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1. Introduction. Statement of the main theorem. Let k, m, n, p,
q, and r denote positive integers with p, q, and r signifying primes, and take
x to be a positive real number. We call the number n cubefree if n is not
divisible by the cube of a prime. Denote the Euler phi-function of n by φ(n),
and the natural logarithm of x by log x. Put L2x = log log x, L3x = logL2x,
and L4x = logL3x. If h(x) and j(x) are complex-valued functions, we write
h(x) ∼ j(x) to mean

lim
x→∞

h(x)
j(x)

= 1,

and we put h(x) = o(j(x)) to show that

lim
x→∞

h(x)
j(x)

= 0.

The expression h(x)� j(x) signifies that there is a positive constant K for
which |h(x)| ≤ Kj(x), if x is sufficiently large. We will write j(x) � h(x)
to mean that 0 < h(x)� j(x) for all sufficiently large x.

Earlier authors have studied the functions

Fk(x) = #{n ≤ x : g(n) = k},
and

Qk(x) = #{n ≤ x, n squarefree, g(n) = k}
(e.g., see [3], [8]–[11]). We examine the function

Ck(x) = #{n ≤ x : n cubefree, g(n) = k}.
We immediately have

(1) x ≥ Fk(x) ≥ Ck(x) ≥ Qk(x).

In 1948, Erdős [2] showed that

F1(x) ∼ e−γx/L3x,

[209]
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where γ = .5772 . . . is Euler’s constant. His proof shows that we have

(2) F1(x) ∼ C1(x) ∼ Q1(x).

Subsequently, M. R. Murty and V. K. Murty [9] showed that

Q2(x) ∼ C2(x) ∼ F2(x)� xL4x

(L3x)2 ,

and stated the conjecture that

(3) F2(x) ∼ e−γx
(L3x)2 .

Later, Erdős, M. R. Murty, and V. K. Murty established that when k = 2l

for some nonnegative integer l, then we have

Qk(x) ∼ Ck(x) ∼ Fk(x) ∼ e−γx
l!(L3x)l+1

(see Theorem 3 of [3], and its proof). Note that the case k = 2 implies
the conjecture (3). They also showed that if k is not an integer power of 2,
then we have Fk(x) = o(x/L2x). For a more detailed account of the history
of the work done on these types of questions, we refer the reader to the
introduction to [10]. In that paper, we showed that for positive integers k
not belonging to the set S=̇{g(n) : n odd, squarefree}, and such that k − 2
is prime, there exist positive computable constants κ = κ(k) for which the
formula

(4) Qk(x) ∼ κx(L2x)2

(log x)1/(k−3)(L3x)(k−4)/(k−3)

holds. The positive integers k not exceeding 103 to which this result ap-
plies, are 7, 19, 31, 49, 73, 91, and 103 (see the main theorem of [10], and
the remark following that theorem). By contrast, if k is contained in the
aforementioned set S, then we have

(5) Qk(x)�k x(L2x)−λ(k)

for some positive computable constant λ = λ(k) (see the main theorem
of [11]). The first positive integer failing to be in S is 7 (see the discussion
following the statement of Theorem 1 of [10]). These results show that the
functions Qk(x) behave very differently, on average, for different values of k.
Moreover, it is natural to ask the question of for what values of k Equation
(2) obtains.

To state the primary result of this paper, we first must define an appro-
priate analog C of the aforementioned set S. Toward that end, we isolate
the following two properties which a positive integer n may possess.

Property 1. There is no pair p, q of primes for which pq2 |n, and
q ≡ 1 mod p.
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Property 2. For any prime q, let M(n, q) be the number of prime
divisors p of n such that p ≡ 1 mod q, and let N(n, q) denote the number of
squares of primes p2 dividing n with the property that p ≡ −1 mod q. Then
M(n, q) +N(n, q) ≤ 1 for all q |n.

Definition. Let

C = {g(n) : n odd and cubefree, n satisfies Properties 1 and 2}.
Theorem 1. If k ∈ C, then there exists a positive, computable constant

c = c(k) for which
Fk(x) ≥ Ck(x)�k x(L2x)−c.

For k contained in S, the result is an immediate consequence of Theo-
rem 1 of [11]. Therefore, to verify that Theorem 1 of the present paper is
not subsumed under previous results, we must show that C is not contained
in S. In fact, we have the following, stronger, result.

Theorem 2. The set C properly contains the set S.

2. The proof of Theorem 2. Before proving this theorem, we introduce
some notation. If G is a group, and H is a subset of G, we write 〈H〉 for the
group generated by the elements ofH. If x1, . . . , xt ∈ G, we write 〈x1, . . . , xt〉
to mean 〈{x1, . . . , xt}〉. Similarly, if K is a subset of G, we put 〈H,K〉 for
〈H ∪K〉. And, we denote the group of automorphisms of G by AutG, the
order of G by |G|, and the order of x1 by |x1|. Finally, let Zn be the cyclic
group of order n, and let G⊗ L denote the direct product of the groups G
and L.

P r o o f o f T h e o r e m 2. To show that C contains S, we apply Lemma 3
on p. 5 of [4], with y = 4. To establish that this containment is proper, we
consider the example of n = 72972. Clearly, n is cubefree, odd, and sat-
isfies Properties 1 and 2. Thus, it suffices to prove that g(n) = 7. Let G
be any group of order n. By the Sylow theorems, G has a normal Sylow
97-subgroup P , and a Sylow 7-subgroup Q. Clearly, |P | = 972, and |Q| = 72.
Let the elements of Q act on the elements of P by conjugation. We have
two cases, according to whether all of the elements of Q act trivially on P .

