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1. Introduction. Let s = σ + it be a complex variable, and ζ(s) the
Riemann zeta-function. For any σ > 1/2 and any T > 0, put

V (T,R, σ; ζ) = µ1({t ∈ [−T, T ] | log ζ(σ + it) ∈ R}),
where µ1 is the one-dimensional Lebesgue measure, and R is a closed rect-
angle in the complex plane C with the edges parallel to the axes. Bohr–
Jessen [1] proved the existence of the limit

W (R, σ; ζ) = lim
T→∞

(2T )−1V (T,R, σ; ζ).

Consider a special case

R = R(`) = {z ∈ C | −` ≤ Re z ≤ `, −` ≤ Im z ≤ `},
where ` > 0, and put

W̃ (`, σ; ζ) = 1−W (R(`), σ; ζ).

If σ > 1, W̃ (`, σ; ζ) = 0 for sufficiently large `, because the Euler product
expansion of ζ(s) is absolutely convergent. If 1/2 < σ < 1, it is known that
for sufficiently large `,

(1.1) 2C∗2 exp{−C∗3 (1− σ)−1(2σ − 1)(C∗1 )−1/(1−σ)`1/(1−σ)

×(log `)σ/(1−σ)(1 + o(1))}
≤ W̃ (`, σ; ζ)

≤ 4 exp
{
− 3

4 (1− σ)−1(2σ − 1)2−1/(1−σ)

× `1/(1−σ)(log `)σ/(1−σ)(1 + o(1))
}
,

where C∗1 , C∗2 , and C∗3 are positive constants given in Theorem 0 below. If
σ = 1, for sufficiently large `,

(1.2) 2C∗2 exp{−C∗3 exp exp((C∗1 )−1`(1 + o(1)))} ≤ W̃ (`, 1; ζ)
≤ 4 exp

{
− 3

4 exp exp(2−1`(1 + o(1)))
}
.

[79]
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The inequalities (1.1) are proved by Joyner [2, Chap. 5, p. 142, Theorem 4.3],
and (1.2) is due to the second-named author [6]. These results determine the
real magnitude of the quantity W̃ (`, σ; ζ) with respect to ` up to constant
factors.

The present paper gives similar estimates for other zeta-functions (Theo-
rem 1), and improves the constants in the above inequalities for the Riemann
zeta-function (Theorem 2).

The basic tool of the proof of the above inequalities is Montgomery’s
theorem on the sums of independent random variables. Let N be the set of
positive integers, and let r = {rn | n ∈ N} be a sequence of non-negative
real numbers, with infinitely many non-zero terms, satisfying

(1.3)
∞∑

n=1

r2
n < ∞.

Let θ1, θ2, θ3, . . . be independent random variables with identical distribution
on a probability space (Ω, P ), where the law of θ1 is a uniform distribution
on the interval [0, 1]. Put

(1.4) Xn = cos(2πθn), n ∈ N, and X =
∞∑

n=1

rnXn.

Note that (1.4) implies

(1.5) E[Xn] = 0, n ∈ N,

where E[·] denotes the expectation value. Kolmogorov’s theorem with (1.3)
and (1.5) implies that X converges almost surely.

For N ∈ N, put

AN (r) =
∞∑

n=N+1

r2
n and BN (r) =

N∑
n=1

rn.

The condition (1.3) implies that AN (r) is finite.
Montgomery proved the following upper and lower bounds for the prob-

abilities that X takes large values. His upper bound is that, for any positive
integer N ,

(1.6) P (X ≥ 2BN (r)) ≤ exp
{
− 3

4BN (r)2AN (r)−1
}
.

Also he showed

Theorem 0 (Montgomery [8]). Let r = {rn} be as above, and assume
furthermore that {rn} decreases monotonically. Then there exist positive
constants C∗1 , C∗2 , and C∗3 , for which

(1.7) P (X ≥ C∗1BN (r)) ≥ C∗2 exp{−C∗3BN (r)2AN (r)−1}
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holds for every positive integer N . We can take C∗1 = 2−1, C∗2 = 2−40, and
C∗3 = 100.

The monotonicity assumption on {rn} in Theorem 0 is harmless in the
application to the case of the Riemann zeta-function, but it is too restrictive
to prove the results of the forms (1.1) and (1.2) for general zeta-functions.
(Montgomery states both upper and lower bounds under the assumption of
monotonic decrease of {rn}, but the assumption is used only in the proof of
the lower bound.)

