we define two kinds of continued fraction expansions of dimen-
sion s (s ≥ 1) due to Jacobi and Parusnikov (cf. [2, 14, 12]). We use the
following notation:

K = C((z−1)), the field of formal Laurent series with complex coeffi-
cients. K is a metric space with the distance function ‖Φ − Ψ‖ (Φ, Ψ ∈ K),
where ‖ ‖ is the usual non-archimedian norm defined by ‖Φ‖ = e−k for
Φ =

∑∞
m=k cmz

−m ∈ K with ck 6= 0, k ∈ Z, and ‖0‖ = 0.

[Φ] := the polynomial part of Φ ∈ K, i.e., [Φ] =
∑0
m=k cmz

−m for Φ =∑∞
m=k cmz

−m.

〈Φ〉 := Φ− [Φ].

[Φ] := t([Φ1], . . . , [Φs]), 〈Φ〉 := t(〈Φ1〉, . . . , 〈Φs〉) for Φ = t(Φ1, . . . , Φs)
∈ Ks, where t(Φ1, . . . , Φs) indicates the transpose of (Φ1, . . . , Φs).

T : Ks → Ks denotes the map defined by

T (t(Φ1, . . . , Φs)) := t(1/Φs, Φ1/Φs, . . . , Φs−1/Φs).

To be precise, T is not a map on Ks. For brevity, in what follows, we shall
simply write f : A → B for a “map” f with some exceptional elements
x ∈ A for which f is not defined. We also write

T (t(Φ1, . . . , Φs)) =
1

t(Φ1, . . . , Φs)
.

Now we define, following Parusnikov [14], the Jacobi–Perron algorithm
for Φ = t(Φ(1), . . . , Φ(s)) ∈ Ks. Let b0 := [Φ], Φ0 = t(Φ(1)

0 , . . . , Φ
(s)
0 ) :=

〈Φ〉. If Φ(1)
0 6= 0, then, noting that T−1(Φ0) = t(Φ(2)

0 /Φ
(1)
0 , . . . , Φ

(s)
0 /Φ

(1)
0 , 1/Φ(1)

0 ),
we can write

Φ = b0 + Φ0 = b0 +
1

T−1(Φ0)
.

Let b1 := [T−1(Φ0)], Φ1 = t(Φ(1)
1 , . . . , Φ

(s)
1 ) := 〈T−1(Φ0)〉. If Φ(1)

1 6= 0,
then

Φ = b0 +
1

b1 +
1

T−1(Φ1)

.
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Continuing the process, we get

(2.1) Φ = b0 +
1

b1 +
1

b2 + .. .
+

1
bm + Φm

,

provided that Φ(1)
n 6= 0 for all 0 ≤ n ≤ m− 1, where

Φn := t(Φ(1)
n , . . . , Φ(s)

n ) = 〈T−1(Sn−1(〈Φ〉))〉
and

(2.2) bn := [T−1(Sn−1(〈Φ〉))] (n ≥ 1), b0 := [Φ],

and Sn is the n-fold iteration of

S(Φ) := 〈T−1(Φ)〉.
If Φ(1)

m = 0, then the algorithm terminates. If Φ(1)
n 6= 0 for all n ≥ 0, then

πn = πn(Φ) := b0 +
1

b1 +
1

b2 + .. .
+

1
bn

,

which will be denoted by [b0; b1,b2, . . . ,bn], converges componentwise to
Φ as n→∞ with respect to the metric induced by the norm ‖ ‖ (cf. [14]).
Hence we can write

(2.3) Φ = [b0; b1,b2, . . . ,bn, . . .].

In what follows, we also write

πn =



b
(1)
0 ; b

(1)
1 , b

(1)
2 , . . . , b

(1)
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
b
(s)
0 ; b

(s)
1 , b

(s)
2 , . . . , b

(s)
n


 ,

Φ =



b
(1)
0 ; b

(1)
1 , b

(1)
2 , . . . , b

(1)
n , . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b
(s)
0 ; b

(s)
1 , b

(s)
2 , . . . , b

(s)
n , . . .




for bn = t(b(1)
n , . . . , b

(s)
n ). The algorithm given by (2.2) will be called the

Jacobi–Perron–Parusnikov (abbr. JPP) algorithm (of dimension s). Inde-
pendently of the algorithm (2.2), we can consider the expression (2.3) for a
given sequence bn ∈ Ks provided that its nth convergent πn is well-defined
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except for a finite number of n and converges to some element in Ks. The
JPP expression (2.3) will be called admissible if it is derived from the algo-
rithm (2.2). The admissible expression satisfies

(2.4)
b(i)n ∈ C[z] (1 ≤ i ≤ s, n ≥ 0),

deg b(i)n < deg b(s)n (1 ≤ i < s, n ≥ 1),

where deg 0 := −∞ < 0.
If we take the field R, and the integral part bΦc of Φ ∈ R instead of K,

and the polynomial part [Φ] of Φ ∈ K, respectively, we have an algorithm
which is the simplest one among the Jacobi–Perron algorithms (cf. [2], p. 49).
This algorithm will be simply referred to as the Jacobi–Perron (abbr. JP)
algorithm. When (2.3) is admissible in the JP algorithm, we have

(2.5)
b(i)n ∈ Z (1 ≤ i ≤ s, n ≥ 0),

0 ≤ b(i)n ≤ b(s)n 6= 0 (1 ≤ i < s, n ≥ 1).

3. Main results. In what follows, s, ki (0 ≤ i ≤ s) denote fixed integers
with s ≥ 1, 1 = k0 ≤ k1 ≤ . . . ≤ ks, and σ indicates the substitution over
K := {a1, a2, . . . , as+1} defined by (1.2). We denote by ω = ω1ω2 . . . ωn . . . ∈
K∞ (ωn ∈ K) the fixed point of σ, and {fn}n=−s,−s+1,−s+2,... stands for the
linear recurrence sequence with a characteristic polynomial f(x) := xs+1 −
ksx

s − . . .− k1x− k0 and an initial condition given by

(3.1)




f0

f−1

·
·
·
f−s




:=




1
k1 1 0

k2 k1
. . .

...
... 1

ks ks−1 . . . k1 1




−1


1
1
·
·
·
1



.

Theorem 1. Let Ψ (i) = Ψ (i)(g) (1 ≤ i ≤ s) be the numbers defined by
the JP expression

(3.2)




Ψ (1)

Ψ (2)

·
·
·

Ψ (s−1)

Ψ (s)




:=




0; 1, 1, 1, . . . , 1, b
(1)
s+1, . . .

0; 1, 1, 1, . . . , b
(2)
s , b

(2)
s+1, . . .

· · · · . . . , b
(3)
s , b

(3)
s+1, . . .

· · · 1, . . . , · · . . .
· 1, 1, 1, . . . , · · . . .

0; 1, 1, b
(s−1)
3 , . . . , b

(s−1)
s , b

(s−1)
s+1 , . . .

0; 1, b
(s)
2 , b

(s)
3 , . . . , b

(s)
s , b

(s)
s+1, . . .




,
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where

(3.3)

b(1)
n := gfn−s−1

k1−1∑

h=0

gfn−sh, n ≥ s+ 1,

b(2)
n := gfn−s−1+k1fn−s

k2−1∑

h=0

gfn−s+1h, n ≥ s,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(s−1)
n := gfn−s−1+k1fn−s+...+ks−2fn−3

ks−1−1∑

h=0

gfn−2h, n ≥ 3,

b(s)n := gfn−s−1+k1fn−s+...+ks−2fn−3+ks−1fn−2

ks−1∑

h=0

gfn−1h, n ≥ 2,

with g ∈ N. Then we have the following assertions:

(i) If g ≥ 2, then g-adic expansion of Ψ (i)(g) is given by

Ψ (i)(g) = 0.τi(ω) (1 ≤ i ≤ s),
where τi are codings defined by

τi(aj) = g − 1 (1 ≤ j ≤ i), τi(aj) = 0 (i+ 1 ≤ j ≤ s+ 1).