C a s e (i): The elements of Q all act trivially on P . Since P and Q
intersect trivially, it follows that 〈P,Q〉 is the direct product of P and Q.
Moreover, both this direct product and G have order 72972, so that G is
this direct product. By the Fundamental Theorem on Abelian Groups, G is
one of the groups Zn, Zn/7 ⊗ Z7, Zn/97 ⊗ Z97, or Z7 ⊗ Z7 ⊗ Z97 ⊗ Z97.

C a s e (ii): At least one element of Q does not act trivially on P . Then
7 divides |AutP |. And, since |P | = 972, P is either cyclic or isomorphic to
Z97 ⊗ Z97. In the first case, |AutP | = 97 · 96 is not divisible by 7. In the
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second case, AutP is isomorphic to the group of 2 by 2 nonsingular matrices
over the field of 97 elements, acting on the two-dimensional column vectors
over this field.

In particular, the order of AutP is (972 − 1)(972 − 97), which is exactly
divisible by 72. By the proof of Theorem 8.3 on p. 42 of [4], AutP contains
a cyclic subgroup of order 972− 1 = 72 · 192, so that the Sylow 7-subgroups
of AutP are cyclic of order 72. Since Q does not act trivially on P , the
kernel of this action has order either 7 or 1. If the kernel has order 1, then
Q must be cyclic. So, 〈P,Q〉 is isomorphic to the semidirect product of P
by an automorphism of P of order 72. But since 72 exactly divides |AutP |,
and since 7 does not divide |P |, the semidirect product of P by any auto-
morphism of order 72 is isomorphic to 〈P,Q〉. And, as in our earlier cases,
we have 〈P,Q〉 = G. Thus, there exists a unique group, up to isomorphism,
with the kernel of the aforementioned action trivial.

So, assume that the kernel has order 7. Let x be a nontrivial element of
this kernel, and let y be an element of Q not belonging to the kernel. If Q
is not cyclic, then we have Q = 〈x, y〉, so that Q is the direct product of 〈x〉
and 〈y〉.

Since |Q| = 49, Q is the direct product of 〈x〉 and 〈y〉. Thus, G = 〈P,Q〉
is the direct product of 〈P, 〈y〉〉 and 〈x〉. Hence, G is isomorphic to the direct
product of Z7 with the semidirect product of P by an automorphism of P
of order 7. As in the situation in the last paragraph, any group which is the
direct product of Z7 with a semidirect product of P by an automorphism of
P of order 7, must be isomorphic to G. Hence, there exists a unique group,
up to isomorphism, with the kernel of the action of Q on P having order 7,
and with Q noncyclic.

Finally, assume that this kernel has order 7, but that Q is cyclic. Then
Q = 〈x〉. So, x7 acts trivially on P , whereas x does not. Consider the
semidirect product of P by the automorphism of AutP given by the action
of x on P . That group is generated by the normal subgroup, which we
identify with P and write as P , and an element y of order 7 for which

y−1gy = x−1gx for each g ∈ P.
Consider the direct product of Z49 with this semidirect product, and write
it as

(6) 〈y, w, P 〉,
where w has order 49 and commutes with 〈y, P 〉. By inspection, we have

(7) (wy)−1g(wy) = x−1gx for all g ∈ P,
and |wy| = 49. Therefore, 〈wy, P 〉 and 〈x, P 〉 are isomorphic. Moreover,
we have shown that all subgroups of AutP of order 7 are conjugate, so
that any two semidirect products of P by an automorphism of order 7 are
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isomorphic. Hence, there is at most one such group (up to isomorphism). To
show that there is such a group, let η be any automorphism of P of order 7,
construct the semidirect product of P by η, and find the element y of the
semidirect product which acts on the Sylow 97-subgroup by conjugation as η
acts on P . Then, construct the direct product (6), and consider the element
wy as in (7). The group 〈wy, P 〉 has order 72972, and has the asserted form.

Accordingly, there is a unique isomorphism class of groups G with cyclic
Sylow 7-subgroups, where the action of a Sylow 7-subgroup on the Sylow
97-subgroup has a kernel of order 7. Taking each sub-case into account, and
totalling the results, gives g(n) = 7.

N o t e. As an alternate proof, one could construct the semidirect prod-
uct of P by AutP with AutP represented as the aforementioned group of
matrices, and then find all subgroups of order 972, 71972, and 72972. In each
case, one could take the direct product with a group of order a power of 7,
and study possible subgroups G of the right order. Then, examination of
Cayley tables would yield the theorem, after some argument reducing the
number of cases to study.

3. Graphs associated with odd cubefree numbers. For the re-
mainder of this paper, n will denote an odd cubefree positive integer. For
convenience of exposition, we associate with n the following digraph.

Definition. Associate with n the digraph G(n) whose vertices are the
nontrivial prime powers exactly dividing n, and whose edges are determined
by the following rules: If pk and ql are nontrivial prime powers exactly
dividing n, then

(i) place one directed edge from pk to ql if k = 1 and p | q−1 or if k = 1,
l ≥ 2, and p | q + 1;

(ii) place one directed edge from pk to ql if p ‖ q − 1 or if l = 2, and
p ‖ q + 1;

(iii) place two directed edges from pk to ql if k = 2 and p2 | q − 1;
(iv) place two directed edges from pk to ql if k = 2, l ≥ 2, and p2 | q + 1.

N o t e. If p | q−1 or p | q+1, then there is at least one directed edge from
p to q.

Definition. Let m and n be odd positive cubefree integers. We say that
the digraphs G(m) and G(n) are equivalent , and write G(m) ∼ G(n), if there
exists a bijection B from the vertices of G(m) to the vertices of G(n) such
that if pk and ql are vertices of G(m), then there are the same number of di-
rected edges from pk to ql in G(m) as there are from B(pk) to B(ql) in G(n),
and such that B(pk) is the kth power of a prime for all vertices pk of G(m).