Consider the following form of lower bound estimate for the probability
that X takes large values:

(#) P (X ≥ C1BN (r)) ≥ C2 exp{−C3BN (r)2AN (r)−1},
for sufficiently large N , with some positive constants C1, C2, and C3. (The
notations C∗1 , C∗2 , and C∗3 will be reserved for the monotonically decreasing
case as in Theorem 0, while C1, C2, and C3 will be used for general cases.)
The main result of the present paper is Theorem 4, which gives a necessary
and sufficient condition for existence of an estimate of the form (#).

Theorem 4 allows one to handle the case where {rn} does not decrease
monotonically (Theorem 3). The second-named author [5] generalized Bohr
and Jessen’s theory to fairly general zeta-functions defined by certain Euler
products. Denote such a zeta-function by φ(s), and put

V (T,R, σ;φ) = µ1({t ∈ [−T, T ] | log φ(σ + it) ∈ R}).
In [5], the existence of the limit

W (R, σ;φ) = lim
T→∞

(2T )−1V (T,R, σ;φ)

is proved not only in the domain of absolute convergence, but also in the
critical strip under some moderate conditions. As is explained in [7], the
inequality (#) plays the vital role in the study of the lower bound of

W̃ (`, σ;φ) = 1−W (R(`), σ;φ)

in the critical strip.
Consider the case where φ = φf is the Dirichlet series attached to a

primitive form f of weight m (≥ 1) with respect to the full modular group
SL(2, Z). In this case W (R, σ;φf ) exists for any σ > m/2 (see [4]). In-
equalities of the forms (1.1) and (1.2), which cannot be deduced from Mont-
gomery’s Theorem 0 in this case, are obtained from Theorem 3 in this paper:

Theorem 1. For any sufficiently large `,

α1 exp{−α2(m,σ, f)`2/(m+1−2σ)(log `)(2σ−m+1)/(m+1−2σ)(1 + o(1))}
≤ W̃ (`, σ;φf )

≤ 4 exp{−α3(m,σ)`2/(m+1−2σ)(log `)(2σ−m+1)/(m+1−2σ)(1 + o(1))}
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for m/2 < σ < (m + 1)/2, and

α1 exp{−α4(f) exp exp(α5`(1 + o(1)))} ≤ W̃ (`, (m + 1)/2;φf )
≤ 4 exp

{
− 3

8 exp exp(5(2 + 3
√

6)−1`(1 + o(1)))
}
,

where α1 and α5 are absolute positive constants, and αi, i = 2, 3, 4, are pos-
itive constants depending only on the quantities written in the parentheses.

The values of the constants α1, . . . , α5 are explicitly written in Section 3.
Another interesting application of Theorem 4 is that it gives an improve-

ment of constant factors, even in the monotonically decreasing case.

Theorem 2. (i) For any positive C∗2 , there exists N0 = N0(C∗2 ) for which
(1.7) holds with this fixed C∗2 and (C∗1 , C∗3 ) = (1/2, 47) for any N ≥ N0.

(ii) In the case of the Riemann zeta-function, in (1.1) we can replace C∗1
and C∗3 by the improved values K(σ)/2 and 47−6.31(K(σ)−1), respectively ,
where

K(σ) =
(

2σ − 1
1− σ

)(1−σ)/σ

+
(

2σ − 1
1− σ

)(1−2σ)/σ

.

Theorem 2(i) provides an improvement of the constants in (1.1), com-
pared with the constants given by Theorem 0. But it is essentially included
in Montgomery’s argument, because the only novelty is the new choice (5.8)
of the parameters. The argument which leads to Theorem 2(ii) is new. It
is easy to see that 1 < K(σ) ≤ 2 and K(2/3) = 2. Therefore Theorem 2(ii)
gives a further improvement of the constants.

Theorems 1 and 2 are proved in Sections 3 and 6, respectively. In the
following sections, ε denotes an arbitrarily small positive number, and is not
necessarily the same at each occurrence.

The authors would like to thank Professor Akio Fujii for useful sugges-
tions.

2. The main theorem. The following Theorem 3, a special case of
the main Theorem 4, is in a form suitable for application to the proof of
Theorem 1.

Theorem 3. Let r = {rn} be a sequence of non-negative real numbers
with infinitely many non-zero terms, and assume that it satisfies (1.3) and
the following (2.1) and (2.2) with some positive constants κ (≤ 1), C4, C5,
and C6:

(2.1) rn ≤ C4p
−κ
n , n ∈ N,

where pn denotes the n-th prime number , and

(2.2) #{n ≤ x | rn ≥ C5p
−κ
n } > C6x,
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for sufficiently large x, where the symbol #S signifies the cardinality of the
set S. Then, for any ε > 0 and any C2 > 0, there exists an N0 ∈ N
for which (#) holds for any N ≥ N0, with C1 = 1/2 and C3 = C + C2,
C = 6.31(C4C

−1
5 C−κ

6 )2(1 + ε).