(ii) If g ≥ 2, then Ψ (i)(g) (1 ≤ i ≤ s) is a transcendental number.
(iii) The s + 1 numbers 1, Ψ (i)(g) (1 ≤ i ≤ s) are linearly independent

over Q for all g ∈ N.
(iv) The right-hand side of (3.2) is an admissible expression in the JP

algorithm.

R e m a r k 1. Ψ (i)(1) (1 ≤ i ≤ s) are numbers belonging to a field Q(α),
where α > 1 is an algebraic number with f(x) as its minimal polynomial
(see Lemmas 10 and 11).

Theorem 2. Let Φ(i) = Φ(i)(z) be the analytic functions on the region
|z| > 1 defined by

Φ(i) :=
∑

n∈N, ωn=ai

z−n (1 ≤ i ≤ s+ 1),

and let Ξ(i) = Ξ(i)(z) be the analytic functions defined by

Ξ(i) :=
i+1∑

j=2

Φ(j)/Φ(1) (1 ≤ i ≤ s).

Then we have the following statements:

(i) The Φ(i) (1 ≤ i ≤ s + 1) are transcendental functions over the field
C(z).
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(ii) The Φ(i) (1 ≤ i ≤ s+ 1) ∈ K are linearly independent over C(z).
(iii) The admissible expression in the JPP algorithm for t(Ξ(1), Ξ(2), . . .

. . . , Ξ(s)) is given by

(3.4)




0; 1, 1, . . . , 1, b
(1)
s+1, b

(1)
s+2, . . .

0; 1, 1, . . . , b
(2)
s , b

(2)
s+1, b

(2)
s+2, . . .

· · · . . . , b
(3)
s , b

(3)
s+1, b

(3)
s+2, . . .

· · 1, . . . , · · · . . .
· 1, 1, . . . , · · · . . .

0; 1, b
(s−1)
3 , . . . , b

(s−1)
s , b

(s−1)
s+1 , b

(s−1)
s+2 , . . .

0; b
(s)
2 , b

(s)
3 , . . . , b

(s)
s , b

(s)
s+1, b

(s)
s+2, . . .




,

where b(i)j = b
(i)
j (z) are polynomials of z in place of g in (3.3).

R e m a r k 2. If in the expression (3.2) g is replaced by a variable z, then
(3.2) changes into a JPP expression, while it is not admissible in the JPP
algorithm.

We denote by |w|x (w ∈ K∗, x ∈ K) the number of occurrences of the
symbol x in the word w.

Theorem 3. Let g ≥ 2 be an integer and let τ be a morphism

τ(ai) ∈ {0, 1, . . . , g − 1}∗ − {λ} (1 ≤ i ≤ s+ 1)

such that

rankU(τ) ≥ 2, U(τ) := (|τ(ai)|j)1≤i≤s+1, 0≤j≤g−1.

Then the number defined by the g-adic expansion 0.τ(ω) is transcendental.

4. The proofs of the main results. We first prove Theorem 1(i) and
Theorem 2(iii) except for the admissibility of (3.4), which will be shown in
the last paragraph of the section.

Let us denote by Bn and Pn the matrices defined by

(4.1)
Bn =

(
t0s 1
Es bn

)
∈ SL(s+ 1;K),

Pn = B1B2 . . . Bn (n ≥ 1), P0 = E,

for given bn = t(b(1)
n , . . . , b

(s)
n ) ∈ Ks (n ≥ 0), where Ej denotes the j × j

unit matrix, E stands for Es+1, and 0j = t(0, . . . , 0) ∈ Kj . We can set

(4.2) Pn = (p(i)
j )1≤i≤s+1, n−s≤j≤n ∈ SL(s+ 1;K).

Then we have the following well-known formula in Lemma 1 below (cf. [2],
Chap. 1, §3). For the sake of completeness, we give a short proof of Lemma 1
following Nikishin and Sorokin [12].
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Lemma 1. Let Φ ∈ Ks have the expression (2.1) with Φm = t(Φ(1)
m , . . .

. . . , Φ
(s)
m ), bn = t(b(1)

n , . . . , b
(s)
n ) ∈ Ks (0 ≤ n ≤ m) such that b0 = 0s. Then

Φ =




(
p

(1)
m +

s∑

j=1

Φ
(j)
m p

(1)
m−s+j−1

)/(
p

(s+1)
m +

s∑

j=1

Φ
(j)
m p

(s+1)
m−s+j−1

)

(
p

(2)
m +

s∑

j=1

Φ
(j)
m p

(2)
m−s+j−1

)/(
p

(s+1)
m +

s∑

j=1

Φ
(j)
m p

(s+1)
m−s+j−1

)

...(
p

(s)
m +

s∑

j=1

Φ
(j)
m p

(s)
m−s+j−1

)/(
p

(s+1)
m +

s∑

j=1

Φ
(j)
m p

(s+1)
m−s+j−1

)




,

in particular ,

πm(Φ) = t(p(1)
m /p(s+1)

m , . . . , p(s)
m /p(s+1)

m ) (m ≥ 0).

P r o o f. Let P s(K) = (Ks+1 \{0s+1})/∼ be the s-dimensional projective
space over K as usual. We denote by Φ̂ the element of P s(K) which contains
Φ ∈ Ks+1. By ν : Ks → P s(K) and π : P s(K)→ Ks we denote the inclusion
map and the projection defined by

ν(t(Φ1, . . . , Φs)) := t(1, Φ1, . . . , Φs)̂ ,

π(t(Φ0, Φ1, . . . , Φs) )̂ := t(Φ1/Φ0, . . . , Φs/Φ0),

respectively. A : Ks+1 → Ks+1 indicates the linear map over K for a given
matrix A ∈ GL(s+ 1;K) as usual. Then we can define the maps PA and πA
which make the following diagram commutative:

Ks+1 P s(K) Ks

Ks+1 P s(K) Ks

A

²²

̂ //

PA

²²

π //

πA

²²

ν
oo

̂ //
π //

ν
oo

Then we get πB(θ) = πPBν(θ) := π(PB(ν(θ))) = b + T (θ) (θ,b ∈ Ks) for

B =
(

t0s 1
Es b

)
∈ SL(s+ 1;K).

Therefore, by the commutativity of the diagram, it follows from (2.1) that
Φ = πB0

πB1 . . .
πBm−1(bm + Φm) = π(B0Pm−1)(bm + Φm), which implies

the lemma.
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Lemma 2. Let {f (i)
n }n=−s,−s+1,−s+2,... (1 ≤ i ≤ s + 1) be linear recur-

rence sequences with the f(x) as their characteristic polynomial with initial
conditions

(4.3)




f
(1)
−s . . . f

(1)
−1 f

(1)
0

f
(2)
−s . . . f

(2)
−1 f

(2)
0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

f
(s+1)
−s . . . f

(s+1)
−1 f

(s+1)
0




=




1
k1 1 0

k2 k1
. . .

...
... 1

ks ks−1 · · k1 1




−1

.

Then the equalities f (i)
n = |σn−1(a1)|ai (1 ≤ i ≤ s+ 1) hold for all n ∈ N.

P r o o f. We put

u(i)
n := σn−1(ai) ∈ K+ := K∗ − {λ} (1 ≤ i ≤ s+ 1), un := u(1)

n ,

g(i)
n := |un|ai (1 ≤ i ≤ s+ 1).