We put G̃(n) for the equivalence class containing G(n).
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Definition. Write G(n) as the disjoint union of its connected compo-
nents, thus:

G(n) =
t⋃

i=1

Gi.

Let ni be the product of the vertices of Gi, for 1 ≤ i ≤ t. We say that the
integers ni are the connected components of n. It follows from the definition
of G(n) that (ni, n/ni) = 1 for all i.

N o t e s. Our goal is to show that g(n) is completely determined by the
equivalence class G̃(n), provided that n fulfills Properties 1 and 2. By in-
spection, if p and q are any primes, then we have G(pi) ∼ G(qi) for i = 1, 2.
If m and n are odd and cubefree, and G(n) ∼ G(m), then m and n have the
same number of prime factors. Call this number ω(n).

Lemma 1. If the connected components of n are n1, . . . , nt, then any
group G of order n can be written as the direct product of groups H1, . . . ,Ht

with |Hi| = ni for all i. It follows that g(n) = g(n1) · . . . · g(nt).

P r o o f. For the first statement, we argue by induction on t. The result
is clear for t = 1. Assume that T is an integer exceeding 1, and that the
result is true for 1 ≤ t ≤ T − 1. Since nT is a connected component of n,
we have (n/nT , nT ) = 1. Let G be any group of order nT . Then, let p and
q be any primes with p dividing n/nT and q dividing nT , and choose k
and m so that pk exactly divides n/nT , and qm exactly divides nT . Since
|G| is odd and cubefree, G is solvable. So, it follows from a theorem of
P. Hall (see Theorem 4.1 on p. 231 of [4]), that there is a subgroup H
of G, with |H| = pkqm. In H, the number of Sylow p-subgroups is 1 or q
if m = 1, and 1, q, or q2 if m = 2. But since nT is a connected component
of n, p divides n/nT , and q divides nT , we cannot have q ≡ 1 mod p, and
if m = 2 then we cannot have q2 ≡ 1 mod p. So, there is only 1 Sylow
p-subgroup in H. Call it P . Then P is normal in H. Similarly, Q is normal
in H. Thus, H = P ⊗ Q (see Theorem 3.6 on p. 11 of [4]). It follows that
Q centralizes P . Let P1 be any Sylow p-subgroup of G, and let C be the
centralizer of P1 in G. Since P is also a Sylow p-subgroup of G, there exists
an element α ∈ G for which α−1Pα = P1. We deduce that the Sylow
q-subgroup α−1Qα of G is contained in C, so that qm | |C|. Since q |nT was
arbitrary, and m is the exact power to which q divides nT , it follows that
nT | |C|. Moreover, from the fact that (nT , n/nT ) = 1, we can deduce that
(nT , |C|/nT ) = 1. Hence, the aforementioned theorem of P. Hall implies
the existence of a subgroup K of C, with |K| = nT . Now K is a subgroup
of G with (|K|, n/|K|) = 1. Moreover, if C1 is the centralizer of K in G,
then C1 contains a Sylow p-subgroup of G. Now let r be any prime dividing
n/nT . By the above argument, there exists a subgroup K1 of G for which
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the centralizer of K1 in G contains a Sylow r-subgroup of G. But K and
K1 are conjugate in G, by P. Hall’s Theorem. Accordingly, C1 contains a
Sylow r-subgroup of G. So, the exact power of r dividing |C1| equals the
power to which r divides n/nT . Since r was an arbitrary prime divisor of
n/nT , we can conclude that n/nT divides the order of C1. Therefore, we
can deduce from P. Hall’s Theorem that C1 contains a subgroup M of order
n/nT . Now M centralizes K in G, and |M | and |K| are coprime. Hence,
M ∩ K is trivial. Therefore, 〈M,K〉 = M ⊗ K. And, |M | |K| = n = |G|,
whence G = M ⊗ K. It follows from the Induction Hypothesis that M is
the direct product of subgroups H1, . . . , HT−1 of M , with |Hi| = ni for
1 ≤ i ≤ T − 1. So, the initial statement of the lemma holds with HT = K.
For the second statement, we note that if G = H1⊗ . . .⊗HT , with |Hi| = ni
for 1 ≤ i ≤ T , then Hi is the unique subgroup of G of order ni. And, if
H1, . . . , HT are any groups with |Hi| = ni for 1 ≤ i ≤ T , then we clearly
have |H1 ⊗ . . .⊗HT | = n.

The next lemma will enable us to anchor the induction when proving
that if n satisfies Properties 1 and 2, then g(n) depends only on G̃(n) (see
Lemma 5, below).

Lemma 2. Let p and q be primes with q > p > 3.Then

(i) g(p) = 1,
(ii) g(p2) = 2,

(iii) g(pq) = 2 if p | q − 1,
(iv) g(pq2) = 3 if p | q + 1,
(v) g(p2q) = 4 if p ‖ q − 1,
(vi) g(p2q) = 5 if p2 | q − 1,

(vii) g(p2q2) = 6 if p ‖ q + 1,
(viii) g(p2q2) = 7 if p2 | q + 1.

Corollary 1. If ω(n) ≤ 2, and n satisfies Property 1, then g(n) depends
only on G̃.