The proof of this theorem is given in Section 4.

R e m a r k s. 1. In the proof it is shown that κ > 1/2.
2. In [7], this theorem was quoted with a weaker value of C3, obtained

from Theorem 4 with q = 1. Consequently, the constants in Theorem 5
of [7] are weaker than those in Theorem 1 of the present paper.

The assumptions (2.1) and (2.2) are not necessary for (#) to hold. This
can be seen in the following

Example 1. The sequence

{rn} = 1, 1/2, e−3, 1/3, e−5, e−6, e−7, 1/4, e−9, . . . , e−15, 1/5,

e−17, . . . , e−31, 1/6, e−33, . . .

satisfies neither (2.1) nor (2.2), but satisfies (#) with C1 = 1
2 (1 − 1/e),

C2 = 1, and C3 = 47.

The following theorem gives a necessary and sufficient condition for (#)
to hold.

Let {rn} be a sequence of non-negative real numbers, with infinitely
many non-zero terms, satisfying (1.3). The rearrangement {%n} of {rn} into
a decreasing sequence is defined by a bijection λ : N0 → N, where N0 =
{n ∈ N | rn 6= 0}, such that rn = %λ(n) for any n ∈ N0, and %1 ≥ %2 ≥ . . .
Note that (1.3) implies limn→∞ rn = 0, hence the rearrangement into a
decreasing sequence is well-defined.

Theorem 4. Let r = {rn} be a sequence of non-negative real numbers
with infinitely many non-zero terms, satisfying (1.3), and let ρ = {%n} be a
rearrangement of {rn} into a decreasing sequence. Let

(2.3) fr ,ρ(N1, N2; q) = BN2(ρ)BN1(r)−1 + qAN2(ρ)AN1(r)−1,

N1, N2 ∈ N, q > 0.

(i) A necessary and sufficient condition for the existence of an N0 ∈
N and of positive constants C1, C2, and C3 such that (#) holds for any
N ≥ N0, is that there exist positive constants q, uq, and N ′

0 such that

(2.4) fr ,ρ(N1, N2; q) ≥ uq for all N1 ≥ N ′
0 and N2 ≥ N ′

0.

If (2.4) holds for some positive q, then it holds for any positive q.
(ii) When (2.4) holds for some q > 0, possible values of the constants

are:

C1 = uq/ν1 and C3 = 2qν2/ν1 + (qν2/ν1)2 − 2(qν2/ν2
1)uq,
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and any positive C2, where ν1 and ν2 are constants satisfying (5.6) and (5.7),
for example, ν1 = 2 (or 2(1−ε) for sufficiently small ε > 0) and ν2 = 12.62.
The value of N0 depends on C2.

The proof of this theorem is given in Section 5. The specific form (1.4)
of the distribution of X1 is not essential. The estimates needed in the proof
of Theorem 4 are given in Proposition 5, which holds (with suitable change
in the constants) for any independent random variables X1, X2, . . . with
identical distribution, satisfying E[X1] = 0, E[X2

1 ] > 0, and X1 < M for a
constant M almost surely.

A proof of the statement in Example 1 is as follows. Let r = {rn} be as
in Example 1. Then

{%n} = 1, 1/2, 1/3, . . . , 1/20, e−3, 1/21, 1/22, . . .

Fix N1 and define n1 by 2n1−1 ≤ N1 < 2n1 . Put N0
2 = max{n ∈ N | %n ≥

1/n1}. It follows that {rn | n > N1} ⊂ {%n | n > N0
2 }. Hence if N2 ≤ N0

2 ,
then AN2(ρ) ≥ AN1(r), and if N2 > N0

2 , then

BN1(r) ≤ BN2(ρ) +
∑
n≥1

e−n = BN2(ρ) +
1

e− 1
≤

(
1 +

1
e− 1

)
BN2(ρ).

Therefore BN2(ρ)BN1(r)−1 ≥ 1 − 1/e, which implies fr ,ρ(N1, N2; 1)
≥ 1− 1/e. Theorem 4 can be applied to obtain the assertion.

It may be worthwhile to note that not every sequence {rn} satisfies the
condition (2.4).

Example 2. The sequence

{rn} = τ1, σ1, τ2, σ2, τ3, τ4, σ3, τ5, . . . , τ8, σ4, τ9, . . .