Then we have by definition

(4.4)
u(i)
n = u

(1)ks−i+1
n−1 u

(i+1)
n−1 (1 ≤ i ≤ s), n ≥ 2,

u(s+1)
n = u

(1)
n−1, n ≥ 2.

Hence, we get

(4.5) un = uksn−1u
ks−1
n−2 . . . u

k1
n−sun−s−1, n ≥ s+ 2.

Taking | |ai of both sides of this equality, we see that {g(i)
n }n=1,2,... (1 ≤

i ≤ s + 1) are linear recurrence sequences with f(x) as their characteristic
polynomial.

We shall check the initial conditions of the sequence g(i)
n . In view of (1.2),

we have

(4.6)

u1 = a1,

u2 = uks1 a2,

u3 = uks2 u
ks−1
1 a3,

. . . . . . . . . . . . . . . . . . . . .

us+1 = ukss u
ks−1
s−1 . . . uk1

1 as+1.
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We set

A :=




0 · · · 0 1
k1

k2

Es
...
ks



,

Wj :=




Ej−1 0
1
−k1 1 0

0
... 0

. . .
−ks−j+1 1



∈ SL(s+ 1;Z),

for 1 ≤ j ≤ s+ 1 with Ws+1 = Es+1, and

Gk := (g(i)
j )1≤i≤k, 1≤j≤k (1 ≤ k ≤ s+ 1).

Then we can prove the equality

(4.7) WmWm−1 . . .W1A
m =

(
0 Gm

Es−m+1 0

)
(1 ≤ m ≤ s+ 1)

by induction on m. In fact, (4.7) holds for m = 1. Suppose that (4.7) is valid
for m = k (1 ≤ k ≤ s). Then we have, by (4.6),

Wk+1Wk . . .W1A
k+1 = Wk+1

(
0 Gk

Es−k+1 0

)
A =

(
0 Gk+1

Es−k 0

)
.

Hence, (4.7) holds. In particular,

(4.8) Gs+1 = Ws+1WsWs−1 . . .W1A
s+1 = WsWs−1 . . .W1A

s+1.

On the other hand, we can prove by induction on m that

W−1WsWs−1 . . .Ws−m+1 =
(

0
W (s−m)

Em+1

)
(1 ≤ m ≤ s),

where W is the matrix on the right-hand side of (4.3), and W (l) denotes the
(s+ 1)× l matrix defined by

W (l) := (wij)1≤i≤s+1, 1≤j≤l with (wij)1≤i≤s+1, 1≤j≤s+1 := W−1.

In particular, setting m = s, we have

W−1WsWs−1 . . .W1 = Es+1.

Therefore, in view of (4.8), we get

(g(i)
j )1≤i≤s+1, n−s≤j≤n = WAn (n ≥ s+ 1),

which implies the lemma.
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In what follows, tS denotes the transpose of a matrix S. The cross-
transposed matrix ×S of S is defined by ×S := (sm−i+1,n−j+1)1≤i≤m,1≤j≤n
for a matrix S = (si,j)1≤i≤m,1≤j≤n. We remark that ×(ST ) = ×S×T ,
×(tS) = t(×S), ×E = E, and so ×(t(S−1)) = (×(tS))−1 for S ∈ GL(n,K).

Lemma 3. |σn−1(a1)| = fn (n ≥ 1).

P r o o f. Taking the transpose and then cross-transpose of both sides
of (4.3), and taking the product with t(1, 1, . . . , 1) ∈ Zs+1 from the right,
we obtain the lemma by (3.1), noting that fn =

∑s+1
i=1 f

(i)
n .

Throughout this paper, χ(w;x) denotes the characteristic set of a given
word w = w1w2 . . . wn . . . ∈ K∗ ∪ K∞ (wn ∈ K) with respect to x ∈ K,
i.e.,

χ(w;x) := {n ∈ N : wn = x}.
We define the polynomials p(i)

n = p
(i)
n (z) ∈ Z[z] by

(4.9) p(i)
n :=

∑

m∈χ(σn−1(a1);ai)

zm (1 ≤ i ≤ s+ 1, n ≥ 1).

We put

(4.10) q(i)
n = q(i)

n (z) := zfnp(i)
n (z−1) (1 ≤ i ≤ s+ 1, n ≥ 1).

q
(i)
n is clearly a polynomial in z by Lemma 3. The mirror image Ru of a

given word u = u1u2 . . . uj . . . uk ∈ K∗ (uj ∈ K) is defined by
Ru := ukuk−1 . . . uj . . . u1,

Rλ := λ.

For brevity, we write Ruk := (Ru)k = R(uk) (u ∈ K∗, k ≥ 0). We denote by
k(h) the rational function defined by

k(h) := 1 + h+ . . .+ hk−1 (k ≥ 1)

for a function h with 0 6= h ∈ Q(z).
In view of (4.9) and (4.10), we have

(4.11) q(i)
n := z−1

∑

m∈χ(R(σn−1(a1));ai)

zm (1 ≤ i ≤ s+ 1, n ≥ 1).

Hence, noting that
Run = Run−s−1

Ruk1
n−s . . .

Ru
ks−1
n−2

Ruksn−1 (n ≥ s+ 2),

which follows from (4.5), we obtain by Lemma 3 the following

Lemma 4.

q(i)
n = q

(i)
n−s−1 +

s∑

j=1

b(j)n q
(i)
n−s+j−1 (n ≥ s+ 2),

where b(i)n = b
(i)
n (z) (1 ≤ i ≤ s, n ≥ s+ 2) are polynomials of z defined by
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b(1)
n := k1(zfn−s) · zfn−s−1 ,

b(2)
n := k2(zfn−s+1) · zk1fn−s+fn−s−1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(s−1)
n := ks−1(zfn−2) · zks−2fn−3+...+k1fn−s+fn−s−1 ,

b(s)n := ks(zfn−1) · zks−1fn−2+ks−2fn−3+...+k1fn−s+fn−s−1 .

R e m a r k 3. b(i)n is a polynomial in z when n ≥ s−i+2, while, in general,
it is not a polynomial in z when 1 ≤ n ≤ s− i+ 1.

Lemma 5. Let Qn be the matrix defined by

(4.12) Qn := (q(i)
n−s+j−1)1≤i≤s+1, 1≤j≤s+1 (n ≥ s+ 1).

Then we have

Qs+1 = C1C2 . . . Cs+1,

where Cj ∈ SL(s+ 1;Z[z]) (1 ≤ j ≤ s+ 1) are defined by

Cj :=




b
(s−j+2)
j

b
(s−j+3)
j

Ej−1
... 0
b
(s)
j

1

0

0
... Es−j+1

0




(2 ≤ j ≤ s),

C1 = Cs+1 := Es+1.

P r o o f. In view of (3.1), we have

b
(s)
2 = ks(zf1) · zks−1f0+ks−2f−1+...+k1f−s+2+f−s+1 = ks(zf1) · z;

similarly,

b
(s−1)
3 = ks−1(zf1) · z,
b
(s)
3 = ks(zf2) · zks−1f1+1;

. . . . . . . . . . . . . . . . . . . . . . . .

b(2)
s = k2(zf1) · z,
b(3)
s = k3(zf2) · zk2f1+1,

. . . . . . . . . . . . . . . . . . . . . . . .

b(s)s = ks(zfs−1) · zks−1fs−2+ks−2fs−3+...+k2f1+1;
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b
(1)
s+1 = k1(zf1) · z,
b
(2)
s+1 = k2(zf2) · zk1f1+1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b
(s)
s+1 = ks(zfs) · zks−1fs−1+ks−2fs−2+...+k1f1+1.