P r o o f. For ω(n) = 1, we have n = p or n = p2 for some prime p.
So, G(n) ∼ G(s) or G(n) ∼ G(s2). Parts (i) and (ii) of Lemma 2 imply
that g(n) = 1 in the first instance, and g(n) = 2 in the second case. Oth-
erwise, write n = pαqβ , where p and q are primes with q > p > 2, and
α, β ∈ {1, 2}. If n has two connected components, then the connected com-
ponents of n are pα and qβ , and G(n) is equivalent to G(m), for some element
m of {5 · 7, 52 · 7, 52 · 72}. In each case, we can conclude from Lemma 1 and
Lemma 2(i), (ii) that g(n) = g(pα)g(qβ) = g(m). Now, assume that n is
connected. We observe that since n is odd, and q > p ≥ 3, we have neither
q | p + 1 nor q | p − 1. And, we can conclude from the fact that n fulfills
Property 1 that p - q − 1 if β = 2. Therefore, the connectedness of n implies
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that G(n) is contained in one of the equivalence classes G̃(m) : m = 5 · 11,
52 · 11, 52 · 101, 5 · 192, 52 · 192, 72 · 972. The corollary now follows from
Lemma 2.

P r o o f o f L e m m a 2. Cases (i), (ii), and (iii) are listed as I–III on
p. 51 of [5]. For the remainder, we observe that if 2 < p < q; α, β ∈ {1, 2};
and G is a group of order pαqβ , then the number of Sylow q-subgroups of G
is 1, p, or p2. Since this number is congruent to 1 modulo q, it follows that
under the hypotheses of any of cases (iv)–(viii), there exists a normal Sylow
q-subgroup of any group of the given order. We first consider the cases (v)
and (vi). Here, G has order p2q. Now the Sylow q-subgroup of G is cyclic of
order q. Let x ∈ G be a generator of this subgroup, and let P be a Sylow
p-subgroup of G. Let P act on 〈x〉 by conjugation. The kernel of this action
has order 1, p, or p2. If the action is trivial, then we have G = P ⊗ 〈x〉, so
that G is isomorphic to one of the groups

(8) Zp ⊗ Zp ⊗ Zq, Zp2 ⊗ Zq.
If the kernel of this action has order p, then there exists an element y of P of
order p, for which y and x commute. We have two cases: either P is cyclic,
or P is noncyclic. In the latter case, there is an element z of P such that
|z| = p, and P = 〈y, z〉. Now z does not commute with x, since P does not
commute with x. So, since 〈x〉 is normal in G, 〈z, x〉 is a nonabelian group
of order pq. Consequently, G = 〈y〉⊗ 〈z, x〉. So, up to isomorphism, we have

(9) G = Zp ⊗ Npq,
where Npq is the nonabelian group of order pq. In the former case, let P =
〈w〉, where w has order p2, and wp = y. Hence, wp fixes x. Since 〈x〉 is
normal, we have w−1xw = xm for some primitive pth root m of 1 modulo q.
Now the action of w on 〈x〉 gives rise to an automorphism of 〈x〉 of order p.
The semidirect product of 〈x〉 by this automorphism is isomorphic to

(10) N = 〈v, x : vp = xq = 1, v−1xv = xm〉.
Consider the direct product

(11) Zp2 ⊗N
' 〈u, v, x : up

2
= vp = xq = 1, v−1xv = xm, uv = vu, ux = xu〉.

The subgroup

(12) 〈uv, x〉
of Zp2 ⊗N is isomorphic to G by the sentence containing (10). So, we have
exactly one group of order p2q in this case (up to isomorphism), and it is
the subgroup (12). Lastly, we consider what happens when the kernel has
order 1. Then, P acts faithfully on 〈x〉. Now Aut〈x〉 ' AutZq is cyclic of
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order q−1, so that P must be cyclic. By analogy with the derivation of (10)
or by Theorem 9.4.3 on p. 146 of [5], we can conclude that

(13) G = 〈w, x : wp
2

= xq = 1, w−1xw = xm〉,
where m is a primitive p2th root of 1 modulo q. To show that G is unique, we
recall the result that if k is any other primitive p2th root of 1 modulo q, and
if d is an integer satisfying kd ≡ m mod q, then the group 〈u, v : up

2
= vq

= 1, u−1vu = vk〉 is isomorphic toG, under the isomorphism v 7→ x, ud 7→ w.
To show when G exists, we can construct the semidirect product of Zq by
an element of AutZq of order p2, if such an element exists. Since AutZq is
cyclic of order q − 1, the group (13) exists and has order p2q in case (vi),
but not in case (v). So, in case (v), we have the four isomorphism classes
of groups given by (8), (9), and (12), and no others, while in case (vi), we
have the groups listed in (8), (9), (12), and (13), and no more isomorphism
classes of groups.

For (viii), we can reason as in the proof that g(72972) = 7, in the proof
of Theorem 2. We leave the details to the reader. For (vii), the argument is
the same as in (viii), but one case does not arise, namely the case analogous
to the situation where the kernel is trivial in the proof that g(72972) = 7.
The reason that case does not give any groups is similar to the reason that
we get one more isomorphism class of groups in case (vi) than we get in
case (v). Again, we leave it to the reader to put in the details. For (iv),
we observe that if G is a group of order pq2, then G ⊗ Zp is a group of or-
der p2q2. Accordingly, the reader who has done (vii) and (viii) immediately
has (iv).

Lemma 3. Assume that n satisfies Properties 1 and 2. Let q and r be
distinct odd primes, and let α and β be contained in {1, 2}. Assume that in
the notation of Property 2, we have

(14) M(n, q) = M(n, r) = N(n, q) = N(n, r) = 0,

and that

(15) (qr, n) = (ri − 1, n) = 1,

but that

(16) q | r + (−1)α.

Finally , suppose that

(17) (n, q − 1) = 1 if α = 2.

Then

(18) g(nqαrβ) = g(nqα)g(rβ) + g(n)(g(qαrβ)− g(qα)g(rβ)).