. . . , τ2k−1 , σk, τ2k−1+1, . . . , τ2k , σk+1, . . . ,

where τk = σk = 1/k, k ∈ N, cannot have an estimate of the form (#). In
fact,

lim
k→∞

fr ,ρ(2k + k, 2k2; 1) = 0,

so that (2.4) does not hold. (We use τk and σk for single 1/k to guide the
eyes.)

3. Deduction of Theorem 1 from Theorem 3. The upper bound
part of Theorem 1 is proved in [6] and [7]. Therefore it is sufficient to prove
the lower bound part.

Let φf be the Dirichlet series attached to a primitive form f of weight
m with respect to SL(2, Z). Then φf has the Euler product expansion of
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the form

φf (s) =
∞∏

n=1

(1− αnp−s
n )−1(1− βnp−s

n )−1,

in the half-plane σ > (m + 1)/2, and αn + βn = c(pn), the pnth Fourier
coefficient of f .

Deligne’s proof of Ramanujan–Petersson’s conjecture asserts |c(pn)| ≤
2p

(m−1)/2
n for any n ∈ N. On the other hand, the inequality

|c(pn)| > (
√

2− ε)p(m−1)/2
n ,

for an arbitrarily small ε > 0, is valid for a positive density of primes, as is
shown in Corollary 2 of Ram Murty [10]. Hence we see that (2.1) and (2.2)
are valid for rn = |c(pn)|p−σ

n , m/2 < σ ≤ (m+1)/2, with κ = σ−(m−1)/2,
C4 = 2, C5 =

√
2−ε, and some positive C6 = C6(ε). Theorem 3 asserts that

(#) holds with C1 = 1/2, C3 = C + C2 with C = 12.62C−2σ+m−1
6 (1 + 3ε),

and any C2.
We choose N = N(`) ∈ N by the condition

(3.1) 1
2BN−1(r) ≤ ` + A < 1

2BN (r),

where A is the positive constant, depending only on σ and φf , defined in
Section 3 of [6]. Then we can deduce

W̃ (`, σ;φf ) ≥ µ∞
(
X > 1

2BN (r) or X < − 1
2BN (r)

)
(3.2)

≥ 2C2 exp(−C3BN (r)2AN (r)−1),

from (4.11) of [6] and (#).
Put a(pn) = c(pn)p(1−m)/2

n . Rankin [11] proved

(3.3)
∑

pn≤x

|a(pn)|2 =
x

log x
(1 + o(1)),

and
1√
2
· x

log x
(1 + o(1)) ≤

∑
pn≤x

|a(pn)|(3.4)

≤ 2 + 3
√

6
10

· x

log x
(1 + o(1)).

Let x be a real number satisfying pN ≤ x < pN+1. By using partial
summation, we obtain

BN (r) =
∑

pn≤x

|a(pn)|x(m−1)/2−σ

+
(

σ − m− 1
2

) x∫
2

∑
pn≤ξ

|a(pn)|ξ(m−1)/2−σ−1dξ.
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Hence, by using (3.4), it follows that

(3.5) BN (r) ≤ 2 + 3
√

6
5(m + 1− 2σ)

· x(m+1)/2−σ

log x
(1 + o(1))

if m/2 < σ < (m + 1)/2,

(3.6) BN (r) ≤ 2 + 3
√

6
10

(log log x)(1 + o(1)) if σ = (m + 1)/2.

Also, from (3.3) it follows that

AN (r) ≥ 1
2σ −m

· xm−2σ

log x
(1 + o(1)).

Hence,

(3.7) BN (r)2AN (r)−1

≤ (2 + 3
√

6)2(2σ −m)
25(m + 1− 2σ)2

· x

log x
(1 + o(1)) if m/2 < σ < (m + 1)/2,

(3.8) BN (r)2AN (r)−1

≤ (2 + 3
√

6)2

100
x log x(log log x)2(1 + o(1)) if σ = (m + 1)/2.

Lower bounds for BN (r) follow from arguments similar to those for (3.5)
and (3.6). These lower bounds with (3.1) imply upper bounds of x and
x/ log x in terms of `. Substituting such upper bounds in (3.7) and (3.8)
and then substituting them in the right-hand side of (3.2), we obtain the
assertion of Theorem 1.