Hence, we get, by (4.10) and the mirror images of (4.6),

q1 = e1,

q2 = e2 + b
(s)
2 q1,

q3 = e3 + b
(s−1)
3 q1 + b

(s)
3 q2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qs = es + b(2)
s q1 + b(3)

s q2 + . . .+ b(s)s qs−1,

qs+1 = es+1 + b
(1)
s+1q1 + b

(2)
s+1q2 + . . .+ b

(s)
s+1qs,

where qj and ej are the vectors defined by

qj := t(q(1)
j , q

(2)
j , . . . , q

(s+1)
j ),

ej := t(0, . . . , 0, 1, 0, . . . , 0) ∈ (Z[z])s+1 (1 ≤ j ≤ s+ 1).
↑
jth component

Therefore, we obtain Lemma 5.

Lemma 6. Let D ∈ SL(s+ 1;Q(z)) be the matrix defined by

D :=




1
b
(1)
1 1
b
(2)
1 b

(1)
2 0

· b
(2)
2 1

· · · ·
· · · · 1
b
(s)
1 b

(s−1)
2 · · b

(1)
s 1




,

and let Bn (n ≥ 1) be the matrices defined by (4.1) with bn = t(b(1)
n , . . . , b

(s)
n ),

where b(i)n (1 ≤ i ≤ s + 1, n ≥ 1) are the rational functions of z given in
Lemma 4. Then the identity DQs+1 = B1B2 . . . Bs+1 holds, where Qs+1 is
the matrix given by (4.12).

P r o o f. Let Cj (1 ≤ j ≤ s+ 1) be as in Lemma 5, and let Dj (1 ≤ j ≤
s+ 1) be given by

Dj := Bs−j+2Bs−j+3 . . . Bs+1C
−1
s+1C

−1
s . . . C−1

s−j+2.
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Denote by Fj (1 ≤ j ≤ s+ 1) the matrix

Fj :=




1
b
(1)
s−j+2 1

b
(2)
s−j+2 b

(1)
s−j+3 0

· b
(2)
s−j+3 ·

· · ·
· · · 1
b
(j−1)
s−j+2 b

(j−2)
s−j+3 · b

(1)
s 1




∈ SL(j;Q[z]),

with F1 = E1. Then we can prove

(4.13) Dj =
(

0 Fj
Es−j+1 0

)
(1 ≤ j ≤ s+ 1)

by induction on j. In fact, (4.13) holds for j = 1. We suppose that (4.13) is
valid when j = k with 1 ≤ k ≤ s. Then we have

Bs−k+1DkCs−k+1 =




1
b
(1)
s−k+1 Fk

0 b
(2)
s−k+1
.
.

Es−k . 0
b
(s)
s−k+1



C−1
s−k+1 = Dk+1.

Hence, (4.13) is valid. In particular, we have D = Ds+1 = B1B2 . . .
. . . Bs+1C

−1
s+1C

−1
s . . . C−1

1 . In view of Lemma 5, we get Lemma 6.

Lemma 7. Let D, Bn, and Qn be as above, and let Rn ∈ SL(s+ 1;Q(z))
(n ≥ 0) be the matrices defined by

(4.14) Rn := B1B2 . . . Bn (n ≥ 1), R0 := Es+1.

Then Qn = D−1Rn (n ≥ s+ 1).

P r o o f. It follows from (4.14) and Lemma 6 that D−1Rn = D−1B1B2 . . .
. . . Bs+1 . . . Bn = Qs+1Bs+2 . . . Bn (n ≥ s + 1), which equals Qn, since
Lemma 4 together with (4.12) implies QmBm+1 = Qm+1 (m ≥ s+ 1).

Lemma 8. Let ∆ ∈ SL(s + 1;Z) and R∗n ∈ SL(s + 1;Z[z]) (n ≥ 0) be
defined by

∆ :=




1
1 1 0
· · ·
· · · ·
1 1 · · 1


 ,

R∗n := B∗1B
∗
2 . . . B

∗
n (n ≥ 1), R∗0 := Es+1.
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Then we have

R∗n = ∆Qn (∀n ≥ s+ 1),

where Qn is the matrix (4.12), and B∗n ∈ SL(s+ 1;Z[z]) (n ≥ 1) denotes the
matrix defined by

B∗n :=




0 0 · · · 0 0 1

1
...

1 0
· 1
· b

(s−n+2)
n

· b
(s−n+3)
n

0 1 ·
1 b

(s)
n




(2 ≤ n ≤ s)

with

B∗1 :=




0 . . . 0 1
1

Es
...
1


 ,

and B∗n := Bn (n ≥ s+ 1).

P r o o f. In view of Lemma 7, it is sufficient to show that the identity is
valid when n = s+1 for the proof of this lemma. Let Yn ∈ SL(s+1;Z[z]) (0 ≤
n ≤ s) be the matrix defined by

Yn :=
(
Xn 0
0 En

)

with

Xn := (xij)n+1≤i≤s+1, n+1≤j≤s+1,

where X := X0 = (xij)1≤i≤s+1,1≤j≤s+1 ∈ SL(s+1;Z[z]) denotes the matrix



1
b
(1)
1 − 1 1 0
b
(2)
1 − b(1)

2 b
(1)
2 − 1 1

b
(3)
1 − b(2)

2 b
(2)
2 − b(1)

3 b
(1)
3 − 1 ·

· · · · ·
· · · · · 1
b
(s)
1 − b(s−1)

2 b
(s−1)
2 − b(s−2)

3 b
(s−2)
3 − b(s−3)

4 · · b
(1)
s − 1 1




.

In particular, Y0 = X and Ys = Es+1. Then we have

(4.15) YnB
∗
n+1 = Bn+1Yn+1 (0 ≤ n ≤ s)
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by direct calculation. Hence we get

D∆−1B∗1B
∗
2 . . . B

∗
s = Y0B

∗
1B
∗
2 . . . B

∗
s = B1Y1B

∗
2 . . . B

∗
s

= B1B2Y2B
∗
3 . . . B

∗
s = . . . = B1B2 . . . BsYs

= B1B2 . . . Bs,

so that we obtain, by Lemma 6,

R∗s+1 = ∆D−1D∆−1B∗1B
∗
2 . . . B

∗
sB
∗
s+1

= ∆D−1B1B2 . . . BsBs+1 = ∆Qs+1.

We can write

R∗n = (r∗(i)n−s+j−1)1≤i≤s+1, 1≤j≤s+1 (n ≥ 0)

by the definition of R∗n. Then we have the following

Lemma 9.

(4.16) r∗(i)n =
i∑

k=1

q(k)
n , ∀n ≥ 1 (1 ≤ i ≤ s+ 1).

P r o o f. It follows from Lemma 8 that (4.16) holds for n ≥ s + 1. We
assume 1 ≤ n ≤ s. Then we have by (4.15)

R∗n = B∗1B
∗
2 . . . B

∗
n = ∆D−1D∆−1B∗1B

∗
2 . . . B

∗
n

= ∆D−1Y0B
∗
1B
∗
2 . . . B

∗
n = ∆D−1B1B2 . . . BnYn.

Hence, we get, by Lemma 6,

R∗n = ∆Qs+1B
−1
s+1B

−1
s . . . B−1

1 B1B2 . . . BnYn

= ∆Qs+1B
−1
s+1B

−1
s . . . B−1

n+1Yn.

Let ej be the jth fundamental vector as in the proof of Lemma 5. Multiplying
by the vector es+1, we obtain

R∗nes+1 = ∆Qs+1B
−1
s+1B

−1
s . . . B−1

n+3B
−1
n+2B

−1
n+1Ynes+1

= ∆Qs+1B
−1
s+1B

−1
s . . . B−1

n+3B
−1
n+2B

−1
n+1es+1

= ∆Qs+1B
−1
s+1B

−1
s . . . B−1

n+3B
−1
n+2es

= ∆Qs+1B
−1
s+1B

−1
s . . . B−1

n+3es−1

. . . . . . . . . . . . . . . . . . . . . . . .