218 C. Spiro-Silverman

P r o o f. Let G be any group of order nqαrβ . Since |G| is odd and cube-
free, G is solvable. So, it follows from P. Hall’s Theorem that G contains
a subgroup H of order nrβ . Let R be a Sylow r-subgroup of H. Consider
any prime divisor s of n. Choose γ so that sγ exactly divides n. Another
application of P. Hall’s Theorem implies that R is contained in a subgroup S
of H, with |S| = rβsγ . It follows from the Sylow theorems and (14) that R is
normal in S. Now if β = 1, then R is isomorphic to Zr, while if β = 2, then
r is either isomorphic to Zr2 , or to Zr ⊗Zr. Thus, there exists no automor-
phism of R of order either s or s2. So, a Sylow s-subgroup of S centralizes R.
Let C be the centralizer of R in H. We have shown that sγ | |C|. Since sγ

was an arbitrary nontrivial prime power exactly dividing n, we deduce that
n | |C|. But n and |C|/n = rβ are clearly coprime. Hence, P. Hall’s Theorem
guarantees the existence of a subgroup K of C with |K| = n. A further ap-
plication of P. Hall’s Theorem yields the existence of a subgroup L of G of
order qαrβ , with R ⊆ L. We can conclude from (16) and the Sylow theorems
that R is normal in L. Consequently, the order of the normalizer of R in G
is divisible by both |L| and |K|. Now since |G| = |K| |L|, and |K| and |L|
are coprime, we can conclude that G = 〈K,L〉. Hence, R is normal in G.

By P. Hall’s Theorem, there is a subgroup M of G with |M | = nqα, and
with K ⊆ M . Let Q be a Sylow q-subgroup of M . The reasoning of the
last paragraph shows that Q is normal in M , and that M = 〈K,Q〉. So,
G = 〈K,Q,R〉. Since R is normal in G, the set

(19) QR = {gh : g ∈ Q, h ∈ R}
forms a group of order |Q| |R| = qαrβ .

If Q centralizes R, then M centralizes R because M is generated by K
and Q. Furthermore, M and R intersect trivially, because their orders are
coprime. Thus,

(20) G = 〈M,R〉 = M ⊗R.
If Q does not centralize R, then we will establish that

(21) G = K ⊗QR.
Then, we will use the fact that at least one of (20) and (21) holds to enable
us to apply the Inclusion/Exclusion Principle to enumerate the groups of
order nqαrβ .

Assume that Q fails to centralize R. Then QR is a nonabelian group of
order qαrβ . We have the following cases:

(i) α = 1;
(ii) α = 2, Q is cyclic;

(iii) α = 2, Q is not cyclic.

Our goal in each case will be to verify that K centralizes Q. It will follow at
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once that K centralizes QR, so that (21) holds. If K does not centralize Q,
then there is some element z of K of prime power order sγ , such that z
does not commute with every element of Q. Clearly, z commutes with every
element of R.

If Q ' Zq, write Q = 〈w〉. Consider x = zwz−1w−1. If h ∈ R, then we
have

(22) x−1hx = wzw−1(z−1hz)wz−1w−1 = w(z(w−1hw)z−1)w−1 = h,

because z centralizes R. But zwz−1 = wα for some integer a 6≡ 1 mod q.
Thus, x = wα−1 is a generator of Q. It follows that Q centralizes R which
is a contradiction. Accordingly, (21) holds in case (i).

Now, assume that α = 2. Then there is no prime divisor p of n with q ≡
1 mod p, by (14). But if Q is cyclic, then we must have s | |AutQ| = q(q−1),
because z has order sγ . Thus, we have a contradiction in case (ii).

If |Q| = q2, then Q ' Zq ⊗ Zq. As in the last paragraph, we have
s | |AutQ|. Thus, s | q + 1. If z centralized some nontrivial element a of Q,
then conjugation of Q by z would generate an automorphism η of Q/〈a〉.
Now η would have order 1, s, or s2, since |z| = sγ . Moreover, since |a| = q,
the order of η would divide |Aut〈a〉| = q− 1. So, η would have to be trivial.
It would follow that z centralizes Q (see Theorem 3.15 on p. 187 of [4]),
contrary to assumption. So, {g ∈ Q : zg = gz} = 1.

Now, let v and w be any nontrivial elements of Q, and let x = zvz−1v−1,
and y = zwz−1w−1. By the derivation of (22), both x and y commute
with R. Moreover, by the last paragraph, both x and y are nontrivial ele-
ments of Q. If y = xj for some integer j, then zvz−1v−1 = (zwz−1w−1)j .
Since both zwz−1 and w−1 are elements of Q, and Q is abelian, we have
zvz−1v−1 = (zwz−1)jw−j . Therefore, zvz−1v−1 = zwjz−1w−j . Simplifica-
tion yields w−jvz−1v−1wjz = 1, so that z commutes with v−1wj . Conse-
quently, v−1wj is trivial, from which we get wj = v. Accordingly, we have
shown that if we choose v and w to be generators of Q, then the elements
x and y are also generators of Q, so that R commutes with Q. It therefore
follows that (20) holds, from the paragraph containing it. Thus, at least one
of Equations (20) and (21) holds in case (iii).

We are now ready to apply the Inclusion/Exclusion Principle. If both
(20) and (21) are true, then we have

G = M ⊗R = K ⊗QR.
From the pairwise coprimality of |K|, |Q|, and |R|, we can deduce that

(23) G = K ⊗Q⊗R
in this case. So, we have

(24) g(|G|) = N1 +N2 −N3,
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where Ni is the number of (isomorphism classes of) groups G of the form
given by Equation (20+i), for i = 1, 2, 3. But since |M | and |R| are coprime,
the number of groups of the form M ⊗R is just g(|M |)g(|R|). Similarly, the
number of groups of the form K ⊗QR is g(|K|)g(|QR|), and the number of
groups of the form K ⊗Q⊗ R is merely g(|K|)g(|Q|)g(|R|). Consequently,
(18) follows from (24).