The above proof gives the explicit values of the constants: First, an
arbitrary positive number can be chosen as α1. Then, for any large ` ≥
`0 = `0(α1), we can choose

α2(m,σ, f) = 2C3

(
2 + 3

√
6

10

)2 2σ −m

m + 1− 2σ
23/(m+1−2σ),

α3(m,σ) =
3
4
· 2σ −m

m + 1− 2σ

(
2 + 3

√
6

5

)−2/(m+1−2σ)

,

α4(f) = C3

(
2 + 3

√
6

10

)2

and α5 = 2
√

2,

where C3 = C + C2 with C = 12.62C−2σ+m−1
6 (1 + ε). (See also Theorem 5

of [7].)

The above proof of Theorem 1 is similar to that developed in Sections
4 and 5 of [6]. A general form of the argument is given in Lemma 3 of [7],
in which the roles of (#) and “prime-number-theorem type” results (such
as Rankin’s (3.3) and (3.4)) are clarified in a more general situation. (The
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notation µ∞ is used instead of P in [6] and [7].) Roughly speaking, a “prime-
number-theorem type” estimate such as (3.4) gives estimate on BN (r) such
as BN (r) = O(N1−κ), with 1/2 < κ < 1. It should be noted, however, that
such an estimate is not sufficient for (#) to hold. This can be seen in the
following

Example 3. The sequence

{rn} = τ1, σ1, τ2, σ2, τ3, τ4, σ3, τ5, . . . , τ8, σ4, τ9, . . .

. . . , τ2k−1 , σk, τ2k−1+1, . . . , τ2k , σk+1, . . . ,

where τk = σk = k−κ, k = 1, 2, 3, . . . , and 1/2 < κ < 1, cannot have an
estimate of the form (#). The proof is similar to that of Example 2.

By using the notion of the rearrangement, Montgomery–Odlyzko [9] gives
another general lower-bound. Let X1, X2, . . . be independent random vari-
ables such that E[Xn] = 0, |Xn| ≤ 1, and E[X2

n] ≥ C for a constant C > 0.
They state that if BN (ρ) ≥ 2V , then

(3.9) P (X ≥ V ) ≥ a1 exp(−a2V
2AN (ρ)−1)

with positive constants a1 and a2 depending only on C. This rearrangement
method is useful in the case of Dedekind zeta-functions; the lower-bound
part of the Theorem in [6] also uses the rearrangement method, which is
essentially the same as (3.9). However, in general, it is difficult to know
the arithmetic properties of AN (ρ) and BN (ρ), so (3.9) is not sufficient for
other arithmetic applications.

4. Deduction of Theorem 3 from Theorem 4. Define a subsequence
s = {sn} of r = {rn} by selecting all terms that satisfy

(4.1) rn ≥ C5p
−κ
n .

Define a one-to-one increasing map f : N → N by writing n = f(m) if rn

is the mth element in {rn} that satisfies (4.1); we have sm = rf(m). Then
(2.2) implies that there exists an M1 ∈ N for which

(4.2) m > C6f(m)

holds for any m ≥ M1. On the other hand, it is known (§57 of [3]) that for
any ε > 0, there exists an M2 = M2(ε) ∈ N for which

(4.3) (1− ε)n log n < pn < (1 + ε)n log n

holds for any n ≥ M2. Hence, if m ≥ M3 = max(M1,M2), then from (4.2)
and (4.3) we have

(4.4) pf(m) < (1 + ε)f(m) log f(m) < (1 + ε)C−1
6 m log(C−1

6 m).

Next, let σ = {σn} be a rearrangement of s = {sn} into a decreasing
sequence. Then we claim σn ≥ C5p

−κ
f(n) for any n. In fact, let us assume
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the contrary, and let n0 be the smallest positive integer for which σn0 <
C5p

−κ
f(n0)

holds. Then there are exactly n0 − 1 elements in {σn} such that
σn ≥ C5p

−κ
f(n0)

, while the definition of {sn} implies that there are at least
n0 elements in {sn} satisfying sn ≥ C5p

−κ
f(n0)

. This is a contradiction, hence
our claim follows. From this claim and (4.4), we have

AN (ρ) ≥ AN (σ) ≥ C2
5

∑
n>N

p−2κ
f(n)(4.5)

≥ (C5C
κ
6 )2(1− ε)

∑
n>N

(n log n)−2κ,

for sufficiently large N . Since (1.3) implies AN (ρ) ≤ AN (r) < ∞, the sum
on the right-hand side of (4.5) must converge, therefore it is required that
κ > 1/2. From (2.1) and (4.3) we have

(4.6) AN (r) ≤ C2
4

∑
n>N

p−2κ
n < C2

4 (1 + ε)
∑
n>N

(n log n)−2κ.

From (4.5) and (4.6), it follows that for sufficiently large N we have

(4.7) AN (r) ≤ (C4C
−1
5 C−κ

6 )2(1 + ε)AN (ρ).