= ∆Qs+1B
−1
s+1en+1 = ∆Qs+1en,

noting that

B−1
j =

( −bj Es
1 t0s

)
.

This implies that the identity (4.16) is valid when 1 ≤ n ≤ s.
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P r o o f o f T h e o r e m 1(i). In view of (4.10) with (4.9), we obtain, by
Lemma 9,

(4.17) r∗(i)n = r∗(i)n (z) = zfn ·
∑

m∈χ(σn−1(a1);a1,...,ai)

z−m ∈ Z[z]

for all n ≥ 1, where χ(w;x1, . . . , xi) stands for the set defined by

χ(w;x1, . . . , xi) :=
i⋃

j=1

χ(w;xj)

for a given word w ∈ K∗ ∪ K∞ with xj ∈ K. In particular, we get by
Lemma 3

r∗(s+1)
n (z) = zfn ·

fn∑
m=1

z−m = fn(z).

Therefore, in view of Lemma 1, we obtain

(4.18) Ψn = Ψn(z) = [0; b∗1,b
∗
2, . . . ,b

∗
n] (n ≥ 1),

where

(4.19) b∗n :=





t(1, . . . , 1︸ ︷︷ ︸
s−n+1

, b(s−n+2)
n , b(s−n+3)

n , . . . , b(s)n ) ∈ (Z[z])s

(1 ≤ n ≤ s),
t(b(1)

n , b(2)
n , . . . , b(s)n ) ∈ (Z[z])s (n ≥ s+ 1)

and

(4.20) Ψn :=
z − 1

1− z−fn ·




∑

m∈χ(σn−1(a1);a1)

z−m

∑

m∈χ(σn−1(a1);a1,a2)

z−m

...∑

m∈χ(σn−1(a1);a1,...,as)

z−m




.

Choosing z = g ∈ N with g ≥ 2 and letting n→∞, we get Theorem 1(i).

We put Ψ = Ψ(g) := [0; b∗1, . . . ,b
∗
n, . . .], which equals (3.2) that con-

verges not only for g ≥ 2 but also for g = 1 (see Remark 4).
The expression (3.4) in Theorem 2(iii) is obtained by applying the trans-

formation T to (4.18), and subtracting b∗1 = t(1, 1, . . . , 1) from both sides.
It follows from the convergence of (4.20) as n → ∞ that (3.4) converges in
Ks with respect to the metric induced by the norm ‖ ‖.

We shall prove the transcendence results in Theorems 1–3. We need the
following lemmas (Lemmas 10–14).
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Lemma 10. The characteristic polynomial f(x) of {fn}n=−s,−s+1,−s+2,...

is the minimal polynomial of a Pisot number α (ks < α < ks + 1), i.e.,

(i) f(x) is an irreducible polynomial over Q,
(ii) there exists only one real number α satisfying f(α) = 0 with α > 1,

(iii) |β| < 1 for every algebraic conjugate β ( 6= α) of α.

P r o o f. We have f(ks + 1) > 0, since

f(ks + 1) ≥ (ks + 1)s+1
(

1− ks
s+1∑

j=1

(ks + 1)−j
)
> 0.

It is clear that f(ks) < 0. Hence, f(x) has at least one real root in the
interval (ks, ks + 1). Let α be one of them, and let

f(x)/(x− α) =:
s+1∑

j=1

cjx
j−1 ∈ R[x].

Then we have

(4.21) cn = αs−n+1 −
s∑

j=n

kjα
j−n =

n∑

j=1

kn−jα−j , 1 ≤ n ≤ s+ 1.

Hence we get

1 = cs+1 > cs > . . . > c1 > 0,

by applying the fact that 1 =
∑s+1
j=1 ks−j+1α

−j , α > 0, and the conditions
ks ≥ . . . ≥ k1 ≥ k0 = 1. Therefore, Kakeya’s theorem implies that the
equation f(x)/(x−α) = 0 has its solutions only inside the unit circle |x| < 1
(cf. Kakeya [10], Hurwitz [9]). Hence, α is a simple root of f(x).

Now, we show the irreducibility of f(x). Let us consider the expan-
sion in the JP algorithm for the vector c := t(c1, . . . , cs) ∈ Rs. Put k :=
t(k1, . . . , ks). Then, in view of (4.21), we get T−1(c) = k + c. Hence, we
obtain a periodic expansion

(4.22) c = [0;
∗
k] := [0; k,k, . . .].

Denote by Vn ∈ SL(s+ 1;Z) the matrix

Vn :=
(
t0s 1
Es k

)n
(n ≥ 1), V0 := E.

Write Vn = (v(i)
n−s+j−1)1≤i≤s+1,1≤j≤s+1. The sequences

{v(i)
n }n=−s,−s+1,−s+2,... (1 ≤ i ≤ s+ 1)
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satisfy the linear recurrence relation

(4.23) v(i)
n =

s∑

j=0

kjv
(i)
n−s+j−1, n ≥ 1,

with the initial conditions given by V0 = E. Since α is a simple root of f(x),
we can write, for suitable θ(i)

j ∈ R (1 ≤ i ≤ s+ 1, 0 ≤ j ≤ s),

(4.24) v(i)
n = θ

(i)
0 αn +

s∑

j=1

θ
(i)
j t

(i)
j (n), θ

(i)
0 > 0,

where t(i)j (n) (1 ≤ i ≤ s+ 1, 0 ≤ j ≤ s) are functions of n of the form

nkαnl with 1 > |αl| > 0 (0 6= l = l(i, j) ≤ s, k = k(i, j) ∈ Z+),

and αl (0 ≤ l ≤ s, α0 = α) are the roots of f(x) counted with multiplicity. In
view of (4.22), we have c = T ((Vn−1)π(k + c)) (n ≥ 1). Hence, by Lemma 1
and (4.23) we get

ci =
s∑

j=0

cj+1v
(i)
n−s+j

/ s∑

j=0

cj+1v
(s+1)
n−s+j ,

so that

v(s+1)
n ci − v(i)

n =

∑s+1
j=1 cj(v

(s+1)
n v

(i)
n−s+j−1 − v(i)

n v
(s+1)
n−s+j−1)

∑s+1
j=1 cjv

(s+1)
n−s+j−1

.

Here, by (4.24) we get

v(s+1)
n v

(i)
n−s+j−1 − v(i)

n v
(s+1)
n−s+j−1 = o(αn).

Hence, we obtain

(4.25) v(s+1)
n ci − v(i)

n = o(1),

where the o-constant is independent of n. It follows from (4.25) that the
right-hand side of (4.22) converges to c. Now, we suppose that 1, c1, . . . , cs
are linearly dependent over Q. Then we have

s+1∑

i=1

xici = 0, 0 6= t(x1, . . . , xs+1) ∈ Zs+1.

This relation together with (4.25) implies that there exists m ∈ N, indepen-
dent of n, such that

s+1∑

i=1

xiv
(i)
n = 0 (∀n ≥ m),

which contradicts the fact that detVn 6= 0 (Vn ∈ SL(s + 1;Z)). There-
fore, 1, c1, . . . , cs are linearly independent. In view of (4.21), the numbers
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1/αn (1 ≤ n ≤ s + 1) are linearly independent over Q, from which the
irreducibility of the polynomial f(x) follows. This completes the proof of
Lemma 10.

Lemma 11. Let α ∈ (Q(α))s be the vector defined by



αs/(αs + αs−1 + . . .+ 1)
(αs + αs−1)/(αs + αs−1 + . . .+ 1)

...
(αs + αs−1 + . . .+ α)/(αs + αs−1 + . . .+ 1)


 .