Lemma 4. Let n have connected components n1, . . . , nt, assume that p
is an odd prime, and choose α ∈ {1, 2}. Suppose that nipα is connected
and that pα is the unique vertex of G(nipα) of out-degree 0, for 1 ≤ i ≤ t.
Further assume that npα satisfies Properties 1 and 2.

(i) If α = 1, then g(npα) =
∏t
i=1 g(ni, p).

(ii) If α = 2, then g(npα) =
∏t
i=1(g(ni, p2)− g(ni)) + g(n).

P r o o f. By construction, the vertex pα of G(npα) has out-degree 0. Select
any group G of order npα. Choose an arbitrary prime power qβ exactly
dividing n. By P. Hall’s Theorem, there is a subgroup H of G with |H| =
pαqβ . Since the number of Sylow p-subgroups of H is congruent to 1 modulo
p and divides qβ , and since the vertex pα of G(npα) has out-degree 0, there
is only one Sylow p-subgroup of H. Call it P , and denote its normalizer in G
by N . Let P0 be any Sylow p-subgroup of G, and denote its normalizer in G
by N0. Since any two Sylow p-subgroups of G are conjugate, N is conjugate
to N0, so that |N0| = |N |. And, inasmuch as H ⊆ N0, we have pqβ | |N |.
But qβ was an arbitrary prime power exactly dividing n. Hence, npα | |N |,
so that N = G. It follows that P = P0 is normal in G.

By P. Hall’s Theorem, there is a subgroup K of G with |K| = n. More-
over, by Lemma 1, there are subgroups A1, . . . , At of K for which

(25) |Ai| = ni for 1 ≤ i ≤ t,
and

(26) K = A1 ⊗ . . .⊗At.
Since P is normal in G, we have

(27) |〈Ai, P 〉| = |Ai| |P | = nip
α for 1 ≤ i ≤ t.

Assume that α = 1. We will prove (i) by induction on t. For t = 1, the
result is clear. Assume that the result holds for 1, 2, . . . , t− 1, where t > 1.
Let A and B be groups with |A| = (n/n1)p, and |B| = n1p. By the argument
of the first paragraph, each of the groups A and B possesses a normal Sylow
p-subgroup. In each case, this group is isomorphic to Zp, since g(p) = 1. Let
〈a〉 be the Sylow p-subgroup of A, and 〈b〉 be the Sylow p-subgroup of B.
Then A⊗B has a normal Sylow p-subgroup, namely

〈a〉 ⊗ 〈b〉 = 〈a, b : ap = bp = a−1b−1ab = 1〉.
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Identify A and B with their images under the natural embeddings of A
and B into A ⊗ B. Then A normalizes 〈ab〉, since A normalizes 〈a〉, and
centralizes 〈b〉. Similarly, B normalizes 〈ab〉. By P. Hall’s Theorem, there
exists a subgroup D of A with |D| = n1, and a subgroup E of B with
|E| = n/n1. Then D ⊗ E is a subgroup of A ⊗ B of order n. Since 〈ab〉 is
normalized by both A and B, it is normalized by D ⊗ E. Accordingly, we
can deduce that

|〈D,E, 〈ab〉〉| = |D| |E| |〈ab〉| = np

from the fact that |〈ab〉| is coprime to |D ⊗ E|. Thus,

g(np) ≤ g(n, p)g((n/n1)p).

By the Induction Hypothesis, we have

g(np) ≤
t∏

i=1

g(nip).

On the other hand, equation (27) and its derivation yield

g(np) ≥
t∏

i=1

g(nip),

which completes the induction and proves (i).
Suppose that α = 2. We will establish (ii) by verifying the following two

formulae:

(iii) The number of isomorphism classes of groups of order npα with a
cyclic Sylow p-subgroup is g(n);

(iv) The number of isomorphism classes of groups of order npα with a
noncyclic Sylow p-subgroup is

∏t
i=1(g(nip)− g(ni)).

Assume that P ' Zp2 . Then |AutP | = p(p − 1). Since np2 satisfies
Property 1, there exists no prime divisor q of n with q | |AutP |. Therefore,
if z is any element of G of order coprime to p, then z acts trivially on P by
conjugation, whence K centralizes P . Consequently, G = K⊗P . Conversely,
if K is any group of order n, then K⊗Zp2 has order np2. And, if K1 and K2

are groups of order n, then K1⊗P and K2⊗P are isomorphic if and only if
K1 is isomorphic to K2, because Ki ' Ki ⊗ Zp2/Zp2 for all i. Accordingly,
(iii) holds.

Now, suppose that P ' Zp × Zp. Then each of the groups 〈Ai, P 〉 in
(27) has a noncyclic Sylow p-subgroup, and no two of these groups have the
same order. Furthermore, if Fi is any subgroup of G of order nip2, then Fi is
conjugate to 〈Ai, p〉 in G, by P. Hall’s Theorem. In particular,Fi ' 〈Ai, P 〉.
Consequently, the isomorphism class of each group 〈Ai, P 〉 is determined
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completely by G. So, we deduce from (iii) that

(28) g(n) ≥
t∏

i=1

(g(nip2)− g(ni)).

On the other hand, if E1, . . . , Et are any groups with |Ei| = nip
2 for 1 ≤

i ≤ t, each of which possesses a noncyclic Sylow p-subgroup Pi = 〈xi, yi〉
(where xpi = ypi = x−1

i y−1
i xiyi = 1), then we argue as in the first paragraph

of the proof of this lemma that Pi is normal in Ei for all i. Now P. Hall’s
Theorem guarantees the existence of a subgroup Di of Ei with |Di| = ni,
for all i. Embed each group Ei in E1 ⊗ . . . ⊗ Et in the canonical manner.
Consider the elements x = x1 · . . . · xt, and y = y1 · . . . · yt. Then for all i,
the action of Ei on 〈x, y〉 by conjugation is identical to the action of Ei on
〈xi, yi〉 by conjugation, since Ei centralizes xj and yj for j 6= i. It follows
that 〈x, y〉 is normal in E1 ⊗ . . .⊗ Et. Consequently,

|〈D1, . . . , Dt, 〈x, y〉〉| = np2,

and 〈x, y〉 is a noncyclic Sylow p-subgroup of 〈D1, . . . , Dt, 〈x, y〉〉. Thus, (28)
holds with ≥ replaced by ≤.