If N2 < N1, then from (4.7) we have

AN2(ρ) ≥ (C−1
4 C5C

κ
6 )2(1− ε)AN2(r) ≥ (C−1

4 C5C
κ
6 )2(1− ε)AN1(r)

for sufficiently large N1 and N2. If N2 ≥ N1, then we have

BN2(ρ) ≥ BN1(ρ) ≥ BN1(r).

Hence, (2.4) is satisfied with q = (C4C
−1
5 C−κ

6 )2(1 + ε) and uq = 1. Theo-
rem 4 with ν1 = 2 therefore implies Theorem 3.

R e m a r k. We can prove a result slightly weaker than Theorem 3 directly
without Theorem 4. From the inequalities

BN (r) ≥
∑

m≤C6N

sm ≥ C5C
κ
6 (1− ε)

∑
2≤m≤C6N

(m log m)−κ,

and
BN (ρ) ≤ C4(1 + ε)

∑
2≤n≤N

(n log n)−κ,

we have

(4.8) BN (r) ≥ C−1
4 C5C6(1− ε)BN (ρ).

The distribution of
∑

%nXn is equal to that of
∑

rnXn (see Lemma 3 of [6]).
Therefore, Theorem 0 together with (4.7) and (4.8) implies (#), with C1 =
C∗1 = ν−1

1 and C3 = C∗3C4
4C−4

5 C
−2(1+κ)
6 (1+ε) (see (6.1) for the value of C∗3 ).

These are the values quoted in [7]. The assumptions (2.1) and (2.2) imply
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C6 ≤ 1 ≤ C4C
−1
5 , from which it follows that the above value C3 is weaker

(larger) than that in Theorem 3.

5. Proof of Theorem 4. Denote by I0(t) the modified Bessel function
defined by

(5.1) I0(t) =
∞∑

n=0

1
(n!)2

(
t

2

)2n

.

It is known that

(5.2) I0(t) =
1∫

0

exp(t cos(2πθ)) dθ.

(See, for example, Section 17.23 of [12].) Hence (1.4) implies

(5.3) E[exp(tXn)] = I0(t), n ∈ N.

Proposition 5. (i) The following upper bounds hold for I0(t):

(5.4) I0(t) ≤ et, t ≥ 0,

and

(5.5) I0(t) ≤ exp(t2/4), t ≥ 0.

(ii) The following lower bounds hold :

(5.6) I0(t) ≥ (1 + ν0) exp(t/ν1), t ≥ α,

and

(5.7) I0(t) ≥ exp(t2/ν2), 0 ≤ t < α,

with some positive constants α, ν0, ν1, and ν2. For example, we can take

(5.8) (ν0, ν1, ν2, α) = (700−1/2, 2 or 2(1− ε), 12.62, 5).

P r o o f. The bound (5.4) is trivial. The bound (5.5) is proved in Mont-
gomery [8]. In the same paper, Montgomery gives a proof of (5.6) and (5.7)
with

(5.9) (ν0, ν1, ν2, α) = (1, 2, 19, 7).

The following is a slight modification of his argument. Since exp(t cos(2πθ))
≥ exp(

√
3t/2), for 0 ≤ θ ≤ 1/12 and 11/12 ≤ θ ≤ 1, from (5.2) we see

I0(t) ≥ (1/6) exp(
√

3t/2). To prove (5.6) with ν1 = 2 or 2(1 − ε), it is
therefore sufficient to show

1
6

exp
(√

3
2

t

)
≥ (1 + ν0) exp(t/(2(1− ε))) for t ≥ α.
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This is equivalent to

(5.10) ν0 ≤
1
6

exp
(√

3− 1
2

α− ε

)
− 1.

Next, (5.1) implies I0(t) ≥ 1 + t2/4, hence, to prove (5.7), it is sufficient to
show 1 + t2/4 ≥ exp(t2/ν2) for 0 < t < α. This is equivalent to

(5.11) ν2 ≥ α2/ log(1 + α2/4).

With any values of ν0, ν2, and α satisfying (5.10) and (5.11), the inequalities
(5.6) and (5.7) hold with ν1 = 2 or ν1 = 2(1 − ε). We can check that the
choices (5.8) and (5.9) satisfy (5.10) and (5.11) for sufficiently small ε ≥ 0.
This completes the proof of Proposition 5.