Then α has the expression

(4.26) α = [0; b∗1(1), . . . ,b∗n(1), . . .] (= Ψ(1)),

which is admissible in the JP algorithm.

P r o o f. It follows from the convergence of (4.22) that the JP expression
in (4.26) converges. By direct calculation, we can check that the identity
(4.26) holds. From (4.21),

(4.27) 0 < [0; b∗n(1),b∗n+1(1),b∗n+2(1), . . .] < 1 (∀n ≥ 1)

follows, which implies the admissibility of (4.26).

P r o o f o f T h e o r e m 2(i). By Lemma 11 together with (4.17)
and (4.18), we get, for each 1 ≤ i ≤ s+ 1,

lim
n→∞

|σn(a1)|ai/|σn(a1)| = αs−i+1/(αs + αs−1 + . . .+ α+ 1),

which is irrational by Lemma 10. Hence, the infinite words εi(ω) (1 ≤ i ≤
s+1) are not ultimately periodic, where εi is the coding defined by εi(aj) =
δij (1 ≤ j ≤ s + 1) with δii = 1, δij = 0 (i 6= j). On the other hand,
εi(ω) is the sequence of coefficients of the Laurent series of the function
Φ(i)(z), which is bounded. Therefore, the functions Φ(i)(z) (1 ≤ i ≤ s + 1)
are not rational. Hence, the assertion (i) is a consequence of the following
lemma.

Lemma 12 (Fatou). If a power series with integral coefficients represents
an algebraic function that is not a rational function, then its radius of con-
vergence is smaller than one (see pp. 368–371 in Fatou [7], or p. 139, #167
in Pólya and Szegö [15]).

Let K be an alphabet. For given words u = u1u2 . . . ∈ K∗ and v =
v1v2 . . . ∈ K∗∪K∞ (ui, vj ∈ K), we denote by uv the word u1u2 . . . v1v2 . . . ∈
K∗ ∪K∞. If w = uv (u ∈ K∗, v ∈ K∗ ∪K∞), then u and v will be called a
prefix and a suffix of w, respectively. A word u satisfying w = tuv (t ∈ K∗,
uv ∈ K∗ ∪K∞) will be referred to as a subword of w, where uv := u when
u ∈ K∞ and v = λ. We denote by e(u, v) (u, v ∈ K∗ ∪ K∞) the number
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defined by

e(u, v) := inf{n ∈ N : un 6= vn} − 1 (u 6= v), e(u, u) :=∞
for u = u1u2 . . . , v = v1v2 . . . (ui, vj ∈ K). (K∗ ∪K∞ becomes a complete
metric space with the metric d(u, v) := 1/(e(u, v) + 1).)

Let σ be the substitution (1.2) over K, ω be its fixed point as in Section 3,
and let J be the triple J := (K,σ, a). (J is a D0L system, cf. [16, 17].) u∗

indicates the infinite periodic word uuu . . . for a given word u ∈ K+ :=
K∗ − {λ}. We denote by % = %(J) the positive number defined by

(4.28) % := lim sup
n→∞

e(ω, (σn(a))∗)
|σn(a)| .

Lemma 13. Let α be the number as in Lemma 10. Then we have

%(J) ≥
{
ks + α−1 if ks ≥ 2,
2 + 1/(αs+1 − 1) if ks = 1.

P r o o f. We write v ¬ w (v, w ∈ K∗ ∪ K∞) if w is a prefix of v. The
binary relation ¬ is transitive. In view of (4.5), we have

ω ¬ un+1 ¬ uksn un−1 (n ≥ s+ 1), un ¬ um (n ≥ m ≥ 1).

Hence, we get

% ≥ ks + lim
n→∞

|un−1|/|un| = ks + α−1,

by Lemmas 3 and 10. If ks = 1, then kj = 1 (1 ≤ j ≤ s+ 1) and

un = un−1un−2 . . . un−s−1 (n ≥ s+ 2)

by (4.5). Then, we have

ω ¬ un+2

= un+1unun−1 . . . un−s+1

= unun−1 . . . un−sunun−1 . . . un−s+1

¬ unun−1 . . . un−sun−sun−s−1

= unun−1 . . . un−sun−s−1un−s−2 . . . un−2s−1un−s−1

= ununun−s−2 . . . un−2s−1un−s−1

¬ ununun−s−2 . . . un−2s−1un−2s−1un−2s−2

= ununun−s−2 . . . un−2s−1un−2s−2un−2s−3 . . . un−3s−2un−2s−2

= ununun−s−1un−2s−3 . . . un−3s−2un−2s−2

¬ ununun−s−1un−2s−3 . . . un−3s−2un−3s−2un−3s−3

= ununun−s−1un−2s−3 . . . un−3s−2un−3s−3un−3s−4 . . . un−4s−3un−3s−3

= ununun−s−1un−2s−2un−3s−4 . . . un−4s−3un−3s−3

¬ ununun−s−1un−2s−2un−3s−4 . . . un−4s−3un−4s−3un−4s−4
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= ununun−s−1un−2s−2un−3s−4 . . . un−4s−3un−4s−4un−4s−5 . . .

. . . un−5s−4un−4s−4

= ununun−s−1un−2s−2un−3s−3un−4s−5 . . . un−5s−4un−4s−4

¬ ununun−s−1un−2s−2un−3s−3un−4s−5 . . . un−5s−4un−5s−4un−5s−5.

Repeating the above process, we see that ununun−(s+1)un−2(s+1) . . .
. . . un−j(s+1) is a prefix of ω when n ≥ (j + 2)(s + 1). On the other hand,
we have

un ¬ un−s−1un−s−2 ¬ un−s−1un−2s−2un−2s−3

¬ un−s−1un−2s−2un−3s−3un−3s−4

¬ . . . ¬ un−(s+1)un−2(s+1) . . . un−j(s+1)

for n ≥ j(s+ 1) + 1. Therefore, we obtain

% ≥ 2 + lim
n→∞

|un−(s+1)un−2(s+1) . . . un−j(s+1)|/|un|
= 2 + (α−(s+1) + α−2(s+1) + . . .+ α−j(s+1)).

Since j can be taken arbitrarily large, we get the lemma.

P r o o f o f T h e o r e m 1(ii). We assume that 2 ≤ g ∈ N, and put

Ψ (i)
n = Ψ (i)

n (g) = s(i)
n /t(i)n with s(i)

n , t(i)n ∈ N, gcd(s(i)
n , t(i)n ) = 1,

where Ψ
(i)
n is the ith component of the Ψn. Then t

(i)
n is a divisor of the

number gfn − 1, by (4.20). Hence, we have 1 ≤ t
(i)
n < gfn . We also get by

(4.20) the following expression in the g-adic expansion:

Ψ (i)
n = 0.τi(un)∗

with a period τi(un), where τi is the coding as in Theorem 1. Thus, in view
of the expression of Ψ (i) and Ψ

(i)
n in the g-adic expansion, we see that for

any ε > 0 the inequality

(4.29) |Ψ (i) − s(i)
n /t(i)n | < g−(%−ε)fn (1 ≤ i ≤ s)

holds for infinitely many n, where % = %(J) denotes the number (4.28).
Hence, the same is true for the inequality

(4.30) |Ψ (i) − s(i)
n /t(i)n | < t(i)n

−(%−ε)
(1 ≤ i ≤ s).