The next lemma shows the importance of Properties 1 and 2 for the
estimation of Ck(x).

Lemma 5. Let m and n be odd cubefree positive integers, both satisfying
each of Property 1 and Property 2. If G(m) ∼ G(n), then g(m) = g(n).

P r o o f. We argue by induction on ω(n). If ω(n) = 1, then the desired
conclusion follows from the notes preceding Lemma 1. Otherwise, let B be
a bijection from the vertices of G(m) to the vertices of G(n), for which there
are the same number of directed edges from v to w in G(m) as there are
from B(v) to B(w) in G(n) for every pair of vertices v, w of G(m) and
such that B maps primes to primes and maps squares to squares. If m has
more than one connected component, let the connected components of m
be m1, . . . ,mt. Then, by construction B maps connected components to
connected components. In detail, if for all i, ni is the product of the vertices
B(v) of n as v ranges over the nontrivial prime powers exactly dividing mi,
then n1, . . . , nt are the connected components of n. Therefore, the Induction
Hypothesis yields g(mi) = g(ni) for all i. Moreover, we can conclude from
Lemma 1 that g(m) = g(m1) · . . . · g(mt), and that g(n) = g(n1) · . . . · g(nt),
so that g(m) = g(n).

Therefore, we may assume that m has exactly one connected component.
Then, the same is true of n. If ω(n) = 2, then we can deduce the lemma
from Lemma 1 and our definition of equivalence of graphs. Thus, we are
allowed to suppose that ω(n) ≥ 3. Let rβ be the unique vertex of G(m)
of out-degree 0. Then B(rβ) is the unique vertex of G(n) of out-degree 0.
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Since m has only one connected component, the in-degree of rm is at least 1.
Let {qα1

1 , . . . , qαtt } be the set of vertices of G(m) for which there exists at
least one edge with v for its initial point, and rβ for its final point. Then
B(qα1

1 ), . . . ,B(qβtt ) are the vertices V such that there exists at least one
edge with initial point V and terminal point B(rβ). If t = 1, then we apply
Lemma 3 twice, and invoke the Induction Hypothesis, to obtain

g(m) = g(mr−β)g(rβ) + g(mq−αr−β)(g(qαrβ)− g(qα)g(rβ))

= g(nR−β)g(Rβ) + g(nQ−αR−β)(g(QαRβ)− g(Qα)g(Rβ))

= g(n),

where q = q1, Qα = B(qα1 ), and Rβ = B(rβ). If t ≥ 2, denote the connected
component of m/rβ containing qαii by mi, and let ni be the product of B(v)
as v ranges over the vertices of mi, for 1 ≤ i ≤ t. Then ni is the connected
component of n/B(rβ) containing qαii . We now utilize Lemma 4 twice, and
apply the Induction Hypothesis, to get the desired result. Thus, if β = 1,
we obtain

g(m) =
t∏

i=1

g(mir) =
t∏

i=1

g(niB(r)) = g(n).

If β = 2, we get

g(m) =
t∏

i=1

(g(mir
2)− g(mi)) + g(mr−2)

=
t∏

i=1

(g(nir2)− g(ni)) + g(nB(r2)−1) = g(n).

4. Further preliminary results. Fix k ∈ C throughout the remainder
of this paper. Our primary goal in this section is to produce a sufficiently
dense set of positive cubefree integers at which the group-counting function
assumes the value k (see Lemma 10, as well as the proof of Theorem 1,
below). Our construction relies partly on the following theorem of Linnik [7]
on the least prime in an arithmetic progression.

Lemma 6. There exist positive absolute constants c1 and c2 such that
if h and l are any coprime integers with l > 0, then the smallest prime
p ≡ h mod l satisfies p ≤ c2lc1 .

Jing-Run Chen and J.-M. Liu [1] have published a proof that Lemma 6
holds with c1 = 13.5. D. Roger Heath-Brown holds the present record,
namely c1 = 5.5 (see Theorem 6 on p. 269 of [6]). For more data, we refer
the reader to the introduction to [6].
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Lemma 7. Assume that y is a sufficiently large positive real number.
(Here, sufficiently large may depend on k.) Then there are positive constants
c3 and ω, depending only on k, for which there exists a positive integer n,
for which Properties 1 and 2 hold , satisfying the following 3 criteria:

(i) g(n) = k;
(ii) n is odd and cubefree and has exactly ω prime divisors;

(iii) if the prime p divides n, then we have y < p < yc3 .

P r o o f. Assume that y is a real number exceeding 10. Now since k ∈ C,
there must be an odd cubefree integer m satisfying Properties 1 and 2, such
that

(29) g(m) = k.

Suppose that the prime factorization of m is

(30) m =
ω∏

i=1

qαii ,

and that

(31) 2 < q1 < . . . < qω.

Then if 1 ≤ j < i ≤ ω, exactly one of the following statements obtains:

(32) qj divides neither qi + 1 nor qi − 1;

(33) αi = αj = 1, qi ≡ 1 mod qj ;

(34) αi = 2, αj = 1, qi ≡ −1 mod qj ;

(35) αi = αj = 2, qj ‖ qi + 1;

(36) αi = αj = 2, q2
j | qi + 1;

(37) αi = 1, αj = 2, qj ‖ qi − 1;

(38) αi = 1, αj = 2, q2
j | qi − 1.