P r o o f o f T h e o r e m 4. First we prove that (2.4) implies (#). As-
sume that (2.4) holds for some positive constants q, uq, N ′

0, and for all
N1 ≥ N ′

0 and N2 ≥ N ′
0. By definitions and (1.3), AN (r) decreases mono-

tonically to zero and BN (r) increases monotonically as N increases. Hence
for any C2 > 0, there exists an Ñ0 ∈ N for which

(5.12) #{n ∈ N | qν−1
1 ν2rnBN (r)AN (r)−1 ≥ α} × log(1 + ν0)

≥ log(1 +
√

C2)

holds for every N > Ñ0. Put

N1 = {n ∈ N | qν−1
1 ν2rnBN (r)AN (r)−1 ≥ α} and N2 = N−N1.

We then have

(5.13)
∞∑

n=1

log{I0(qν−1
1 ν2rnBN (r)AN (r)−1)}

≥
∑

n∈N1

{log(1 + ν0) + (qν−1
1 ν2rnBN (r)AN (r)−1/ν1)}

+
∑

n∈N2

(qν−1
1 ν2rnBN (r)AN (r)−1)2/ν2

≥ log(1 +
√

C2) + qν−2
1 ν2BN (r)AN (r)−1

∑
n∈N1

rn

+ q2ν−2
1 ν2BN (r)2AN (r)−2

∑
n∈N2

r2
n,

for N > Ñ0. Put

N2 = max{n ∈ N | %n ≥ αq−1ν1ν
−1
2 AN (r)BN (r)−1}.
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Since {%n} is a rearrangement of {rn}, we have

BN2(ρ) =
∑

n∈N1

rn and AN2(ρ) =
∑

n∈N2

r2
n.

Note that for sufficiently large N , we have N2 ≥ N ′
0. Using (2.4) and (5.13)

we therefore obtain, for sufficiently large N ,

(5.14)
∞∑

n=1

log{I0(λrn)} ≥ log(1 +
√

C2) + uqν
−1
1 λBN (r),

where λ = qν−1
1 ν2BN (r)AN (r)−1. Put G = exp(λX) and g =

exp{uqν
−1
1 λBN (r)}. Then, (5.3) and (5.14) imply

(5.15) E[G] = E[exp(λX)] =
∏
n≥1

I0(λrn) ≥ (1 +
√

C2)g.

On the other hand, by Schwarz’s inequality, we have( ∫
G≥g

G dP
)2

≤
( ∫

G≥g

G2 dP
)( ∫

G≥g

dP
)

(5.16)

≤ E[G2]P (G ≥ g)

=
( ∏

n≥1

I0(2λrn)
)
P (X ≥ uqν

−1
1 BN (r)).

By definition, g ≥ 1 > 0. With (5.15) we have∫
G≥g

G dP ≥
∫

G≥g

(G− g) dP ≥ E[G− g] = E[G]− g ≥
√

C2g.

Substituting this into (5.16) and using (5.4) and (5.5), we have

P (X ≥ uqν
−1
1 BN (r))

≥ C2g
2
{ N∏

n=1

exp(−2λrn)
}{ ∞∏

n=N+1

exp(−λ2r2
n)

}
= C2g

2 exp{−(2qν−1
1 ν2 + q2ν−2

1 ν2
2)BN (r)2AN (r)−1}

= C2 exp{−C3BN (r)2AN (r)−1},
where

(5.17) C3 = 2qν−1
1 ν2 + q2ν−2

1 ν2
2 − 2qν−2

1 ν2uq.

This implies (#) with the constants as claimed in Theorem 4(ii). If q′ > q
then fr ,ρ(N1, N2; q′) > fr ,ρ(N1, N2; q), and if q′ < q then fr ,ρ(N1, N2; q′) >
q′q−1fr ,ρ(N1, N2; q), hence if (2.4) holds for some q > 0, then it holds for
any q > 0.
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Next we prove that (#) implies (2.4) with q = 1. Assume that (#) holds.
For any λ ≥ 0 and for any real number x we have

P (X ≥ x) ≤ exp(−λx)E[exp(λX)].

Therefore for any λ ≥ 0,

P (X ≥ C1BN1(r)) ≤ exp(−λC1BN1(r))E[exp(λX)]

= exp(−λC1BN1(r))
∏
n≥1

I0(λrn)

= exp(−λC1BN1(r))
∏
n≥1

I0(λ%n)

≤ exp{−λC1BN1(r) + λBN2(ρ) + 4−1λ2AN2(ρ)},
N1 ∈ N, N2 ∈ N, where the last inequality comes from (5.4) and (5.5).
Combining with (#), we see that there exists an integer N0 such that for
N1 > N0 and N2 > N0,

(5.18) − λC1BN1(r) + λBN2(ρ) + 4−1λ2AN2(ρ)
+ C3BN1(r)2AN1(r)−1 − log C2 ≥ 0.