On the other hand, Ψ (i) = 0.τi(ω) in base g, and Lemma 11 implies

lim
n→∞

|τi(σn(a1))|g−1

|τ(σn(a1))| =
αs + αs−1 + . . .+ αs−i+1

αs + αs−1 + . . .+ α+ 1

which is irrational for 1 ≤ i ≤ s by Lemma 10, so that the number Ψ (i) (1 ≤
i ≤ s) is irrational. Thus, the inequality (4.30) is valid for infinitely many
rational numbers s(i)

n /t
(i)
n , because of the fact that % > 0 and s

(i)
n /t

(i)
n tends
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to Ψ (i) as n→∞ by (4.29). Therefore, by Lemma 13 we obtain

µ(Ψ (i)) ≥ % > 2 (1 ≤ i ≤ s),
where µ(Ψ) denotes the irrationality measure of a number Ψ . Hence, Roth’s
theorem leads to the assertion (ii) of Theorem 1.

P r o o f o f T h e o r e m 3. Let τ be as in Theorem 3. Using Lemma 13,
we can show that µ(0.τ(ω)) > 2 in the same manner as in the proof of
Theorem 1(ii), noting that 0.τ(ω) is irrational by the following lemma.

Lemma 14. Under the same notations as in Theorem 3, τ(ω) ∈ {0, 1, . . .
. . . , g − 1}∞ is not an ultimately periodic word when rankU(τ) ≥ 2.

P r o o f. Put

τ(ω) = t1t2 . . . tl . . . , tl ∈ Λ := {0, 1, . . . , g − 1},
and

N = N(n) :=
s+1∑

i=1

f (i)
n |ui|, ui := τ(ai),

where {f (i)
n }−s,−s+1,−s+2,... denotes the sequence defined in Lemma 2. Then

we have

|t1t2 . . . tN |j =
s+1∑

i=1

f (i)
n |ui|j (j ∈ Λ)

by Lemma 2. Hence by (4.27) we get

lim
n→∞

|t1t2 . . . tN(n)|j
N(n)

=
s+1∑

i=1

αs−i+1|ui|j
/ s+1∑

i=1

αs−i+1|ui| = ξj ,

say. It follows from Lemma 10 that the quantity ξj is rational if and only
if the vector t(|u1|j , |u2|j , . . . , |us+1|j) is linearly dependent on the vector
t(|u1|, |u2|, . . . , |us+1|). Hence, it is easily seen that ξj is irrational for some
j under the condition rankU ≥ 2, since

∑g−1
j=0 |ui|j = |ui|. Thus, the lemma

follows.

P r o o f o f T h e o r e m 1(iii). The expression (4.26) shows that Theo-
rem 1(iii) is valid when g = 1, since the quantities αi (0 ≤ i ≤ s) are linearly
independent by Lemma 10. We assume that g ≥ 2. It follows from (4.17)
and (4.29) that for any ε > 0,

|Ψ (i) − r∗(i)n /r∗(s+1)
n | < r∗(s+1)

n

−(%−ε)
(1 ≤ i ≤ s)

holds for infinitely many n, since 1 + (g − 1)r∗(s+1)
n = gfn . Hence, by

Lemma 13, we can find a positive number γ such that

(4.31) |Ψ (i)r∗(s+1)
n − r∗(i)n | < r∗(s+1)

n

−γ
(1 ≤ i ≤ s)
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for infinitely many n. Now, we suppose that a numbers Ψ (1), Ψ (2), . . .
. . . , Ψ (s), Ψ (s+1) (= 1) are linearly dependent over Q. Then by (4.31) we
have

−
s+1∑

i=1

xir
∗(i)
n = r∗(s+1)

n

s+1∑

i=1

xiΨ
(i) −

s+1∑

i=1

xir
∗(i)
n

=
s+1∑

i=1

xi(Ψ (i)r∗(s+1)
n − r∗(i)n ) = o(1)

for suitable integers xi with (x1, x2, . . . , xs+1) 6= (0, 0, . . . , 0) ∈ Zs+1. Hence∑s+1
i=1 xir

∗(i)
n = 0 for all sufficiently large n, since r∗(i)n ∈ Z, and so detR∗n =

0 (∀n � 1), which contradicts the fact R∗n ∈ SL(s + 1;Z). This completes
the proof of Theorem 1(iii).

R e m a r k 4. In the inequality (4.31), we can take γ = % − 1 − ε with
% > 2 when g ≥ 2, and % = 1 − log(max1≤i≤s |αi|)/ logα > 1 when g = 1,
where ε > 0 and the αi are the algebraic conjugates of α with α0 = α.

P r o o f o f T h e o r e m 2(ii). The linear independence result in Theo-
rem 2 can be proved in the parallel manner to the proof of Theorem 1. From
the inequality

‖Ψ (i)(z)− r∗(i)n (z)/r∗(s+1)
n (z)‖ < e−(%−ε)fn

with ε > 0, n > n0(ε), 1 ≤ i ≤ s, we have

∥∥∥
s+1∑

i=1

xi(z)r∗(i)n (z)
∥∥∥ = o(1)

for a suitable fixed vector t(x1, x2, . . . , xs+1) ∈ (C[z])s+1 \ {0s+1} under
the hypothesis that the functions Ψ (1)(z), Ψ (2)(z), . . . , Ψ (s)(z), Ψ (s+1)(z) = 1
are linearly dependent over C(z). This leads to a contradiction. Therefore,
noting the identity Ψ (i)(z) = (z − 1)

∑i
j=1 Φ

(j)(z), we get Theorem 2(ii).

It remains to prove the admissibility results. We have already shown that
the expression

Ξ = Ξ(z) = [0; b∗2(z),b∗3(z), . . . ,b∗n(z), . . .]

converges in the JPP algorithm with Ξ := t(Ξ(1), Ξ(2), . . . , Ξ(s)), where Ξ(i)

is the function given in Theorem 2, and so does the expression

Ψ = Ψ(g) = [0; b∗1(g),b∗2(g), . . . ,b∗n(g), . . .]

in the JP algorithm with g ∈ N. Recall that b∗n(z) ∈ (Z[z])s and b∗n(g)
∈ Ns. Thus, for the proof of the admissibility results, it is enough to show
‖[0; b∗n(z),b∗n(z), . . .]‖ < 1 (n ≥ 2), and 0 < [0; b∗n(g),b∗n(g), . . .] < 1
(n ≥ 1).
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P r o o f o f T h e o r e m 2(iii). We set

mΨ = mΨ(z) := [0; b∗m,b
∗
m+1, . . .] (m ≥ 1),

mΨn = mΨ(z)n := [0; b∗m,b
∗
m+1, . . . ,b

∗
n] (1 ≤ m ≤ n)

with
t(mΨ (1),mΨ

(2), . . . ,mΨ
(s)) := mΨ, mΨ

(0) := 0,
t(mΨ (1)

n ,mΨ
(2)
n , . . . ,mΨ

(s)
n ) := mΨn.

We use the following lemma due to Parusnikov [14].

Lemma 15 (Parusnikov). Let bj := t(b(1)
j , b

(2)
j , . . . , b

(s)
j ) ∈ (C[z])s (1 ≤

j ≤ k) be vectors satisfying

deg b(i)j < deg b(s)j 6= 0 for i 6= s and 1 ≤ j ≤ k (deg 0 := −∞),

and let Pn = (p(i)
j )1≤i≤s+1,n−s≤j≤n ∈ SL(s + 1;C[z]) (0 ≤ n ≤ k) be the

matrices defined by (4.1). Then

deg p(1)
n =

n∑

j=2

deg b(s)j (1 ≤ n ≤ k), deg p(1)
1 = 0,

deg p(i)
n = deg b(i−1)

1 +
n∑

j=2

deg b(s)j (2 ≤ i ≤ s+ 1, 1 ≤ n ≤ k).

P r o o f. By induction on n.