In addition, in view of (31), the equivalence class G̃(m) to which the graph
G(m) belongs is determined entirely by the exponents α1, . . . , αω, and by
the relationships (32)–(38) for the subscripts i, j with 1 ≤ j < i ≤ ω.

Recursively select primes p1, . . . , pω to fulfill the following conditions:

(39) y ≤ p1 ≤ 2y;

if i ≤ ω, and p1, . . . , pi−1 have been selected, then choose pi so that

(40) pi ≡ 4 mod pαjj if j < i, and (32) holds;

(41) pi ≡ 1 mod pαjj if j < i, and (33) holds;

(42) pi ≡ −1 mod pαjj if j < i, and (34) holds;

(43) pi ≡ pj − 1 mod pαjj if j < i, and (35) holds;
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(44) pi ≡ −1 mod pαjj if j < i, and (36) holds;

(45) pi ≡ pj + 1 mod pαjj if j < i, and (37) holds;

(46) pi ≡ 1 mod pαjj if j < i, and (38) holds.

The existence of p1 is guaranteed by Bertrand’s Postulate. Once p1, . . . , pi−1

have been chosen, the Chinese Remainder Theorem enables us to rewrite
the system of i− 1 simultaneous congruences, given as (40)–(46) as a single
congruence modulo

∏i−1
j=1 p

αj
j , since exactly one of the conditions (32)–(38)

is true for each pair i, j with i > j. And, we can conclude from the last
lemma that there exists a solution pi to this last congruence with

(47) pi ≤ c2
( i−1∏

j=1

p
αj
j

)c1
.

Choose pi to satisfy (47) at each stage. Now (40)–(46) imply that pi > pj ,
since at least one of the conditions (32)–(38) holds, and because the solution
to each congruence (40)–(46) between 1 and p

αj
j is not prime. So,

(48) 10 < y ≤ p1 < . . . < pω.

Let

n =
ω∏

j=1

p
αj
j ,

so that (ii) holds. By construction, n is odd and has Properties 1 and 2, so
that G(n) is defined. According to the last sentence of the first paragraph of
this proof, the graphs G(m) and G(n) are equivalent. Consequently, we can
deduce (i) from (29) and Lemma 5.

Now αj ≤ 2 for all j. Accordingly, combining (48) with (47) yields

pi ≤ c2
( i−1∏

j=1

p2
j−1

)2
= c2p

(i−1)c1ω
i−1 .

If y ≥ c2, then (48) guarantees that pi−1 ≥ c2, from which we get

pi ≤ p(i−1)c1ω+1
i−1 ≤ p(ω−1)c1ω+1

i−1 .

Since the exponent (ω − 1)c1ω + 1 does not depend upon i, we can iterate
this relationship to obtain

pi ≤ p((ω−1)c1ω+1)i−1

1 for 1 ≤ i ≤ ω.
It therefore follows from (39) that

pi ≤ (2y)((ω−1)c1ω+1)i−1 ≤ (y2)((ω−1)c1ω+1)i−1 ≤ yc3
for all i, where c3 = 2((ω − 1)c1ω + 1)ω−1. This inequality, combined
with (47), yields (iii).
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Lemma 8. Let m and n be odd positive integers with m squarefree and n
cubefree, and assume that Properties 1 and 2 hold for n. If

(φ(m),m) = (φ(m), n) = (φ(n),m) = (m,n)(49)

=
( ∏

p, p2|n
(p+ 1),m

)
= 1,

then mn is an odd , cubefree positive integer with g(mn) = g(n).

P r o o f. Recall that

(50) φ(h) =
∏

p|h
pνp(h)−1(p− 1)

for each positive integer h, where νp(h) is the integer for which pνp(h) exactly
divides h. Hence, if p is any prime divisor of h, then p − 1 divides φ(h).
So, (m,φ(n)) = 1 implies that (m, p − 1) = 1 for every prime divisor p
of n. Similarly, we have (n, p − 1) = (m, p − 1) = 1 for every prime p
dividing m. In addition, (p + 1,m) = 1 if p2 |n. Accordingly, the fact that
n fulfills Properties 1 and 2 insures that mn fulfills Properties 1 and 2.
Moreover, mn is odd and cubefree, inasmuch as m is odd and squarefree, n
is odd and cubefree, and m and n are coprime. We immediately deduce that
G(mn) exists, and that the connected components of mn are the connected
components of n and the prime divisors of m. Consequently, the lemma
follows from Lemma 1.

5. The proof of the main theorem

P r o o f o f T h e o r e m 1. Let k ∈ C, let x be sufficiently large, and
set y = (L2x)2. According to Lemma 7, there exist positive constants c2
and c3, and ω for which the conclusion of that lemma holds for some positive
cubefree integer n =

∏ω
i=1 p

αi
i . In particular,

(51) y < p1 < . . . < pω < yc3 .

As g(n) = k, we can conclude from the last lemma that

Ck(x) =
∑

m,mn≤x
(49) holds

1.

If P (m) denotes the smallest prime dividing m, then we must have

(52) Ck(x) ≥
∑

m≤x/n
(49) holds
P (m)>z

1,

where
z + (L2x)10c3 > yc3 .
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Note that if (49) holds, then φ(m) is relatively prime to m, so that m is
squarefree. Now by (50) and (51), nφ(n)

∏
p,p|n(p+ 1) has no prime divisor

greater than z. Consequently, (52) implies that

Ck(x) ≥
∑

m≤x/n
(φ(m),m)=(φ(m),n)=1

P (m)>z

1.

The proof of the main theorem of [11] from equation (27) of that paper to
the end of Section 3 of that paper is identical to the remainder of the proof
of the present Theorem 1. We therefore omit the details.
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