Take arbitrary integers N1 and N2 satisfying N1 > N0 and N2 > N0.
Consider first the case

(5.19) BN2(ρ) ≤ C1BN1(r).

Put

(5.20) λ = 2AN2(ρ)−1(C1BN1(r)−BN2(ρ)) (≥ 0).

Substituting (5.20) into (5.18) and multiplying by AN2(ρ)BN1(r)−2, we have

(5.21) 2C1BN2(ρ)BN1(r)−1 + C3AN2(ρ)AN1(r)−1

≥ C2
1 + BN2(ρ)2BN1(r)−2 + AN2(ρ)BN1(r)−2 log C2

≥ C2
1 + AN2(ρ)BN1(r)−2 log C2.

If C2 ≥ 1 then AN2(ρ)BN1(r)−2 log C2 ≥ 0. If 0 < C2 < 1 then from
(1.3) and the monotonicity of AN (ρ) and BN (r), there exists an integer Ñ0,
depending only on {rn}, {%n}, C1, and C2, such that if N1 > Ñ0 and
N2 > Ñ0, we have

2−1C2
1 > −(log C2)AN2(ρ)BN1(r)−2 > 0.

Therefore, for any positive C2 we have, from (5.21),

(5.22) 2C1BN2(ρ)BN1(r)−1 + C3AN2(ρ)AN1(r)−1 ≥ 2−1C2
1 ,

if N1 > max{N0, Ñ0} and N2 > max{N0, Ñ0}, hence

(5.23) fr ,ρ(N1, N2; 1) ≥ 2−1C2
1 max(2C1, C3)−1 (> 0).
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It remains to consider the case BN2(ρ) > C1BN1(r), for which we have

(5.24) fr ,ρ(N1, N2; 1) ≥ BN2(ρ)BN1(r)−1 > C1 (> 0).

From (5.23) and (5.24) we have (2.4). This completes the proof of Theo-
rem 4.

6. Proof of Theorem 2. Let q = 1. If {rn} is a monotonically de-
creasing sequence, then u = uq ≥ 1, because BN2(ρ) ≥ BN1(r) if N1 ≤ N2,
and AN2(ρ) ≥ AN1(r) if N1 ≥ N2. Hence Theorem 4 implies that we may
take C∗1 = ν−1

1 = 2−1 and

(6.1) C∗3 = 2ν−1
1 ν2 + ν−2

1 ν2
2 − 2ν−2

1 ν2 = 46.12 . . . < 47,

which proves Theorem 2(i).
For a monotonically decreasing sequence in general, it is not easy to

go beyond the claim u ≥ 1. However, in the case of the Riemann zeta-
function ζ(s), we can improve the value of C∗3 . In this case, rn = %n =
p−σ

n (pn denotes the nth prime number, 2−1 < σ < 1), hence by using
partial summation, we have

AN (r) = (2σ − 1)−1N1−2σ(log N)−2σ(1 + o(1))

and
BN (r) = (1− σ)−1N1−σ(log N)−σ(1 + o(1)).

Hence
fr ,ρ(N1, N2; 1) = (N2/N1)1−σ(log N1/ log N2)σ(1 + o(1))

+ (N2/N1)1−2σ(log N1/ log N2)2σ(1 + o(1)).

If N1 ≥ N2, then

(6.2) fr ,ρ(N1, N2; 1) ≥ φ(N2/N1)(1− ε),

where φ(x) = x1−σ + x1−2σ. If N1 < N2, then we put α = N2/N1 to obtain

fr ,ρ(N1, N2; 1) = α1−σ(log N1/(log N1 + log α))σ(1 + o(1))(6.3)
+ α1−2σ(log N1/(log N1 + log α))2σ(1 + o(1)).

To consider the lower bound of fr ,ρ(N1, N2; 1) for large N1 and N2, it is
sufficient to restrict ourselves to the case log α ≤ η log N1 for any small
η > 0, because otherwise the first term on the right-hand side of (6.3)
tends to infinity as N1 → ∞. Hence we may assume (6.2) also for the case
N1 < N2. The function φ(x) attains its minimum

K(σ) =
(

2σ − 1
1− σ

)(1−σ)/σ

+
(

2σ − 1
1− σ

)(1−2σ)/σ

at x =
(

2σ−1
1−σ

)1/σ. Therefore Theorem 4 can be applied to obtain Theo-
rem 2(ii).
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