It follows from (3.1) and (4.19) with the definition (3.3) of b(i)n that the
inequalities 0 ≤ deg b∗(i)n < deg b∗(s)n hold for all n ≥ 2 and 1 ≤ i ≤ s − 1.
Therefore, we obtain

‖mΨ (i)
n (z)‖ < e−1 (2 ≤ m ≤ n, 1 ≤ i ≤ s)

by Lemmas 1 and 15. Letting n→∞, we get

‖mΨ (i)(z)‖ < 1 (2 ≤ m, 1 ≤ i ≤ s),
from which the admissibility of the expression (3.4) in the JPP algorithm
follows, noting that mΨ

(i)
n (z) converges as n→∞ in K.

For the proof of Theorem 1(iv) we need the following lemma, which
corresponds to Lemma 15.

Lemma 16. Let bj := t(b(1)
j , b

(2)
j , . . . , b

(s)
j ) ∈ Zs (1 ≤ j ≤ h) be vectors

satisfying

1 ≤ b(i)j ≤ b(h)
j for 1 ≤ i ≤ h ≤ s and 1 ≤ j ≤ h,
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and let Pn = (p(i)
j )1≤i≤s+1,n−s≤j≤n ∈ SL(s + 1;Z) (1 ≤ n ≤ h) be the

matrices defined by (4.1). Then

(4.32)
p(i)
n ≤ p(l)

n for 1 ≤ i ≤ l ≤ s and 1 ≤ n ≤ h,
p(i)
m ≤ p(i)

n for 1 ≤ m ≤ n ≤ h and 1 ≤ i ≤ s.
P r o o f (by induction on n). The lemma holds when n = 1. Suppose that

it is valid for all n ≤ k (k < h) with 1 ≤ k ≤ s. Then we have

pk+1 =

(
0

kP
Es−k+1

)( t0 1

Es bk+1

)
,

where kP denotes the (s+1)×k matrix defined by kP := (p(i)
j )1≤i≤s+1,1≤j≤k.

Hence, setting b(0)
k+1 := 1, we get

p
(j)
k+1 =

k∑
m=1

b
(s−k+m)
k+1 p(j)

m (1 ≤ j ≤ k),

p
(j)
k+1 = b

(j−k−1)
k+1 +

k∑
m=1

b
(s−k+m)
k+1 p(j)

m (k + 1 ≤ j ≤ s+ 1).

Therefore, we obtain (4.32) with n = k + 1 by induction hypothesis. Now,
we suppose that the lemma is valid for all n ≤ k (k < h) with k ≥ s + 1.
Then it is easy to check that (4.32) holds when n = k + 1 by using the
identity Pk+1 = PkBk+1.

P r o o f o f T h e o r e m 1(iv). In view of the expression (3.2) with (3.3),
we get 0 < mΨ

(i)
n (g) ≤ 1 by Lemmas 1 and 16. Thus, we obtain 0 ≤

mΨ
(i)(g) ≤ 1 for all m ≥ 1 and 1 ≤ i ≤ s. Let us suppose that mΨ (i)(g) = 0

or 1 for m = m0, i = i0. Then the admissible expression of Ψ(g) in the
JP algorithm terminates with the length m0 + i0− 1, which contradicts the
statement (iii) of Theorem 1.

The proof of Theorems 1–3 is now completed.

5. Characteristic sets of ω, special cases. Let ω be the fixed point
of σ over K defined by (1.2) as in the previous sections. We denote by

∫
i
C

and ∂C the sequences defined by

∫
i
C :=

{
i+

n−1∑
m=1

cm

}
n=1,2,...

, ∂C := {cn+1 − cn}n=1,2,...,

for a given sequence C = {cn}n=1,2,..., respectively.
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Theorem 4. Let Lj (1 ≤ j ≤ s+1) be the set {h(1)
j , h

(1)
j +h(2)

j , . . . , h
(1)
j +

h
(s+1)
j } with h(i)

j := |σj−1(ai)| (1 ≤ i ≤ s+ 1), and let υj : K∗ → L∗j be the
morphism defined by

υj(ai) := (h(1)
j )ks−i+1−1(h(1)

j + h
(i+1)
j ) (1 ≤ i ≤ s), υj(as+1) := h

(1)
j .

Then

χ(ω; aj) =
∫
h

(1)
j

υj(ω) (1 ≤ j ≤ s+ 1).

P r o o f. In view of (4.4), we have, for each 1 ≤ j ≤ s+ 1,

σj(ai) = σj−1(a1)ks−i+1σj−1(ai+1) (1 ≤ i ≤ s),
σj(as+1) = σj−1(a1).

Here, the symbol aj appears exactly ks−i+1 times in the words σj(ai) as its
prefix for all 1 ≤ i ≤ s + 1 when j = 1, the symbol aj (2 ≤ j ≤ s + 1)
appears exactly once in the word σj−1(a1) as its suffix, so that the symbol
aj appears once in the same positions of the words σj(ai) from left for
all 1 ≤ i ≤ s + 1 when 2 ≤ j ≤ s + 1. Therefore, noting the fact that
ω = σj(ω1)σj(ω2) . . . σj(ωm) . . . , we get ∂χ(ω; aj) = υj(ω), where χ(ω; aj)
is supposed to be a sequence in the increasing order of its terms, which leads
to the theorem.

Example. Taking s = 3, ks = 1, we have the following
∫

1 ω(2, 2, 2, 1) = {1, 3, 5, 7, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, . . .},∫
2 ω(4, 4, 3, 2) = {2, 6, 10, 14, 17, 21, 25, 29, 31, 35, 39, 43, 46, 50, 54, . . .},∫
4 ω(8, 7, 6, 4) = {4, 12, 19, 27, 33, 41, 48, 56, 60, 68, 75, 83, 89, 97, . . .},∫

8 ω(15, 14, 12, 8) = {8, 23, 37, 52, 64, 79, 93, 108, 116, 131, 145, 160, . . .},
which gives a partition of the set N into 4 parts, where ω(w1, w2, w3, w4)
denotes the sequence υ(ω) with υ(ai) = wi.

Finally, we consider the case s = 1 in Theorem 1. In this case, the JP
algorithm turns out to be that of the simple continued fraction expansion.
We put k := k1, and a1 = a, a2 = b. Then we have f(x) = x2 − kx− 1, and
so α = (k + (k2 + 4)1/2)/2 in Lemma 10. We put

χ(ω; a) = {s1 < s2 < . . . < sn < . . .}, χ(ω; b) = {t1 < t2 < . . . < tn < . . .}.
Then Theorem 4 implies

(5.1) tn = kn+ sn (n ≥ 1).

It is clear that

(5.2) χ(ω; a) ∪ χ(ω; b) = N, χ(ω; a) ∩ χ(ω; b) = ∅.
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It can be seen that the sequences χ(ω; a) and χ(ω; b) are uniquely determined
by the properties (5.1) and (5.2). On the other hand, if we set

θ := 1+1/α = 1+(−k+(k2+4)1/2)/2, η := 1+α = 1+(k+(k2+4)1/2)/2,

then we get the equality η = k+θ. Thus, we have bηnc = kn+bθnc (n ∈ N).
In addition, we also have 1/θ+ 1/η = 1. Hence, the two sets {bθnc : n ∈ N}
and {bηnc : n ∈ N} form a partition of N, since θ and η are irrational,
which is a well-known property of Beatty sequences (cf. [8], or [18], p. 29).
Therefore we obtain

χ(ω; a) = {bθnc : n ∈ N}, χ(ω; b) = {bηnc : n ∈ N}.
From this fact, in view of Theorem 1(i), we get the identity

(z − 1)
∞∑
n=1

z−bθnc = [0; b1, b2, . . .] (|z| > 1, z ∈ C)

where bn denotes the polynomial of z defined by

bn := zfn−2

k−1∑
m=0

zmfn−1 (n ≥ 1).

If we take k = 1 and z = 2, then we again have the identity (1.1).
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